Extraction des connaissances à partir d’une base de données (application à la détection de fraude dans la consommation d’électricité et du gaz)

dc.contributor.authorOUNANE, Amina
dc.contributor.authorMESSABIHI, Meriem
dc.contributor.authorBOUHALOUAN, Djamila
dc.date.accessioned2024-12-10T14:52:15Z
dc.date.available2024-12-10T14:52:15Z
dc.date.issued2023
dc.description.abstractOur work involves combining the fields of knowledge extraction and artificial intelligence to develop a sophisticated system for detecting fraud related to electricity and gas consumption. To achieve this, we leveraged the online database of STEG and implemented two state-of-the-art classifiers, XGBoost and LightGBM, which are among the top machine learning algorithms for solving such problems. After conducting a comparative evaluation, we selected the most performant model, LightGBM, taking into account several metrics demonstrating its superiority. Using this model, we achieved a precision rate of 95.00% and a score of 88.71%, resulting in an excellent 19th position out of 295 participants in the Zindi challenge. These results showcase the effectiveness of our innovative approach and our dedication to tackling challenges in energy fraud detection.en_US
dc.identifier.urihttp://dspace.univ-temouchent.edu.dz/handle/123456789/5881
dc.language.isofren_US
dc.subjectExtraction de connaissances, intelligence artificielle, apprentissage automatique détection de fraudes, consommation d'électricité et de gaz, Base de données révérencielle STEG, classificateurs XGBoost et LightGBM, challenge Zindien_US
dc.subjectKnowledge extraction, artificial intelligence, machine learning fraud detection, electricity and gas consumption, Rev.STEG database, XGBoost and LightGBM classifiers, Zindi challengeen_US
dc.titleExtraction des connaissances à partir d’une base de données (application à la détection de fraude dans la consommation d’électricité et du gaz)en_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mémoire_PFE_OUNANE.A&MESSANIHI.M_Enc_NOUHALOUAN.pdf
Size:
13.07 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections