Blow-Up Result for a Class of Wave p-Laplace Equation with Nonlinear Dissipation in R^n

dc.contributor.authorBENIANI, ABDERRAHMANE
dc.date.accessioned2024-10-02T11:10:49Z
dc.date.available2024-10-02T11:10:49Z
dc.date.issued2021-03-01
dc.description.abstractThe Laplace equations has been studied in several stages and has gradually developed over the past decades. Beginning with the well-known standard equation ∆u = 0, where it has been well studied in all aspects, many results have been found and improved in an excellent manner. Passing to p-Laplace equation ∆pu = 0 with a constant parameter, whether in stationary or evolutionary systems, where it experienced unprecedented development and was studied in almost exhaustively. In this article, we consider initial value problem for nonlinear wave equation containing the p-Laplacian operator. We prove that a class of solutions with negative initial energy blows up in finite time if p > r > m, by using contradiction argument. Additional difficulties due to the constant exponents in Rn are treated in order to obtain the main conclusion. We used a contradiction argument to obtain a condition on initial data such that the solution extinct at finite time. In the absence of the density function, our system reduces to the nonlinear damped wave equation, it has been extensively studied by many mathematicians in bounded domain.en_US
dc.identifier.urihttp://dspace.univ-temouchent.edu.dz/handle/123456789/5351
dc.language.isoenen_US
dc.publisherVladikavkaz Mathematical Journalen_US
dc.subjectBlow-upen_US
dc.subjectp-Laplace equationen_US
dc.titleBlow-Up Result for a Class of Wave p-Laplace Equation with Nonlinear Dissipation in R^nen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2021_1_2-scopus.pdf
Size:
217.17 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: