Diagnostics de l’état des transformateurs de puissance par l’application de l’apprentissage automatique

dc.contributor.authorPONA, Daouda
dc.contributor.authorTRAORE, Mamadou
dc.contributor.authorBOUDJELLA, Fatima Zohra
dc.date.accessioned2024-09-08T09:20:57Z
dc.date.available2024-09-08T09:20:57Z
dc.date.issued2024
dc.description.abstractThe power transformer operates on Faraday's principles, facilitating the transfer of energy over long distances. Its maintenance and diagnosis are crucial for the stability of the electrical grid. In this study, transformer diagnostics were approached using oil analysis methods, including dissolved gas analysis. Two analytical approaches were employed: the traditional method adhering to international standards such as CEI, and the use of artificial intelligence. The latter relies on machine learning algorithms, which have proven effective in predicting oil condition.en_US
dc.identifier.urihttp://dspace.univ-temouchent.edu.dz/handle/123456789/4972
dc.language.isofren_US
dc.subjectTransformateur – diagnostics - gaz dissous - intelligence artificielle.en_US
dc.titleDiagnostics de l’état des transformateurs de puissance par l’application de l’apprentissage automatiqueen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
memoire cmplt final_compressed - Daouda PONA.pdf
Size:
2.07 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections