Une étude comparative sur la prédiction de la production de l’énergie photovoltaïque à l’aide des méthodes d’apprentissage automatique

dc.contributor.authorM.MOHAMMED KRACHAI, Saïd Yacine.
dc.contributor.authorBENZEGUIR, Aicha Chahrazed.
dc.contributor.authorDr. DORBANE Abdelhakim
dc.date.accessioned2025-07-13T14:17:56Z
dc.date.available2025-07-13T14:17:56Z
dc.date.issued2025
dc.description.abstractThis Master’s thesis presents a comparative study of various machine learning algorithms used to predict photovoltaic energy production. Using the Orange3 software, models such as linear regression, decision trees, AdaBoost, and PLS were evaluated based on classification performance metrics. The main objective is to identify the most effective models for forecasting solar energy output using environmental data. The study highlights the growing role of artificial intelligence in the smart management of renewable energy and suggests future directions, including the use of real-time weather data and advanced techniques such as Machine Learning.en_US
dc.identifier.urihttp://dspace.univ-temouchent.edu.dz/handle/123456789/6630
dc.language.isofren_US
dc.subjectMachine learning, artificial intelligence, prediction, photovoltaic energy.en_US
dc.titleUne étude comparative sur la prédiction de la production de l’énergie photovoltaïque à l’aide des méthodes d’apprentissage automatiqueen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mémoire finale Krachai et Benzeguir VF - Yacine Krachai.pdf
Size:
3.12 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: