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Introduction

This document is the result of teaching this subject at Ain Temouchent University, Depart-
ment of Mathematics and Computer Science. It is intended for third-year Mathematics
LMD students.

Optimization: to make something optimal, to give something the best possible conditions
for use, functioning, or performance under certain circumstances.

Optimization is a fundamental branch of both mathematics and computer science, aimed
at modeling, analyzing, and solving problems that determine the optimal solution while ad-
hering to specific constraints. Whether in daily life—when organizing a desk or arranging
furniture—or in more complex industrial settings like task scheduling, optimization prob-
lems are ubiquitous. These challenges can often be expressed as a ”general optimization
problem see for examples [1, 2, 3].

Optimization plays a key role in several disciplines, including operations research, which
lies at the intersection of computer science, mathematics, and economics . It is also essential
in applied mathematics, crucial to industry and engineering, and has important applications
in numerical analysis, where it helps in problems like maximum likelihood estimation in
statistics, and in game theory, control theory, and command systems .

Various methods are used to tackle optimization problems, including unconstrained op-
timization techniques, which are a central topic in many academic courses (see [4, 7, 5].
These methods help researchers and practitioners solve complex mathematical problems and
design efficient algorithms.

An optimization problem consists of finding an element x∗ ∈ D (if it exists) for which
f (x∗) is the smallest (or largest, respectively) value of f over D, and we write:

min
x∈D

f (x) = f (x∗), (respectively, max
x∈D

f (x) = f (x∗)).

The primary goal of this course is to build a strong foundation in optimization principles,
including the understanding of objective functions, constraints, and feasible regions. Addi-
tionally, it aims to clarify the distinctions between various types of optimization problems,
such as linear versus nonlinear and convex versus non-convex, enabling students to approach
and solve these problems with a clear conceptual framework.

We begin with basic reminders of differential calculus and the notion of convexity in the
first chapter.

In the second chapter, we present some theoretical results on unconstrained optimiza-
tion.

In the third chapter, we introduce classical algorithms for numerical optimization.
Various examples and exercises accompany this document to help assimilate the more

theoretical concepts covered in the course.
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Chapter 1

Basic Reminders of Differential Calculus
and Convexity

1.1 Differential Calculus

1.1.1 Directional Derivative
In this section, we will focus to give some notions in the differential calculus.

Definition 1.1.1. For every n ∈ N, Rn denotes the Euclidean space R×R× ·· · ×R (the
Cartesian product of n copies of R). A vector x∈Rn is typically written as x=(x1,x2, . . . ,xn)

T

(column vector).

1.1.2 Canonical Basis and Norms
Let e1,e2, . . . ,en denote the elements of the canonical basis of Rn, where ei is the vector in
Rn given by:

(ei) j = δi j =

{
0 if j ̸= i,
1 if j = i,

for all i, j = 1,2, . . . ,n (where δi j is the Kronecker symbol).

1.1.3 Dot Product
For any x,y ∈ Rn, we consider ⟨x,y⟩ ∈ R the dot product of x and y, which is given by:

⟨x,y⟩=
n

∑
i=1

xiyi.

Two vectors x,y ∈ Rn are orthogonal (denoted x ⊥ y) if ⟨x,y⟩= 0.

1.1.4 Euclidean Norm
For any x ∈ Rn, we denote by ∥x∥ ≥ 0 the Euclidean norm of x, given by:

∥x∥=
√
⟨x,x⟩=

√
n

∑
i=1

x2
i .
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CHAPTER 1. BASIC REMINDERS OF DIFFERENTIAL CALCULUS AND
CONVEXITY

Recall the properties of a norm (and thus also of the Euclidean norm):

i) ∥αx∥= |α|∥x∥ for all α ∈ R and x ∈ Rn.

ii) ∥x+ y∥ ≤ ∥x∥+∥y∥ for all x,y ∈ Rn.

iii) ∥0∥= 0 and ∥x∥> 0 if x ∈ Rn \{0}.

Definition 1.1.2 (The open ball centered). For every x ∈ Rn and r > 0, we denote by B(x;r)
the open ball centered at x with radius r, given by:

B(x;r) = {y ∈ Rn | ∥y− x∥< r}.

Definition 1.1.3. If x(k) for k ∈ N is a sequence in Rn and x is an element of Rn, we say that
x(k) converges to x (denoted x(k) → x) if ∥x(k)− x∥→ 0.

meaning that x(k) → x if and only if x(k)i → xi in R, where x(k)i (respectively xi) is the i-th
component of x(k) (respectively x).

Definition 1.1.4. Let U ⊂ Rn.

1. We define the interior of U as the set of elements x ∈ U for which there exists r > 0
such that B(x;r)⊂U.

2. We say that U is open if for every x ∈U, there exists r > 0 such that B(x;r)⊂U.

3. We say that U is closed if for every sequence {x(k)} ⊂ U such that x(k) → x ∈ Rn, we
have x ∈U.

Definition 1.1.5. If a,b ∈ Rn, we denote by [a,b] the subset of Rn given by:

[a,b] = {a+ t(b−a) | t ∈ [0,1]}.

The set [a,b] is also called the segment connecting a to b.

Definition 1.1.6 (The Cauchy-Schwarz inequality).

|⟨x,y⟩| ≤ ∥x∥ · ∥y∥ for all x,y ∈ Rn.

Definition 1.1.7. We consider the following function as f :Rn →R,and let x0 ∈Rn be a point
where f (x0) is defined. Then the directional derivative of f at x0 in the direction d ∈ Rn is
defined by:

f ′d(x0) = lim
t→0+

f (x0 + td)− f (x0)

t
if it exists.
This derivative gives the rate of change of f at x0 in the direction d.

Definition 1.1.8 (Fréchet Differentiability). A function f is said to be Fréchet differentiable
(F-differentiable) at x0 ∈Rn if there exists a continuous linear map L(x0) from Rn to R such
that:

lim
d→0

f (x0 +d)− f (x0)−L(x0) ·d
∥d∥

= 0.

The map L(x0) is called the derivative of f at x0.
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CHAPTER 1. BASIC REMINDERS OF DIFFERENTIAL CALCULUS AND
CONVEXITY

Example 1.1.1. We consider the following function f : R2 → R, be a function defined by:
f (x1,x2) = x1 − x2

2. For any d ∈ R2, we get

lim
t→0+

f (x+ td)− f (x)
t

= lim
t→0+

f (x1 + td1,x2 + td2)− f (x1,x2)

t

= (1,−2x2)

(
d1
d2

)
= f ′(x) ·d.

Example 1.1.2. We consider f : R2 \{(0,0)}→ R, be a function defined by:

f (x1,x2) =


x2

1x2
x2

1+x2
2
, (x1,x2) ̸= (0,0),

0, (x1,x2) = (0,0).

Obviously that The function f is continuous at (0,0). Indeed, for x1 = r cosθ , x2 = r sinθ ,
with r > 0 and θ ∈ (0,2π), we have:

lim
(x1,x2)→(0,0)

f (x1,x2) = lim
r→0+

r3 cos2 θ sinθ

r2 = 0 = f (0,0).

Furthermore, f admits partial derivatives at (0,0) since:

∂ f
∂x1

(0,0) = lim
d1→0

f (d1,0)− f (0,0)
d1

= 0,

∂ f
∂x2

(0,0) = lim
d2→0

f (0,d2)− f (0,0)
d2

= 0.

However, f is not Fréchet differentiable (and so not differentiable) at (0,0) because:

lim
(d1,d2)→(0,0)

f (d1,d2)− f (0,0)−
(

∂ f
∂x1

(0,0), ∂ f
∂x2

(0,0)
)(d1

d2

)
∥(d1,d2)∥

= lim
r→0

(cos2
θ sinθ)

does not exist.

1.2 Convexity
In this section, we provide the essential definitions needed to understand the concepts of
convexity and concavity in functions. In mathematics, the term ”convex” is used to describe
two distinct yet related concepts: when it refers to a geometric class or a set of points, it
relates to the concept of a convex set. In this section, we introduce the notions of convex sets
and convex functions and demonstrate their main geometric and topological properties.

Definition 1.2.1 (Gradient). We define by

(∇ f (x))T =

[
∂ f
∂x1

,
∂ f
∂x2

, . . . ,
∂ f
∂xn

]
(x),

the gradient of f at the point x = (x1, . . . ,xn). The gradient will play an essential role in
the development and analysis of optimization algorithms.
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Example 1.2.1. We Consider f (x1,x2,x3) = ex1 +
x1

2
x3
− x1x2x3. Therefore, the gradient of f

is written as follows

∇ f (x1,x2,x3) =

ex1 +2x1x3 − x2x3
−x1x3

x1
2

x3
− x1x2

 .
1.2.1 Hessian Matrix
Definition 1.2.2. : The Hessian of f is the symmetric matrix in Mn(R) given by

H(x) = ∇
2 f (x) =

[
∂ 2 f

∂xi∂x j
(x)
]

i=1,...,n; j=1,...,n
.

Specifically,

H(x) =



∂ 2 f
∂x2

1

∂ 2 f
∂x1∂x2

· · · ∂ 2 f
∂x1∂xn

∂ 2 f
∂x2∂x1

∂ 2 f
∂x2

2
· · · ∂ 2 f

∂x2∂xn
...

... . . . ...
∂ 2 f

∂xn∂x1

∂ 2 f
∂xn∂x2

· · · ∂ 2 f
∂x2

n

 .

Example 1.2.2. We consider f (x1,x2,x3) = ex1 +
x2

2
x3
− x1x2x3. The Hessian of f is given by

H(x) =

ex1 +2x3 −x3 −x1
−x3 0 −x1
−x1 −x1 0

 .
Example 1.2.3. Let us define

f (x1,x2,x3) = ex1 +
x2

2
x3

− x1x2x3

. The Hessian of f is given by

H(x) =

ex1 +2x3 −x3 −x1
−x3 0 −x1
−x1 −x1 0

 .
Definition 1.2.3. We say that x∗ is a stationary point of f if ∇ f (x∗) = 0

In the following Proposition, we will give the relationship between Gradient and Hes-
sian Matrix.

Proposition 1.2.1. 1. The i-th row of ∇2 f (x) is the Jacobian of the i-th component of ∇ f .

2. We have
∇

2 f (x)h = ∇hT
∇ f (x), ∀x ∈ Rn, ∀h ∈ Rn.

Proof. 1. This is obvious.

7
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2. We have that

∂

∂xi
⟨∇ f (x),h⟩= ∂

∂xi

(
n

∑
j=1

∂ f
∂x j

(x)h j

)
=

n

∑
j=1

∂ 2 f
∂xi∂x j

(x)h j = (∇2 f (x)h)i.

Definition 1.2.4. We say that x∗ is a stationary point of f if ∇ f (x∗) = 0.

.

1.2.2 Convex Sets
Definition 1.2.5. A set S ⊆ Rn is called convex if:

∀x1,x2 ∈ S, ∀λ ∈ [0,1], λx1 +(1−λ )x2 ∈ S

or equivalently:

∀x1,x2 ∈ S, ∀λ1,λ2 ∈ R+, λ1 +λ2 = 1, λ1x1 +λ2x2 ∈ S.

In other words, a geometric object S is said to be convex whenever, for any two points
x and y in S, the segment [x,y] joining them is entirely contained within S.

Example 1.2.4. We define the following set: S = {(x,y) ∈ R2;y ≥ x2}
The set S is convex if:

∀X1,X2 ∈ S, ∀λ ∈ (0,1), λX1 +(1−λ )X2 ∈ S.

Let X1,X2 be two vectors in S. Then:

X1 = (x1,y1) ∈ S =⇒ y1 ≥ x2
1,

and

λX1 +(1−λ )X2 = (λx1 +(1−λ )x2, λy1 +(1−λ )y2) ∈ R2 such that

λy1 +(1−λ )y2 −λx2
1 − (1−λ )x2

2 = λ (y1 − x2
1)+(1−λ )(y2 − x2

2)+2λ (1−λ )(x1x2),

and since

λ (y1 − x2
1)+(1−λ )(y2 − x2

2)≥ 0,

we conclude that:

λ (y1 − x2
1)+(1−λ )(y2 − x2

2)+2λ (1−λ )x1x2 ≥ 0.

8
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1.2.3 Convex Combination
Definition 1.2.6. A convex combination of n elements xi ∈Rn is any element y ∈Rn that can
be written in the form:

y =
n

∑
i=1

λixi

with the coefficients λi satisfying:

λi ≥ 0 and
n

∑
i=1

λi = 1.

1.2.4 Convex Hull
Definition 1.2.7. The convex hull of a set S ⊆ Rn of elements xi ∈ Rn is the set of all convex
combinations of the points xi ∈ Rn.

It is also the smallest convex set containing S, which is therefore the intersection of all
convex sets containing S. It is denoted by H(S) or Conv(S):

H(S) =

{
n

∑
i=1

λixi | ∃x1,x2, ...,xn ∈ S and λi ∈ R+,
n

∑
i=1

λi = 1

}
.

And

H(S) =
⋂
{A | A is a convex set containing S}.

Example 1.2.5. 1. We consider S1 = {x,y}, then H(S1) is the segment [x,y].

2. Let defineS2 = {x,y,z}, then H(S2) is the closed triangle with vertices x,y,z.

1.2.5 Convex, Strictly Convex, and Strongly Convex Functions
Definition 1.2.8. A set U ⊆Rn is said to be convex if for all x,y ∈U, we have [x,y]⊆U (i.e.,
for any two points in U, the entire segment joining them is contained within U)

Definition 1.2.9. Let U ⊆ Rn be a convex set, and f : U → R a function.

1. We say that f is convex on U if:

f (ty+(1− t)x)≤ t f (y)+(1− t) f (x), ∀x,y ∈U, ∀t ∈ [0,1].

2. We say that f is strictly convex on U if:

f (ty+(1− t)x)< t f (y)+(1− t) f (x), ∀x,y ∈U with x ̸= y, ∀t ∈]0,1[.

3. We say that f is strongly convex on U if there exists β > 0 such that:

f (ty+(1− t)x)≤ t f (y)+(1− t) f (x)−β t(1− t)∥y− x∥2, ∀x,y ∈U, ∀t ∈ [0,1].

Definition 1.2.10. A function f : Rn → R is said to be concave if − f is a convex function,
that is, if:

∀x,y ∈ Rn, ∀t ∈ [0,1], f (tx+(1− t)y)≥ t f (x)+(1− t) f (y).

9
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Proposition 1.2.2 (Jensen’s Inequality). If f : Rn → R is convex, then:

f

(
m

∑
i=1

tixi

)
≤

m

∑
i=1

ti f (xi), ∀m ∈ N, ∀ti ≥ 0, with
m

∑
i=1

ti = 1, ∀xi ∈ Rn.

Proof. By induction on m ≥ 1.
- For m = 1, it is obvious. For m = 2, t1 + t2 = 1, so t2 = 1− t1, let t1 = t, then t2 = 1− t

with t ∈ [0,1], which is the definition.
- Suppose P(m) is true. Let x1,x2, . . . ,xm+1 ∈ Rn, and t1, t2, . . . , tm+1 ∈ R+ with:

m+1

∑
i=1

ti = 1,

we need to show that:

f

(
m+1

∑
i=1

tixi

)
≤

m+1

∑
i=1

ti f (xi).

- If tm+1 = 1, then t1 = t2 = · · ·= tm = 0, and the property is true.
- If tm+1 ̸= 1, let θ = 1− tm+1 > 0, and we have:

t1x1 + t2x2 + · · ·+ tm+1xm+1 = θ

m

∑
i=1

ti
θ

xi +(1−θ)xm+1.

Let x = ∑
m
i=1

ti
θ

xi = ∑
m
i=1 θixi, with θi =

ti
θ

, we note that θi ≥ 0 and ∑
m
i=1 θi = 1.

Therefore, we get:

f

(
m+1

∑
i=1

tixi

)
= f (θx+(1−θ)xm+1)≤ θ f (x)+(1−θ) f (xm+1),

and by the inductive hypothesis:

θ f (x)≤ θ

m

∑
i=1

θi f (xi),

hence,

f

(
m+1

∑
i=1

tixi

)
≤

m+1

∑
i=1

ti f (xi),

In general way it is difficult to show the convexity of a function using only the defini-
tion. The following propositions provide criteria for convexity, strict convexity, and strong
convexity, which are easier to use than the respective definitions.

Proposition 1.2.3 (Characterization of Convexity). Let Ω ⊆ Rn be open, U ⊆ Ω be convex,
and f : Ω → R be a C1-class function. Then:

a) The following three statements are equivalent:

1. f is convex on U,

2. f (y)≥ f (x)+ ⟨∇ f (x),y− x⟩, ∀x,y ∈U,

10
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3. ∇ f is monotone on U, that is:

⟨∇ f (y)−∇ f (x),y− x⟩ ≥ 0, ∀x,y ∈U.

b) Furthermore, if f is C2-class on Ω, then f is convex on U if and only if:

⟨∇2 f (x)(y− x),y− x⟩ ≥ 0, ∀x,y ∈U.

Proof. a) We prove here the equivalence between 1), 2), and 3).
1) ⇒ 2): Suppose f is convex. The definition of convexity can be written as:

f (x+ t(y− x))≤ (1− t) f (x)+ t f (y)

By fixing x and y, dividing by t, and letting t approach 0 (which is possible because t ∈ [0,1]),
we obtain 2).

2)⇒ 3): From 2), we deduce:

f (y)≥ f (x)+ ⟨∇ f (x),y− x⟩ ∀x,y ∈U,

and also by swapping x and y)) : f (x)≥ f (y)+ ⟨∇ f (y),x− y⟩ ∀x,y ∈U,
Adding these two inequalities, we obtain 3).

3) ⇒ 1): We consider that x and y be fixed in U . We introduce the function g : I → R
defined by

t ∈ I 7→ g(t) = f (ty+(1− t)x)

where I is an open interval containing [0,1]. It is easy to see that g is of class C1, and we
have

g′(t) = ⟨∇ f (ty+(1− t)x),y− x⟩ ∀t ∈ I

Let t1, t2 ∈ [0,1] with t1 < t2. Then

g′(t2)−g′(t1)= ⟨∇ f (x+t2(y−x))−∇ f (x+t1(y−x)),y−x⟩= ⟨∇ f (x+t2(y−x))−∇ f (x+t1(y−x)),(t2−t1)(y−x)⟩/(t2−t1)

By assumption 3), the last term of the previous equality is ≥ 0, which shows that g′ is a
non-decreasing function. We then deduce that g is a convex function on [0,1], which gives
for all t ∈ [0,1]:

g(t1 +(1− t)t0)≤ tg(1)+(1− t)g(0)

which means
f (ty+(1− t)x)≤ t f (y)+(1− t) f (x)

thus f is convex.
b) Suppose f ∈C2(U).
⇒ Suppose f is convex and show (2.2). Let h ∈ Rn be fixed, and consider the function

g : U → R given by g(x) = ⟨∇ f (x),h⟩ for all x ∈U . Using Proposition 2.1:

⟨∇2 f (x)h,h⟩= ⟨∇g(x),h⟩= ∂g
∂h

(x) = lim
t→0

⟨∇ f (x+ th),h⟩−⟨∇ f (x),h⟩
t

which gives:

⟨∇2 f (x)h,h⟩= lim
t→0

⟨∇ f (x+ th)−∇ f (x), th⟩
t2

11



CHAPTER 1. BASIC REMINDERS OF DIFFERENTIAL CALCULUS AND
CONVEXITY

Now, consider arbitrary x,y ∈U and h = y− x. Since x+ t(y− x) ∈U for all t ∈ [0,1], from
the previous equality and using the monotonicity of ∇ f , we deduce that:

⟨∇2 f (x)h,h⟩ ≥ 0

which means (2.2).
⇐ Now, suppose (2.2) is satisfied and show that f is convex. Let x,y ∈ U be fixed, and

consider the function g1 : U → R given by g1(z) = ⟨∇ f (z),x− y⟩ for all z ∈U . Then:

⟨∇ f (x)−∇ f (y),x− y⟩= g1(x)−g1(y) = ⟨∇g1(y+θ(x− y)),x− y⟩

with θ ∈ (0,1) (using one of Taylor’s formulas). On the other hand, we have:

∇g1(z) = ∇
2 f (z)(x− y)

and this allows us to deduce, using (2.2):

⟨∇ f (x)−∇ f (y),x− y⟩= ⟨∇2 f (y+θ(x− y))(x− y),x− y⟩ ≥ 0

This gives us the monotonicity of ∇ f , hence the convexity of f .

Example 1.2.6. 1. f (x) = ax2 +bx+ c with a > 0

2. f (x) = x2 + sin(x) (since f ′′(x) = 2− sin(x)≥ 1 for all x ∈ R).

3. Let f : Rn → R be given by

f (x) =
1
2
⟨Ax,x⟩−⟨b,x⟩+ c, ∀x ∈ Rn

where A ∈Mn(R) is a real symmetric square matrix of size n, b ∈ Rn is a vector, and
c ∈ R is a scalar (a function of this type is also called a quadratic function or form).
It is easy to compute:

∇ f (x) = Ax−b

∇
2 f (x) = A

(hence the Hessian of f is constant), we can deduce the following results

1. f is a convex function ⇔ A is a positive semi-definite matrix.

2. f is strongly convex ⇔ f is strictly convex ⇔ A is a positive definite matrix (positive
definite matrix).

We consider the following function:

f (x,y,z) = x2 + y2 + z2 − xy+ xz, (x,y,z) ∈ R3

The function f is of class C2 on R3 (where R3 is an open and convex set).
The gradient of f is:

∇ f (x,y,z) =

2x− y+ z
2y− x
2z+ x



12
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The Hessian matrix H f (x,y,z) = ∇2 f (x,y,z) is:

H f (x,y,z) =

 2 −1 1
−1 2 0
1 0 2


To determine the convexity, we calculate the eigenvalues of this matrix. We have:

det(H f −λ I) = det

2−λ −1 1
−1 2−λ 0
1 0 2−λ


Expanding the determinant, we get:

det(H f −λ I) = (2−λ )
[
(2−λ )2 −0

]
− (−1) [−1(2−λ )−1(0)]+1 [−1(0)−1(2−λ )]

= (2−λ )
[
(2−λ )2 −2

]
= (2−λ )((2−λ )2 −2) = 0

Thus, the eigenvalues are:

λ1 = 2, λ2 = 2+
√

2, λ3 = 2−
√

2

Since λ1,λ2,λ3 > 0, the function f is strictly convex.

Remark 1.2.1. Let f : Rn → R be given by

f (x) = ⟨Ax,x⟩ ∀x ∈ Rn

where A ∈Mn(R) is a real square matrix of size n (i.e., f is the quadratic form associated
with the matrix A). Then, for a fixed p ∈ {1,2, . . . ,n}, we can write

f (x) =
n

∑
i, j=1

Ai jxix j = Appx2
p +

n

∑
j=1, j ̸=p

Ap jxpx j +
n

∑
i=1,i ̸=p

Aipxixp +
n

∑
i, j=1,i ̸=p, j ̸=p

Ai jxix j

which gives

∂ f
∂xp

= 2Appxp +
n

∑
j=1, j ̸=p

Ap jx j +
n

∑
i=1,i̸=p

Aipxi =
n

∑
j=1

Ap jx j +
n

∑
i=1

Aipxi = (Ax)p +(AT x)p

Thus, we obtain:
∇ f (x) = (A+AT )x ∀x ∈ Rn

Using the formula ∇2 f = J∇ f , we deduce:

∇
2 f (x) = A+AT ∀x ∈ Rn

(so the Hessian of f is constant).
In particular, if A is symmetric (i.e., A = AT ), then

∇⟨Ax,x⟩= 2Ax ∀x ∈ Rn

∇
2⟨Ax,x⟩= 2A ∀x ∈ Rn

13
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1.2.6 Taylor’s Theorem
Theorem 1.2.1. Let U ⊂Rn be open, f : U →R, a ∈U, and h ∈Rn such that [a,a+h]⊂U.
Then, we have that

1. If f ∈C1(U), then

f (a+h) = f (a)+
∫ 1

0
⟨∇ f (a+ th),h⟩dt

(Taylor’s theorem of order 1 with integral remainder).

f (a+h) = f (a)+ ⟨∇ f (a+θh),h⟩ with 0 < θ < 1

(Taylor-Maclaurin theorem of order 1).

f (a+h) = f (a)+ ⟨∇ f (a),h⟩+o(∥h∥)

(Taylor-Young theorem of order 1).

2. If f ∈C2(U), then

f (a+h) = f (a)+ ⟨∇ f (a),h⟩+
∫ 1

0
(1− t)⟨∇2 f (a+ th)h,h⟩dt

(Taylor’s theorem of order 2 with integral remainder).

f (a+h) = f (a)+ ⟨∇ f (a),h⟩+ 1
2
⟨∇2 f (a+θh)h,h⟩ with 0 < θ < 1

(Taylor-Maclaurin theorem of order 2).

f (a+h) = f (a)+ ⟨∇ f (a),h⟩+ 1
2
⟨∇2 f (a)h,h⟩+o(∥h∥2)

(Taylor-Young theorem of order 2).

Remark 1.2.2. In the previous proposition, the notation o(∥h∥k) for k ∈N means an expres-
sion that tends to 0 faster than ∥h∥k.

1.2.7 Exercices
Exercice 1:

Which of the following sets are convex?

1. S1 = {(x,y) ∈ R2 | 0 ≤ x ≤ 1, y = 0}

2. S2 = {(x,y) ∈ R2 | x ≥ 0, y ≥ 0, x+ y ≤ 1}

3. S3 = {x ∈ Rn | A1x = b1, A2x ≤ b2} where A1 and A2 are matrices of size m×n, and
b1 and b2 are vectors in Rm.

4. S4 = {(x,y) ∈ R2 | y− x2 ≥ 0}

5. S5 = {(x,y) ∈ R2 | xy ≥ 1 and x > 0}

14
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Exercice 2:
Verify whether the following functions are convex or not on R2:

1. f (x,y) = x2 − xy+2y2 −2x+ ex+y

2. f (x,y) = (x−2)4 +(x−2)2y2 +(y+1)2

3. f (x,y) =−x2 −2xy−2y2

Exercice 3:
We consider the function f defined on R2 by

f (x,y) = x4 + y4 −2(x− y)2.

1. Show that there exist (a,b) ∈ R2
+ (and determine them) such that

f (x,y)≥ a∥(x,y)∥2 +b

for all (x,y) ∈ R2, where ∥ · ∥ denotes the Euclidean norm on R2. Deduce that the
problem

inf
(x,y)∈R2

f (x,y) (P)

has at least one solution.

2. Is the function f convex on R2

Exercice 4:
We define the function J : R2 → R by

J(x,y) = y4 −3xy2 + x2.

1. Determine the critical points of J.

2. Let d = (d1,d2) ∈ R2. Using the function t 7→ J(td1, td2), show that (0,0) is a local
minimum along any line passing through (0,0).

3. Is the point (0,0) a local minimum of the restriction of J to the parabola given by the
equation x = y2?

4. Compute the Hessian matrix of J. What is the nature of the critical point (0,0)?

1.2.8 Corrections
Exercice 1

1. Let S1 = {(x,y) ∈ R2 | y− x ≥ 0}. The set S is convex if for any X1,X2 ∈ S1 and
λ ∈ [0,1], the point λX1 +(1−λ )X2 also belongs to S.

Let X1 = (x1,y1) and X2 = (x2,y2) be two vectors in S1. Then

y1 − x1 ≥ 0 and y2 − x2 ≥ 0.

We need to show that

λX1 +(1−λ )X2 = (λx1 +(1−λ )x2,λy1 +(1−λ )y2) ∈ S1.
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The condition for convexity is:

λy1 +(1−λ )y2 − (λx1 +(1−λ )x2)≥ 0.

Simplify:

λy1 +(1−λ )y2 −λx1 − (1−λ )x2 = λ (y1 − x1)+(1−λ )(y2 − x2).

Since y1 − x1 ≥ 0 and y2 − x2 ≥ 0, it follows that:

λ (y1 − x1)+(1−λ )(y2 − x2)≥ 0.

Consequently, λX1 +(1−λ )X2 ∈ S1, proving that S1 is convex.

2. Let S2 = {(x,y) ∈ R2 | x ≥ 0, y ≥ 0, x + y ≤ 1}. The set S2 is convex if for any
X1,X2 ∈ S and λ ∈ [0,1], the point λX1 +(1−λ )X2 also belongs to S2.

Let X1 = (x1,y1) and X2 = (x2,y2) be two vectors in S2. Then:

x1 ≥ 0, y1 ≥ 0, x1 + y1 ≤ 1

and
x2 ≥ 0, y2 ≥ 0, x2 + y2 ≤ 1.

We need to show that

λX1 +(1−λ )X2 = (λx1 +(1−λ )x2,λy1 +(1−λ )y2) ∈ S2.

We need to check the following conditions:

• λx1 +(1−λ )x2 ≥ 0.

• λy1 +(1−λ )y2 ≥ 0.

• (λx1 +(1−λ )x2)+(λy1 +(1−λ )y2)≤ 1.

We simplify,

(λx1+(1−λ )x2)+(λy1+(1−λ )y2)= λ (x1+y1)+(1−λ )(x2+y2)≤ λ ·1+(1−λ )·1= 1.

Hence,
λX1 +(1−λ )X2 ∈ S,

proving that S2 is convex.

3. For all x,y ∈ S3 and all λ ∈ [0,1], we have:

A1(λx+(1−λ )y) = λA1x+(1−λ )A1y = b1,

and
A2(λx+(1−λ )y)≤ λA2x+(1−λ )A2y = b2,

which implies that λx+(1−λ )y ∈ E. Therefore, S3 is a convex set.
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4. For all X ,Y ∈ S4 and all λ ∈ [0,1], we have:

λX +(1−λ )Y = (λx1 +(1−λ )x2, λy1 +(1−λ )y2),

where y1 − x2
1 ≥ 0 and y2 − x2

2 ≥ 0. Thus, y1 ≥ x2
1 and y2 ≥ x2

2. On the other hand, we
have:

λy1 +(1−λ )y2 −λ
2x2

1 − (1−λ )2x2
2 −2λ (1−λ )x1x2 ≥ λ (1−λ )(x1 − x2)

2 ≥ 0.

Therefore, S4 is a convex set.

5. For all X ,Y ∈ S5 and all λ ∈ [0,1], we have:

λX +(1−λ )Y = (λx1 +(1−λ )x2, λy1 +(1−λ )y2),

where x1,x2 > 0. Thus, λx1 +(1−λ )x2 > 0. On the other hand, we have:

(λx1+(1−λ )x2)(λy1+(1−λ )y2)= λ
2x1y1+λ (1−λ )x1y2+λ (1−λ )x2y1+(1−λ )2x2y2

> λ
2 +(1−λ )2 +λ (1−λ )

(
x1

x2
+

x2

x1

)
≥ 0,

which implies that λX +(1−λ )Y ∈ S5. Therefore, S5 is not a convex set.

Exercise 2:
1. The gradient of f (x,y) is:

∇ f (x,y) =
(

2x− y+ ex+y −2
−x+ xy+ ex+y

)
,

and the Hessian matrix of f (x,y) is:

H f (x,y) =
(

ex+y +2ex+y −1 −1+ ex+y

−1+ ex+y 4+ ex+y

)
.

The eigenvalues are λ1 = ex+y+2> 0 and λ2 = 8ex+y+7> 0, which implies that f is strictly
convex.

2. The Hessian matrix of f (x,y) is:

H f (x,y) =
(

12(x−2)2 +2y2 4y(x−2)
4y(x−2) 2(x−2)2 +2

)
.

We have:
λ1 = 12(x−2)2 +2y2 ≥ 0,

and
λ2 = 24(x−2)4 +(x−2)2(24−12y2)+4y2.

For x = 0 and y = 5, λ2 < 0; for x = y = 0, λ2 > 0, so f is neither convex nor concave.
3. The Hessian matrix of f (x,y) is:

H f (x,y) =
(
−2 −2
−2 −4

)
.

The eigenvalues are λ1 < 0 and λ2 > 0, which implies that f is strictly concave.
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Exercise 3:
1. The function f is polynomial and hence of class C∞(R2). Using the fact that xy ≤

−1
2(x

2 + y2), we can write:

f (x,y)≤ x4 + y4 −2x2 −2y2 +4xy ≤ x4 + y4 −4x2 −4y2,

for all (x,y) ∈ R2. Using the fact that for all (X ,#) ∈ R2, X4 +#4 −2#X2 ≥ 0, we get:

f (x,y)≤ (2#−4)x2 +(2#−4)y2 −2#4.

For example, if we choose # = 3, we deduce:

f (x,y)≤ 2(x2 + y2)−162−∥(x,y)∥∞ −∞.

This proves that f is coercive on R2, which is closed and finite-dimensional. According to
the theorem covered in class, problem (P) has at least one solution.

2. To study the convexity of f (which is of class C2 on R2), we calculate its Hessian
matrix at any point (x,y) in R2. We have:

Hess f (x,y) =
(

12x2 −4 0
0 12y2 −4

)
.

Recall that f is convex on R2 if and only if its Hessian matrix is positive semi-definite at
all points. However, it is easy to verify that the eigenvalues of Hess f (0,0) are 0 and −2.
Therefore, f is not convex.

3. The critical points of f are given by the solutions to ∇ f (x,y) = (0,0), i.e., the critical
points are solutions to the system: {

x3 − (x− y) = 0
y3 +(x− y) = 0

,

which simplifies to: {
x3 + y3 = 0
y3 +(x− y) = 0

,

or: {
y =−x
x3 −2x = 0

.

We deduce that f has three critical points: O(0,0), A
(√

2,−
√

2
)

, and B
(
−
√

2,
√

2
)

.
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Chapter 2

Unconstrained Minimization

We consider the following function as follows f : Rn → R. The problem of unconstrained
minimization is defined as follows:

(P) minimize f (x) for x ∈ Rn.

The analysis of these problems is useful for various domains. Many constrained opti-
mization problems are transformed into sequences of unconstrained optimization problems
(e.g., Lagrange multipliers, penalty methods, etc.). The study of unconstrained optimization
problems also gets applications in solving nonlinear systems. A large class of algorithms
that we will consider for unconstrained optimization problems have the following general
form:

Given x0, calculate xk+1 = xk +αkdk;
where dk is called the descent direction and αk is the step size at the k-th iteration. In

practice, we almost always ensure the following inequality:

f (xk+1)≤ f (xk),

which ensures the desirable decrease of the objective function f . Such algorithms are
often called descent methods. Essentially, the difference between these algorithms lies in the
choice of the descent direction dk. Once the direction is chosen, we are more or less reduced
to a one-dimensional problem to determine αk. To approach the optimal solution of problem
(P) (in general, it is a point where the necessary conditions for optimality of f may hold with
some precision), we naturally move from the point xk in the direction of the decrease of the
function f . Unconstrained optimization has the following properties:

• All methods require a starting point x0.

• Deterministic methods converge to the nearest local minimum.

• The more you know about the function (gradient, Hessian), the more efficient the
minimization will be.

Let the unconstrained optimization problem (P).

Definition 2.0.1. Let f : Rn → R be a continuously differentiable function.

a) A point x̂ ∈ Rn is called a global optimal solution of (P) if and only if:

∀x ∈ Rn, f (x̂)≤ f (x).
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b) A point x̂ ∈ Rn is called a local optimal solution of (P) if and only if there exists a
neighborhood Vε(x̂) of x̂ such that:

f (x̂)≤ f (x), ∀x ∈Vε(x̂).

c) A point x̂ ∈ Rn is called a strict optimal solution of (P) if and only if there exists a
neighborhood Vε(x̂) of x̂ such that:

f (x̂)< f (x), ∀x ∈Vε(x̂) and x ̸= x̂.

2.1 Existence and Uniqueness Results
Before studying the properties of the solution(s) of (P), we must ensure their existence. We
will then provide results on uniqueness.

Definition 2.1.1. Let f : Rn → R. We say f is coercive if:

lim
∥x∥→+∞

f (x) = +∞.

Here, ∥ · ∥ denotes any norm on Rn. We denote ∥ · ∥p (with p ∈ N) the lp norm on Rn:

∀x = (x1, . . . ,xn) ∈ Rn, ∥x∥p =

(
n

∑
i=1

|xi|p
) 1

p

.

The infinity norm on Rn is:

∀x = (x1, . . . ,xn) ∈ Rn, ∥x∥∞ = max
1≤i≤n

|xi|.

Theorem 2.1.1 (Existence). Let f : Rn → R∪{+∞} be proper, continuous, and coercive.
Then (P) has at least one solution.

Proof. Let R = infx∈Rn f (x)<+∞, and let {xk}k∈N be a minimizing sequence, i.e.,

lim
k→+∞

f (xk) = R <+∞. (1)

Assume that {xk}k∈N is unbounded. Then, there exists a subsequence {xk j} j∈N such that:

lim
j→+∞

∥xk j∥=+∞.

By the coercivity of f , we have:

lim
j→+∞

f (xk j) = +∞,

which contradicts equation (1). Therefore, the sequence {xk}k∈N must be bounded.
Since {xk}k∈N is bounded, by the Bolzano-Weierstrass theorem, there exists a subse-

quence {xk j} j∈N that converges to some point x∗ ∈ Rn. Using the continuity of f , we have:

f (x∗) = lim
j→+∞

f (xk j) = R.

Thus, x∗ is a solution to problem (P), and R >−∞.
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Theorem 2.1.2 (Uniqueness). Let f : Rn → R be a strictly convex function. Then, there
exists at most one x∗ ∈ Rn such that:

f (x∗) = min
x∈Rn

f (x).

Proof. Let f be strictly convex. Suppose there exist x∗1 and x∗2 ∈Rn such that f (x∗1)= f (x∗2)=
minx∈Rn f (x). Assume that x∗1 ̸= x∗2. Since f is strictly convex, we have:

f
(

1
2

x∗1 +
1
2

x∗2

)
<

1
2

f (x∗1)+
1
2

f (x∗2) = min
x∈Rn

f (x),

which is a contradiction. Thus, x∗1 = x∗2.

Theorem 2.1.3 (Existence and Uniqueness). Let f : Rn → R, satisfying:

1. f is continuous;

2. f is coercive;

3. f is strictly convex.

Then, there exists a unique x∗ ∈ Rn such that f (x∗) = minx∈Rn f (x).

Theorem 2.1.4. Let f :Rn →R be a continuously differentiable function (class C1). Suppose
there exists β > 0 such that:

∀x,y ∈ Rn, ⟨∇ f (x)−∇ f (y),x− y⟩ ≥ β∥x− y∥2. (2.1)

Then f is strictly convex and coercive, and in particular, the problem (P) admits a unique
solution.

Proof. The condition (2.1) implies that ∇ f is monotone and that f is convex. Additionally,
f is strictly convex. Finally, f is coercive. Indeed, let us apply Taylor’s formula with an
integral remainder:

f (y) = f (x)+
∫ 1

0

d
dt

f (x+ t(y− x))dt = f (x)+
∫ 1

0
(∇ f (x+ t(y− x)),y− x)dt.

Thus,

f (y) = f (x)+(∇ f (x),y− x)+
∫ 1

0
(∇ f (x+ t(y− x))−∇ f (x),y− x)dt. (2.3)

From (2.2), we obtain

f (y)≥ f (x)+(∇ f (x),y− x)+
∫ 1

0
tβ∥x− y∥2 dt.

Finally,

f (y)≥ f (x)−∥∇ f (x)∥∥y− x∥+ β

2
∥x− y∥2.

Fixing x = 0, for instance, it becomes clear that f is coercive.
Consequently, f admits a unique minimum x⋆ on Rn, characterized by

∇ f (x⋆) = 0.
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2.2 Optimality conditions
Optimality conditions are equations, inequalities, or properties that the solutions of (P) sat-
isfy (necessary conditions) or that guarantee a point to be a solution of (P) (sufficient condi-
tion).

We refer to first-order conditions when they involve only the first derivatives of f . Second-
order conditions, on the other hand, involve both the first and second derivatives of f .

2.2.1 Necessary Optimality Conditions
Given a point x̂, the continuous differentiability of the function f provides a primary way to
characterize an optimal solution.

First-Order Necessary Optimality Conditions

Theorem 2.2.1. Let f : Rn → R be differentiable at a point x ∈ Rn. Let d ∈ Rn be such that
∇ f (x)T d < 0. Then, there exists ε > 0 such that f (x+αd)< f (x) for all α ∈ (0,ε). In this
case, the direction d is called a descent direction.

Proof. Since f is differentiable at x, we have:

f (x+αd) = f (x)+α∇ f (x)T d +α∥d∥φ(x,αd),

where φ(x,αd)→ 0 as α → 0. This implies:

f (x+αd)− f (x)
α

= ∇ f (x)T d +∥d∥φ(x,αd), α ̸= 0.

Since ∇ f (x)T d < 0 and φ(x,αd)→ 0 as α → 0, there exists ε > 0 such that:

∇ f (x)T d +∥d∥φ(x,αd)< 0 for all α ∈ (0,ε).

Consequently, we obtain:

f (x+αd)< f (x) for all α ∈ (0,ε).

Theorem 2.2.2. Let f : Rn → R be differentiable at a point x̂ ∈ Rn. If x̂ is a local minimum
of the problem (P), then ∇ f (x̂) = 0.

Proof. We prove by contradiction. Assume that ∇ f (x̂) ̸= 0.
Let d =−∇ f (x̂). We then obtain:

∇ f (x̂)T d =−∥∇ f (x̂)∥2 < 0.

By Theorem 2.2.1, there exists ε > 0 such that:

f (x̂+βd)< f (x̂), for all β ∈ (0,ε).

This leads to a contradiction with the fact that x̂ is a local minimum. Therefore, ∇ f (x̂) =
0.

Second-Order Necessary Conditions for Optimality
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Definition 2.2.1. • A symmetric matrix A is said to be positive semi-definite if:

∀d ∈ Rn, dT Ad ≥ 0.

• A symmetric matrix A is said to be positive definite if:

∀d ∈ Rn, d ̸= 0, dT Ad > 0.

Theorem 2.2.3. Let f : Rn → R be twice differentiable at the point x̂ ∈ Rn. If x̂ is a local
minimum of (P), then ∇ f (x̂) = 0 and the Hessian matrix of f at x̂, denoted H(x̂), is positive
semi-definite.

Proof. Let d ∈ Rn be arbitrary. Since f is twice differentiable at x̂, we have:

f (x̂+βd) = f (x̂)+
1
2

β
2dT H(x̂)d +β

2∥d∥2
ψ(x̂,βd),

where ψ(x̂,βd)→ 0 as β → 0.
This implies:

f (x̂+βd)− f (x̂)
β 2 =

1
2

dT H(x̂)d +ψ(x̂,βd).

Since x̂ is a local minimum, there exists ε > 0 such that:

f (x̂+βd)− f (x̂)
β 2 ≥ 0, for all β ∈ (0,ε).

Thus, we have:

1
2

dT H(x̂)d ≥ 0, for all d ∈ Rn.

Hence, H(x̂) is positive semi-definite.

2.2.2 Sufficient Conditions for Optimality
The conditions given previously are necessary (if f is not convex), meaning they must be sat-
isfied for any local minimum. However, a point satisfying these conditions is not necessarily
a local minimum.

Theorem 2.2.4. Let f : Rn →R be twice differentiable at the point x̂ ∈Rn. If ∇ f (x̂) = 0 and
H(x̂) is positive definite, then x̂ is a strict local minimum of (P).

Proof. Since f is twice differentiable at x̂, we have for all x ∈ Rn:

f (x) = f (x̂)+
1
2
(x− x̂)T H(x̂)(x− x̂)+∥x− x̂∥2

ψ(x̂,x− x̂),

where ψ(x̂,x− x̂)→ 0 as x → x̂ (since ∇ f (x̂) = 0).
Suppose x̂ is not a strict local minimum. Then there exists a sequence {xk}k∈N such that

xk ̸= x̂ for all k, and:

xk → x̂ as k → ∞ and f (xk)≤ f (x̂).
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Let x = xk, divide everything by ∥x− x̂∥2, and denote:

dk =
x− x̂

∥x− x̂∥
, with ∥dk∥= 1.

We obtain:

f (xk)− f (x̂)
∥xk − x̂∥2 =

1
2

dT
k H(x̂)dk +

ψ(x̂,xk − x̂)
∥x− x̂∥2 ,

where ψ(x̂,xk − x̂)→ 0 as xk → x̂.
Therefore:

1
2

dT
k H(x̂)dk +

ψ(x̂,xk − x̂)
∥xk − x̂∥2 ≤ 0, for all k.

Since ψ(x̂,xk − x̂)→ 0, it follows that:

1
2

dT
k H(x̂)dk ≤ 0, for all k.

This implies H(x̂) is not positive definite, contradicting the assumption. Hence, x̂ must
be a strict local minimum.

2.2.3 Necessary and Sufficient Conditions
Theorem 2.2.5. Let f : Rn → R be a convex and differentiable function. A necessary and
sufficient condition for x̄ ∈ Rn to be a global minimum of f on Rn is that:

∇ f (x̄) = 0.

Proof. Proof. 1. Necessity:
Suppose x̄ is a global minimum of f on Rn. By the definition of a global minimum, for

all x ∈ Rn, we have:
f (x)≥ f (x̄).

Since f is differentiable, we can examine the behavior of f around x̄ using a directional
derivative. For any direction d ∈ Rn, the first-order condition for optimality implies:

∇ f (x̄) ·d ≥ 0 and ∇ f (x̄) · (−d)≥ 0.

These inequalities imply that ∇ f (x̄) ·d = 0 for all directions d ∈ Rn, which is only pos-
sible if ∇ f (x̄) = 0.

2. Sufficiency:
Now, suppose ∇ f (x̄) = 0. Since f is convex, we have the property:

f (x)≥ f (x̄)+∇ f (x̄) · (x− x̄).

Substituting ∇ f (x̄) = 0 into this inequality yields:

f (x)≥ f (x̄),

which means f (x̄)≤ f (x)
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Example 2.2.1. Find the extrema of the function analytically:

f (x,y) = x3 + y3 +3xy

and determine whether they are minima or not.

Solution
We calculate the Gradient, we have

∇ f (x,y) =
(

3x2 +3y
3y2 +3x

)
=

(
0
0

)
This yields: {

3x2 +3y = 0
3y2 +3x = 0

which simplifies to: {
x2 + y = 0
y2 + x = 0

Solving these equations, we find the critical points:(
x
y

)
=

(
0
0

)
or
(
−1
−1

)
The Hessian matrix is:

H f (x,y) =
(

6x 3
3 6y

)
Thus,

∇
2 f
(

0
0

)
=

(
0 3
3 0

)
From which we get:

∇
2 f
(

0
0

)(
x
y

)
·
(

x
y

)
= 6xy

Thus:

∇
2 f
(

0
0

)
is not positive definite

Therefore: (
0
0

)
is not an extremum.

For the point:

∇
2 f
(
−1
−1

)
=

(
−6 3
3 −6

)
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The eigenvalues are the roots of:

λ
2 +12λ +27 = 0 =⇒ λ1 =−9 and λ2 =−3

Since:

λ1,λ2 < 0 =⇒ ∇
2 f
(
−1
−1

)
is negative definite.

In this case, the point: (
−1
−1

)
is a local maximum for f and:

f
(
−1
−1

)
= 1.

2.2.4 Exercises
Exercise 1:

Consider the function g : R2 → R defined by:

f (x,y) = x2 + y2 + xy

1. Show that the function f is coercive and strictly convex on R2.

2. Deduce that f has a unique minimum on R2.

3. Provide the optimality condition.

Exercise 2:
For each of the following functions:
f1(x1,x2,x3) = 3x2

1+3x2
2+3x2

3−2x1−10x3−2x1x3, f2(x1,x2) = x3
1+x3

2−3x1−12x2+
20

f3(x1,x2) = x4
1 + x4

2 −2(x1 − x2)
2.

1. Study the existence of extrema points.

2. Using a first-order optimality condition, determine the critical points.

3. Specify their nature each time (minimum or maximum? local or global?).

Exercise 3:
We consider the problem minx∈R2 f (x), where f (x) = 1

2⟨Ax,x⟩ with

A =

(
2 −1
−1 2

)
1. Provide the solution to this problem (denoted x̄). Let α > 0, and let the sequence

(xk)k∈N be defined by xk+1 = xk −αAxk.

2. For which values of α does the sequence (xk) converge to x̄ for any x0 ∈ R2?
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3. What is the optimal step size ᾱ?

Exercise 4:
Determine and specify the nature of the critical points of the following functions:

f (x,y) = x3 + y3 −3axy, a ∈ R

g(x,y) = x2 − cos(y)

h(x,y) = y2 + xy ln(x)

2.2.5 Corrections
Exercise 1:

We consider the function g from R2 to R, defined by the relation:

g(x,y) = x2 + y2 + xy

1. Show that the function f is coercive.

Since:

f (x,y) = x2 + y2 + xy and lim
∥(x,y)∥→∞

f (x,y)→ ∞,

then, the function f is coercive.

2. Show that the function f is strictly convex on R2.

The Hessian matrix of f at any point (x,y) ∈ R2 is:

H(x,y) =
(

2 1
1 2

)
This matrix is positive definite, and thus f is strictly convex.

3. Since f is continuous and coercive, it has at least one minimum on R2. Moreover, g is
strictly convex, so this minimum is unique.

To find the critical points, we solve the system:{
2x+ y = 0
2y+ x = 0

Thus, x = y = 0. Therefore, (0,0) is the unique minimum of f .

Exercise 2

1.
f1(x1,x2,x3) = 3x2

1 +3x2
2 +3x2

3 −2x1 −10x3 −2x1x3

= 2
(

x1 −
1
2

)2

+2
(

x3 −
5
2

)2

+3x2
2 −13
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It is clear that:

lim
∥(x1,x2,x3)∥→+∞

f1(x1,x2,x3) = +∞,

which shows that f1 is a coercive function. Consequently, f admits at least one global
minimum.

∇ f1(x1,x2,x3) =

 6x1 −2x3 −2
6x2

6x3 −2x1 −10

=

0
0
0


This gives the critical point: x1

x2
x3

=

1
0
2


The Hessian matrix is:

∇
2 f1(x1,x2,x3) =

 6 0 −2
0 6 0
−2 0 6


This is a positive definite matrix since its eigenvalues are λ1 = 4, λ2 = 6, and λ3 = 8,
all greater than zero. Therefore, the critical point is a global minimum.

2. For the function:

f2(x1,x2) = x3
1 + x3

2 +3x1 −12x2 +20

We have:

lim
x→+∞

f2(x,0) = +∞, lim
x→−∞

f2(x,0) =−∞

Thus, f is not coercive. If a minimum exists, it will not be global.

We compute the gradient,

∇ f2(x1,x2) =

(
3x2

1 −3
3x2

2 −12

)
=

(
0
0

)
This gives the following critical points:(

1
2

)
,

(
1
−2

)
,

(
−1
2

)
,

(
−1
−2

)
The Hessian matrix is written as follows

∇
2 f2(x1,x2) =

(
6x1 0
0 6x2

)
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For the critical point
(

1
2

)
, we have:

∇
2 f2(1,2) =

(
6 0
0 12

)

This is a positive definite matrix, so the point
(

1
2

)
is a minimizer of f .

For ∇2 f2(1,−2), we have:

∇
2 f2(1,−2) =

(
6 0
0 −12

)

This is an indefinite matrix, so
(

1
−2

)
is a saddle point.

For ∇2 f2(−1,2):

∇
2 f2(−1,2) =

(
−6 0
0 12

)

This is also an indefinite matrix, so
(
−1
2

)
is a saddle point.

For ∇2 f2(−1,−2):

∇
2 f2(−1,−2) =

(
−6 0
0 −12

)

This is a negative definite matrix, so
(
−1
−2

)
is a maximizer of f .

3. For the function,

f3(x1,x2) = x4
1 + x4

2 −2(x1 − x2)
2

Using the identity:

2(x2
1 + x2

2)− (x1 + x2)
2 = (x1 − x2)

2

We obtain:

x4
1 + x4

2 ≤
1
2
(x2

1 + x2
2)

2 (1)

−(x1 − x2)
2 ≤−2(x2

1 + x2
2) (2)

From (1) and (2), we have:

x4
1 + x4

2 −2(x1 − x2)
2 ≤ 1

2
(
−(x2

1 + x2
2)

2 −16
)
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Thus:

lim
∥(x1,x2)∥→+∞

f (x1,x2) = +∞

So, f is a coercive function, and therefore f admits at least one global minimizer.

The critical points are: (
0
0

)
,

( √
2

−
√

2

)
,

(
−
√

2√
2

)

The point
(

0
0

)
is a saddle point, but the points:( √

2
−
√

2

)
,

(
−
√

2√
2

)
are global minima, with:

f
(( √

2
−
√

2

))
= f

((
−
√

2√
2

))
=−8.

Exercise 3:

• The eigenvalues of matrix A are λ1 = 1 and λ2 = 3. The quadratic form f is strictly
convex and coercive, thus it admits a unique minimum, which is the solution of

∇ f (x) = 0 ⇐⇒ Ax = 0.

Since A is invertible, we obtain x̄ =
(

0
0

)T

.

• This corresponds to the sequence generated by the fixed-step gradient method, which
converges for any value of α ∈

]
0, 2

3

[
.

• The optimal step size for this method is given by:

ᾱ =
2

λ1 +λ2
=

2
4
=

1
2
.

Exercise 4:

1. The gradient and Hessian of f are given by:

∇ f (x,y) =
(

3x2 −3ay
3y2 −3ax

)

∇
2 f (x,y) =

(
6x −3a
−3a 6y

)
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For a ̸= 0, the function f has two critical points: p0 = (0,0) and pa = (a,a).

The Hessian matrix of f at the point p0 has eigenvalues of different signs, meaning p0
is a saddle point. The Hessian calculated at the point pa has two eigenvalues: λ1 = 3a
and λ2 = 9a. Thus, if a > 0, pa is a minimum, and if a < 0, pa is a maximum.

2. We show the gradient and Hessian of g are given by:

∇g(x,y) =
(

2x
sin(y)

)

∇
2g(x,y) =

(
2 0
0 cos(y)

)
The critical points of g are of the form pk = (0,kπ), where k ∈ Z. The Hessian at the
point pk is:

∇
2g(pk) =

(
2 0
0 (−1)k

)
Hence, pk is a minimum if k is even, and a saddle point if k is odd.

3. The function h is defined for x > 0 and is of class C2 on its domain of definition. The
gradient and Hessian of h are given by:

∇h(x,y) =
(

y ln(x)+ y
2y+ x ln(x)

)

∇
2h(x,y) =

( y
x ln(x)+1

ln(x)+1 2

)
There are two critical points: (1,0) and

(1
e ,

1
2e

)
. The first is a saddle point, and the

second is a minimum.
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Chapter 3

Algorithms

In this chapter, we will give several algorithms that allow us to show approximately the solu-
tions of the problem (P). Indeed, we will introduce the most classical and fundamental meth-
ods. Most of these algorithms, however, rely on optimality conditions (chapter 2), which we
have seen are useful for determining local minima. The challenge of finding global minima
is more complex . Nonetheless, in the following section, we will describe a probabilistic
algorithm that can help ”identify” a global minimum for the problem (P).

It is important to assume the differentiability of the function f .

Definition 3.0.1 (Algorithms). An algorithm is defined by a mapping m from Rn to Rn,
allowing the generation of a sequence of elements in Rn using the formula:{

x0 ∈ Rn is given,
xi+1 = m(xi),

with k = 0 is initialization step and i = i+1 is the iteration step.

We will begin by the first algorithm which represent the Gradient method

3.0.1 Gradient Method
The Gradient method belongs to a hige class of numerical methods called descent methods.
The main objective is to minimize a function f . To do this, we start with an arbitrary point
x0. To construct the next iterate x1, we aim to move closer to the minimum of f ; hence, we
want f (x1)< f (x0). We then seek x1 in the form x1 = x0+ρ1d1, witj d1 is a non-zero vector
in Rn, and ρ1 is a strictly positive real number. In general way, we obtain d1 and ρ1 such
that f (x0 +ρ1d1)< f (x0). It is not always possible to find d1. When d1 exists, it is called a
descent direction, and ρ1 is the step size. The direction and the step size can either be fixed
or vary at each iteration. The general scheme of a descent method is as follows:{

x0 ∈ Rn is given,
xk+1 = xk +ρkdk,

with dk ∈ Rn \{0}, and ρk ∈ R+, we choose ρk and dk such that f (xk +ρkdk)≤ f (xk).
A natural way to determine a descent direction is to express a second-order Taylor ex-

pansion of the function f between two iterates xk and xk+1 = xk +ρkdk:

f (xk +ρkdk) = f (xk)+ρk⟨∇ f (xk),dk⟩+o(ρkdk).
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Since we want f (xk + αkdk) < f (xk), we can choose, as a first approximation, dk =
−∇ f (xk). The method obtained this way is called the Gradient algorithm. The step size αk
can either be constant or variable.

3.0.2 Principle of the Method
The iteration of the sequence from xi to xi+1 occurs in two steps:

1. At the point xi, we choose a direction of descent di.

2. We find ρi > 0 such that f (xi +ρkdi)< f (xi), for all i ∈ N.

Therefore, the principle of a descent method consists of performing the following iterations:

xi+1 = xi +ρidi

3.0.3 Convergence Tests
We consider x∗ be a local minimum of the objective function f to be optimized. Moreover, a
stopping criterion must be chosen to guarantee that the algorithm always halts after a finite
number of iterations, and that the last computed point is sufficiently close to x∗.

Let ε > 0 be the required precision. Several criteria are at our disposal:
First, an optimality criterion based on the first-order necessary conditions for optimal-

ity is tested as follows:

∥∇ f (xi)∥< ε,

in which case the algorithm stops and returns the current iterate xk as the solution.
In practice, the optimality test is not always satisfied, and we may need to rely on other

criteria (based on numerical experience):

• Solution stagnation:

∥xi+1 − xi∥< ε

• Current value stagnation:

| f (xi+1)− f (xi)|< ε

• Number of iterations exceeding a predefined threshold:

i = i+1.

The descent direction chosen at each iteration will be:

d(i) =−∇ f (x(i)),

thus, the points are successively generated by this method as follows:{
x(i+1) = x(i)+ρid(i),

ρi > 0,

The Gradient algorithm is given by:
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1. Initialization: Set k = 0, choose x0, ρ > 0, and ε > 0.

2. Iteration i:
xi+1 = xi −ρi∇ f (xi)

3. Stopping criterion: Stop if ∥xi+1 − xi∥< ε or ∥∇ f (xi)∥< ε . Otherwise, set i = i+1
and return to step 2.

In this case, ε represents a small positive real number that show the desired precision.

3.0.4 Gradient Methods with Constant Step Size
If instead of using the optimal step size, we take a fixed step size ρ , the algorithm, called the
gradient method with constant (or fixed) step size, is simply the algorithm applied to the find
for a fixed point for the function x−α∇ f (x):

xi+1 = xi −ρ∇ f (xi)

with f ∈C1, this method converges if ρ is chosen sufficiently small.
The choice of ρ step size:

• A well-chosen step gives results similar to those obtained by the steepest descent.

• A smaller step reduces the zigzags of the iterates but significantly increases the number
of iterations.

• A step size that is too large causes the method to diverge.

3.0.5 Optimal Step Gradient Method
This method consists of showing the following iterations:{

xi+1 = xi −ρi∇ f (xi)

αk > 0

with ρi is chosen by the minimization rule. It involves selecting, at each iteration i, ρi as
the optimal solution to the one-dimensional minimization problem of f along the half-line
defined by the point xi and the direction di. Therefore, ρi is chosen so that:

f (xi +ρidi)< f (xi) for all ρ > 0

In this case, the descent directions dk satisfy:

∇ f (xi +ρidi) ·di = 0

because if we introduce the function:

g(ρ) = f (xi +ρdi)

we have:

g′(ρ) = ∇ f (xi +ρdi)
t ·di
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and since g is differentiable, we necessarily have g′(ρi) = 0, which implies:

∇ f (xi +ρidi)
t ·di = 0

This computation of determining the step size is called line search.

Example 3.0.1. Consider the following quadratic function:

f (x) =
1
2

xT Ax−bT x

where A > 0 (i.e., A is a positive definite matrix). Let ρ∗
k denote the optimal step size,

characterized by g′(ρk) = 0. We then have:

∇g(ρk) = ∇ f (xk +ρkdk) = A(xk +ρkdk)−b

To find ρ∗
k , we solve:

∇ f (xk +ρkdk) ·dk = (A(xk +ρkdk)−b) ·dk = (Axk −b) ·dk +ρk(dT
k Adk)

Setting this to zero gives:

(Axk −b) ·dk +ρk(dT
k Adk) = 0

Solving for ρk, we obtain:

ρk =
−(Axk −b) ·dk

dT
k Adk

where dk is a descent direction and ρk > 0.

Theorem 3.0.1 (Convergence Theorem). Let f be a C1 (continuously differentiable) function
from Rn to R, which is coercive and strictly convex. Suppose there exists a constant M > 0
such that, for all x,y ∈ Rn,

∥∇ f (x)−∇ f (y)∥ ≤ M∥x− y∥. (3.1)

Then, if the step size αk is chosen in an interval [α1,α2], where 0 < α1 < α2 <
2
M , the

gradient descent method converges to the unique minimum of f .

Proof. Since f is strictly convex, it admits a **unique minimum** x∗ in Rn, characterized
by ∇ f (x∗) = 0. We aim to show that the sequence xk, generated by the gradient descent
algorithm, converges to x∗.

Using the Taylor expansion of f , applied to x = xk and y = xk+1, we write:

f (xk+1) = f (xk)+ ⟨∇ f (xk),xk+1 − xk⟩+
∫ 1

0
⟨∇ f (xk + t(xk+1 − xk))−∇ f (xk),xk+1 − xk⟩dt.

Substituting xk+1 = xk −αk∇ f (xk) into the above, we obtain:

f (xk+1)− f (xk)≤− 1
αk

∥xk+1−xk∥2+
∫ 1

0
∥∇ f (xk+t(xk+1−xk))−∇ f (xk)∥·∥xk+1−xk∥dt.

From the Lipschitz condition on ∇ f (Equation (3.1)), it follows:
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∥∇ f (xk + t(xk+1 − xk))−∇ f (xk)∥ ≤ M∥xk+1 − xk∥.

Thus,

f (xk+1)− f (xk)≤− 1
αk

∥xk+1 − xk∥2 +
M
2
∥xk+1 − xk∥2.

Rewriting this, we have:

f (xk+1)− f (xk)≤
(

M
2
− 1

αk

)
∥xk+1 − xk∥2.

Since αk is chosen in [α1,α2] with 0 < α1 < α2 <
2
M , it follows that M

2 − 1
αk

< 0. Hence,

f (xk+1)− f (xk)< 0.

This shows that f (xk) is strictly decreasing.
Since f (xk) is coercive and strictly decreasing, it is also bounded below. Hence, f (xk)

converges to some limit.
Then, the difference f (xk+1)− f (xk) tends to 0. By coercivity, ∥xk∥ is bounded.
Relation Between xk+1 and xk:** Using the inequality:

∥xk+1 − xk∥2 ≤ 1
α2 − M

2
[ f (xk)− f (xk+1)],

and since f (xk+1)− f (xk)→ 0, it follows that ∥xk+1 − xk∥→ 0.
Behavior of ∇ f (xk): Since xk+1 = xk −αk∇ f (xk), we have:

∇ f (xk) =
xk − xk+1

αk
.

As ∥xk+1 − xk∥→ 0, it follows that ∇ f (xk)→ 0.
6. **Continuity of ∇ f :** By continuity of ∇ f , we deduce ∇ f (x) = 0, where x is the

unique minimum x∗.
since f is strictly convex, this holds for every limit point of the sequence xk, proving that

the entire sequence xk converges to x∗.

3.1 Conjugate Gradient Method
In this section, we will describe Conjugate gradient methods. But before delving into them,
we will first outline the general principle of a conjugate direction method.Conjugate gradient
methods are used to solve nonlinear optimization problems, and they are also employed to
solve large linear systems. These methods rely on the concept of conjugate directions, where
successive gradients are orthogonal to each other and to previous directions. The conjugate
gradient method is an optimal step descent method that allows for minimizing a quadratic
function from Rn to R in at most n iterations.

The initial idea was to find a sequence of descent directions that allows solving the prob-
lem:

min
x∈Rn

f (x) (P)
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where f is continuously differentiable function.
We will define conjugate vectors in the following definition.

Definition 3.1.1. Let A be a symmetric positive definite matrix of size n× n. Two vectors x
and y in Rn are said to be A-conjugate (or conjugate with respect to A) if they satisfy:

xT Ay = 0

We Consider the following quadratic unconstrained problem:

min
x∈Rn

f (x) =
1
2

xT Ax+bT x+ c

where A ∈ Rn×n is a symmetric positive definite matrix, b ∈ Rn, and c ∈ R.

3.1.1 The Principle of the method
The method involves minimizing f starting from a point x0, following n directions: d0,d1, . . . ,dn−1,
which are mutually conjugate with respect to A.

• The first fundamental idea of the conjugate gradient algorithm is to choose each de-
scent direction to be conjugate to the previous descent direction with respect to A.

• The second fundamental idea is to search for di as a linear combination of di−1 and the
gradient at xi, namely:

di =−∇ f (xi)+βi−1di−1

where βi−1 is chosen so that the successive directions are conjugate with respect to A.

• We construct the sequence:

xi+1 = xi +ρidi,

where

ρi ∈ argmin
α>0

f (xi +ρdi)

Calculation of the Step Size:
Since ρi minimizes f in the direction di, we have:

∀k, dt
i ∇ f (xi+1) = 0

which implies:

dt
i (A(xi +ρidi)+b) = 0

then,

ρi =−
dt

i (Axi +b)
dt

kAdk
=−

dt
k∇ f (xi)

dt
kAdi
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(As A is positive definite and di are mutually conjugate, we have dt
i Adi ̸= 0 for all i.)

Calculation of βi:
We have that

di+1 =−∇ f (xi+1)+βidi

it follows that:

dt
i Adi+1 = 0

which implies that

−∇ f (xi+1)
tAdi +βkdt

i Adi = 0

Since di ̸= 0, we obtain:

βi =
∇ f (xi+1)

tAdi

dt
kAdi

Lemma 3.1.1. For all i < k, we have dT
i ∇ f (xi) = 0.

Proof.

dT
i ∇ f (xk) = dT

i (Axk +b)

= dt
i (A(xi +

k−1

∑
j=i

β jd j)+b)

= dt
i (Axi +b)+βidt

i Adi

= dt
i (Axi +b)− dT

i (Axi +b)
dt

i Adi
dT

i Adi = 0.

Proposition 3.1.1 ((Fletcher-Reeves)). The real number βk is calculated using the following
formula

βk =
∥∇ f (xk+1)∥2

∥∇ f (xk)∥2

Proof. We have:

∇ f (xi+1)−∇ f (xi) = ρiAdi

Thus:

(∇ f (xi+1))
tAdi =

1
ρi
(∇ f (xi+1))

t(∇ f (xi+1)−∇ f (xi))

Since:

∇ f (xi) =−di +βi−1di−1

By Lemma (3.1.1), we obtain

(∇ f (xi+1))
t(∇ f (xi)) = 0
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Therefore, we get

βi =
(∇ f (xk+1))

tAdi

dt
i Adi

=
1
ρi

· (∇ f (xi+1))
t∇ f (xk+1)

dt
i Adi

,

substituting ρi yields that

βi =−∥∇ f (xi+1)∥2

dt
i ∇ f (xi)

,

but we know that

(∇ f (xi))
tdi = (∇ f (xi))

t(−∇ f (xi)+βi−1di−1),

then, we conclude that

βi =
∥∇ f (xi+1)∥2

∥∇ f (xi)∥2 .

3.1.2 Algorithm
1. We Choose x0 and set i = 0, d0 =−∇ f (x0). 2. While ∥∇ f (xi)∥> ε , do :

• ρi =−dt
k∇ f (xi)

dt
i Adi

;

• xi+1 = xi +ρidi;

• βi =
∥∇ f (xi+1)∥2

∥∇ f (xi)∥2 ;

• di+1 =−∇ f (xi+1)+βidi.

3.1.3 The Advantages of the Conjugate Gradient Method for Quadratic
Problems

• Minimal Memory Consumption: The algorithm requires only a minimal amount of
memory; we need to store four vectors: xi, ∇ f (xi, di, and Adialong with the scalars ρi
and βi+1).

• Efficiency for Large Sparse Systems: The conjugate gradient method is particularly
useful for solving large sparse systems, as it is sufficient to know how to apply the
matrix A to a vector.

• Rapid Convergence: Convergence can be quite fast.

3.1.4 Different Formulas for βi+1 in the Quadratic function
The various values attributed to βk define the different forms of conjugate gradient methods.
If we denote yk−1 = ∇ f (xi)−∇ f (xi−1 and sk = xk+1 − xk, we have the following formulas:

• Hestenes-Stiefel (HS) Conjugate Gradient:

β
HS
i =

∇ f (xi+1)
tyk

dt
kyk

.
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• Fletcher-Reeves (FR) Conjugate Gradient:

β
FR
i =

∥∇ f (xi+1)∥2

∥∇ f (xi)∥2 .

• Liu-Storey (LS) Conjugate Gradient:

β
LS
i =−

T yk

dT
k gk

.

• Dai-Yuan (DY) Conjugate Gradient:

β
DY
i =

∥∇ f (xi∥2

dT
k ∇ f (xi−1

.

3.2 Newton’s method
Definition 3.2.1. A Newtonian method refers to any descent algorithm where the descent di-
rection di at each iteration . The direction di defined this way is called the Newton direction.

We set that
di =−H−1

i ∇ f (xi),

where Hi = ∇2 f (xi). It is clear that di is indeed a descent direction:

dT
i ∇ f (xi) =−∇ f (xi)

tH−1
i ∇ f (xi)< 0,

so:
xi+1 = xi +di,

in other words, αi = 1 for all i.

3.2.1 Algorithm
• Initial Step: Let ε > 0 be the stopping criterion. Choose an initial point x1, set i = 1,

and go to the main step.

• Main Step: If ∥∇ f (xi)∥ ≤ ε , stop. Otherwise, update:

xi+1 = xi − [H(xi)]
−1

∇ f (xi)

Replace i with i+1 and return to the main step.
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3.3 Exercises
Exercise 1:

Let f (x) be a continuously differentiable (C1) function on Rn. It is known that in the
neighborhood of a point a ∈ Rn, f decreases most rapidly in the direction of the negative
gradient of f at a, i.e., the direction −∇ f (a).

We begin with an estimate x0 for a local minimum of f and consider the sequence
(x0,x1, · · ·), where for all i ∈ N, we have:

xi+1 = xi −ρ∇ f (xi)

such that:

f (x0)≥ f (x1)≥ f (x2)≥ . . .

The function f (x) is defined as follows:

f (x) =
1
2
(x1 −1)2 +

1
6
(x2 −2)2

• What is the unique global minimum x̂ of f ?

• Starting with x0 =

[
0
0

]
and ρ = 0.1, calculate the next two iterates x1 and x2.

• Find the maximum step size ρ such that the method converges to x̂ regardless of the
starting point.

Exercise 2:
We define the function J : Rn → R by:

J(x) :=
1
2
⟨Ax,x⟩−⟨b,x⟩,

where A ∈ Mn(R) is a symmetric positive definite matrix and b ∈ Rn. We consider the
gradient method with optimal step size for minimizing J.

- Give the expression for xk+1 obtained by this method. - Show that the step size θk is
written as:

θk =
||dk||2

⟨Adk,dk⟩
.

- Recall that the minimization problem of J has a unique solution x̄ ∈ Rn, characterized
as the unique solution of the Euler equation ∇J(x) = 0. Show that:

⟨A−1dk,dk⟩= 2(J(xk)− J(x̄)).

Exercise 3:
Consider the following mathematical program:

(P)
min f (x) =

1
2

xT Ax−bT x,

where x ∈ R2,

where:

A =

(
1 −1
−1 2

)
, b =

(
−1
1

)
.
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• Solve (P) using the conjugate gradient algorithm with a precision of ε = 10−6, starting

from the initial point x0 =

(
1
2

)
.

• Deduce the number of iterations.

3.4 Corrections
Exercise 1

Let f (x) be a C1 function on Rn. It is known that in the neighborhood of a point a ∈ Rn,
f decreases most rapidly in the direction of the negative gradient of f at a, that is, in the
direction −∇ f (a).

We start with an estimate x0 for a local minimum of f and consider the sequence (x0,x1, . . .)
where for each i ∈ N, we have:

xi+1 = xi −ρ∇ f (xi)

such that f (x0)≥ f (x1)≥ f (x2)≥ . . ., and the function f (x) is defined as:

f (x) =
(

x−
(

1
1

))T (6 2
2 6

)(
x−
(

1
1

))
.

What is the unique (global) minimum x̂ of f ?
The function f is quadratic and can be written as f (x) = 1

2xT Ax−bT x, where:

A =

(
6 2
2 6

)
, b =

(
4
4

)
.

Thus, f is continuous, and moreover, it is coercive and strictly convex (its Hessian matrix
is positive definite since its eigenvalues, 4 and 8, are strictly positive). Therefore, f has a
unique global minimum x̂, characterized by:

x̂ =
(

0.25
0.25

)
,

where:

∇ f (x̂) = 0 and x̂ = A−1b.

Using the fixed-step gradient method to compute the next two iterations x1 and x2. Start-

ing with x0 =

(
0
0

)
and ρ = 0.1,

We have:

xi+1 = xi −ρ∇ f (xi)

with:

∇ f (x) =
(

6 2
2 6

)(
x−
(

1
1

))
−
(

4
4

)
Thus:
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∇ f (x) =
(

6 2
2 6

)(
x−
(

1
1

))
−
(

4
4

)
For x0 =

(
0
0

)
, we compute:

∇ f (x0) =

(
6 2
2 6

)((
0
0

)
−
(

1
1

))
−
(

4
4

)
=

(
−8
−8

)
Then:

x1 = x0 −ρ∇ f (x0) =

(
0
0

)
−0.1 ·

(
−8
−8

)
=

(
0.8
0.8

)
Now for x1 =

(
0.8
0.8

)
:

∇ f (x1) =

(
6 2
2 6

)((
0.8
0.8

)
−
(

1
1

))
−
(

4
4

)
=

(
−0.8
−0.8

)
Then:

x2 = x1 −ρ∇ f (x1) =

(
0.8
0.8

)
−0.1 ·

(
−0.8
−0.8

)
=

(
0.88
0.88

)
Find the maximum step size ρ for which the method converges to x̂ for any initial point

x0.
we have that

0 < ρ <
2

λmax

where λmax is the largest eigenvalue of A. In this case, λmax = 8, so:

0 < ρ <
2
8
= 0.25

Thus, the step size ρ should be in the interval (0,0.25).
Exercise 2:
The algorithm of the gradient method with optimal step size is:

xk+1 = xk +θkdk

dk =−Axk +b
θk is such that J(xk +θkdk) = minθ∈R J(xk +θdk)

- In the optimal step size gradient algorithm, two successive directions are orthogo-
nal:

⟨dk+1,dk⟩= 0

Using the formulas for xk+1 and dk, we get:

0 = ⟨−Axk+1 +b,dk⟩
= ⟨−A(xk +θkdk)+b,dk⟩
= ⟨−Axk +b−θkAdk,dk⟩
= ⟨dk −θkAdk,dk⟩
= ∥dk∥2 −θk⟨Adk,dk⟩
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Assuming dk ̸= 0 and thus ⟨Adk,dk⟩ ̸= 0 (since A is positive definite), we get:

θk =
∥dk∥2

⟨Adk,dk⟩

- The solution to the minimization problem of J is x̄ = A−1b. A simple calculation
shows that:

⟨A−1dk,dk⟩= ⟨A−1(Axk −b),Axk −b⟩
= ⟨xk −A−1b,Axk −b⟩

= ⟨Axk,xk⟩−⟨b,xk⟩−⟨A−1b,Axk⟩+ ⟨A−1b,b⟩

= 2
(

1
2
⟨Axk,xk⟩−⟨b,xk⟩+

1
2
⟨A−1b,b⟩

)
= 2(J(xk)− J(x̄))

since
J(x̄) =

1
2
⟨Ax̄, x̄⟩−⟨b, x̄⟩= 1

2
⟨b, x̄⟩−⟨b, x̄⟩=−1

2
⟨b, x̄⟩=−1

2
⟨b,A−1b⟩

Exercise 3:

• We consider that d0 =−∇ f (x0) =


0
0
−2
1

 with ∥∇ f (x0)∥= 2. Calculate the step size:

α0 =
−dT

0 ∇ f (x0)

dT
0 Qd0

=
1
2

Therefore,

x1 = x0 +α0d0 =

1
1
1


and

φ0 =
∥∇ f (x1)∥2

∥∇ f (x0)∥2 =
1
4

Thus,

d1 =−∇ f (x1)+
1
4

d0 =

−1
−1

2
1


•

∥∇ f (x1)∥= 1 > ε, β1 = 2, x2 =

(
−1
0

)
, λ1 = 0, d2 =

0
0
1

 ,

so:
∥∇ f (x2)∥= 0 < ε,

hence the solution to the problem (P) is

x∗ = x2 =

(
−1
0

)
.

• The number of iterations is k = 2.
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3.5 Conclusion
In this document, we provide a comprehensive course on unconstrained optimization and
introduce the essential tools needed to understand the core concepts of optimization. Indeed,
optimization plays a crucial role in solving minimization and maximization problems, partic-
ularly in economics, where reducing economic losses and maximizing profits is paramount.

The applications of optimization are incredibly diverse, spanning various fields such as
route planning, object shape optimization, pricing strategies, chemical reaction optimization,
air traffic control, device efficiency, engine performance, railway management, investment
selection, and shipbuilding. Optimizing these systems allows for the discovery of ideal con-
figurations, leading to gains in effort, time, cost, energy, raw materials, and even customer
satisfaction.
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