Approche d’apprentissage profond pour la segmentation sémantique d’images
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
La segmentation sémantique dans l’apprentissage profond représente un domaine de recherche crucial en vision par ordinateur, visant à attribuer des étiquettes sémantiques à chaque pixel d'une image. Les avancées dans le domaine de l’apprentissage profond ont révolutionné cette discipline, en introduisant des architectures sophistiquées telles que les réseaux de neurones convolutifs (CNN).Cette étude se concentre sur l'utilisation du modèle U-Net pour la segmentation sémantique, en mettant l'accent sur les scènes urbaines de l'ensemble de données Cityscapes.
Pour améliorer les performances du modèle U-Net en segmentation sémantique, des couches convolutionelles supplémentaires ont été intégrées ainsi que d'autres ajustements spécifiques. Ces optimisations ont permis au modèle de capturer plus efficacement les détails complexes tout en régulant efficacement le processus d'apprentissage.
