REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

الجمهورية الجزائرية الديمقراطية الشعبية

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

وزارة التعليم العالى و البحث العلمى

CENTRE UNIVERSITAIRE BELHADJ BOUCHAIB - AIN TEMOUCHENT-

المركز الجامعي بلحاج بوشعيب عين تموشنت

Institut de la Technologie

Département de Génie Civil

ETUDE D'UN BATIMENT (R+12+S/SOL) A USAGE MULTIPLE

Présenté par :

- DJERIOÙ NASR-EDDINE

- KADDOUR BENAISSA

Devant les jurys composés de :

- M^{me} ABDESSALAM

- M^{me} LAZIZI

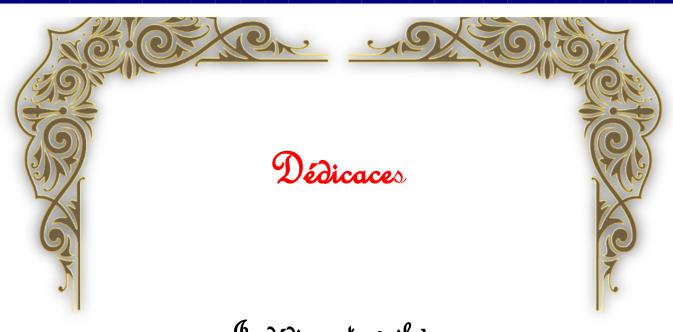
- Mr AMARA Khaled

Présidente

Examinatrice

Encadreur

Année Universitaire: 2019-2020


C'est avec profonde gratitude et sincères mots, que nous dédions ce modeste travail de fin d'étude à nos chers parents : qui ont sacrifié leur vie pour notre réussite et nous ont éclairé le chemin par leurs conseils judicieux.

Nous espérons qu'un jour,

Nous pourrons leurs rendre un peu de ce qu'ils ont Fait pour nous, que dieu leur prête bonheur et longue vie.

Nous dédians aussi ce travail à nos frères et sæurs, nos familles, nos amis, tous nos professeurs qui nous ont enseigner et à tous ceux qui nous sont chers.

D. Masz-Eddine

Je dédie ce travail à :

Ma famille, qui m'a dolé d'une éducation digne de son nom. Son amour a fait de moi ce que je suis aujourd'hui;

L'homme, ma précieuse offre de Dieu, qui doil ma vie, ma réussile et lout mon respect, mon cher père;

La femme qui a souffert sans me laisser souffrir, qui n'a jamais dit non âmes exigences et qui n'a épargné aucun effort pour me rendre heureux, mon adorable mère;

Mes frères qui savent toujours comment procurer la joie et le bonheur pour toute la famille.

Tous les cousins et surtout les précieux amis que j'ai connus jusqu'à maintenant.

K. Benaissa

RESUMÉ

L'objet de ce projet est d'étudier et de dimensionner un bâtiment en béton armé à usage multiple composée d'un sous-sol, d'un rez-de-chaussée et de douze étages. Le bâtiment est implanté dans la wilaya d'ORAN (Zone Iia, RPA99/version 2003 ou DTR-BC 2.48). La stabilité de la structure porteuse du bâtiment est assurée par des portiques et des murs voiles. Les calculs sont réalisés manuellement et à l'aide du logiciel ETABS 2016 version 16.2.0. Le dimensionnement en béton armé des éléments porteurs sont réalisés conformément aux règles de BAEL91/version 99 (DTR-BC 2.41) et RPA99/version 2003 (DTR-BC 2.48).

Mots clés:

Bâtiment, Béton, ETABS-2016, AUTO-CAD, RPA99, BAEL91.

الملخص

الغرض من هذا المشروع هو دراسة وحجم مبنى خرساني مقوى متعدد الأغراض يتكون من قبو وطابق أرضي واثني عشر طابقًا. يقع المبنى في ولاية وهران (المنطقة RPA99 ، IIa) RPA99 / الإصدار 2003) (DTR-BC 2.48). يتم ضمان ثبات الهيكل الحامل للمبنى من خلال الأروقة والجدران . تتم الحسابات يدويًا باستخدام برنامج BAEL91 / الإصدار 99 مالخرسانة المسلحة للعناصر الحاملة وفقًا لقواعد BAEL91 / الإصدار 99 (DTR-BC 2.48) وDTR-BC 2.49 / الإصدار 2003 (DTR-BC 2.48).

الكلمات المفتاحية:

العمارة , الخرسانة , BAEL 91 , AUTO-CAD, ETABS-2016 , الغمارة , الخرسانة , 160 , BAEL 91 , AUTO-CAD

ABSTRACT

The purpose of this project is to study and proportion a multipurpose reinforced concrete building consisting of a basement, a ground floor and twelve floors. The building is located in the Wilaya of ORAN (Zone IIa, RPA99/version 2003 (DTR-BC 2.48). The stability of the building load-bearing structure is ensured by portal-frames and shear walls. Calculations are realised manually and by means of ETABS 2016 version 16.2.0. Proportions of the reinforced concrete load-bearing elements are carried out in accordance with BAEL91/version 99 (DTR-BC 2.41) and RPA99/version 2003 (DTR-BC 2.48) rules.

Keys words:

Building, Concrete, ETABS-2016, AUTO-CAD, RPA99, BAEL91

SOMMAIRE

« CHAPITRE I »

PRESENTATION DU PROJET

I.1	Introd	oduction		
I.2	Descr	iption du bloc étudié	4	
	I.2.1	Géométrie	4	
	I.2.2	Stabilité du bâtiment	5	
	I.2.3	Planchers en corps creux	5	
	I.2.4	Revêtement des planchers	5	
	I.2.5	Murs extérieurs et intérieurs	5	
	I.2.6	Circulation verticale	6	
I.3	Systèr	me de fondations	7	
	I.3.1	Caractéristiques géotechniques du sol	7	
	I.3.2	Choix du système de fondations	7	
I.4	Matér	iaux utilisés	7	
	I.4.1	Béton	7	
		I.4.1.1 Poids volumique	8	
		I.4.1.2 Résistance à la compression	8	
		I.4.1.3 Résistance à la traction	8	
		I.4.1.4 Module de déformation longitudinale instantané	8	
		I.4.1.5 Module de déformation longitudinale différé	8	
		I.4.1.6 Contraintes normale limites à l'état limite ultime (ELU)	9	
		I.4.1.7 Coefficient de Poisson	9	
	I.4.2	Acier	9	
		I.4.2.1 Contrainte limite de l'acier à l'état limite ultimes ELU	9	
		I.4.2.2 Contrainte limite de l'acier à l'état limite de service ELS	10	
		I.4.2.3 Coefficient de Poisson	10	
I.5	Outils	informatiques	10	

« CHAPITRE II »

PREDIMENSIONNEMENT DES ELEMENTS STRUCTURAUX

II.1	Introduction 11			
II.2	2 Prédimensionnement des planchers			
	II.2.1	Epaisseur totale du plancher corps creux	12	
	II.2.2	Prédimensionnement de la poutrelle	12	
II.3	Prédin	nensionnement des poutres	13	
	II.3.1	Prédimensionnement des poutres principales	13	
	II.3.2	Prédimensionnement des poutres secondaires	14	
II.4	Descei	nte de charge	15	
	II.4.1	Évaluation des charges permanentes et d'exploitations	15	
		II.4.1.1 Plancher terrasse	16	
		II.4.1.2 Planchers étages courants	16	
		II.4.1.3 Planchers des premier et deuxième étages	17	
		II.4.1.4 Plancher du rez-de-chaussée	17	
		II.4.1.5 Maçonnerie	18	
II.5	Calcul	des charges selon la loi de dégression	18	
II.6	Exemple de prédimensionnement d'un poteau			
	II.6.1	Critère des Règles Parasismiques Algériennes	20	
	II.6.2	Critère de résistance	21	
	II.6.3	Calcul de l'effort normal ultime	21	
	II.6.4	Vérification du critère de flambement	22	
II.7	Prédin	nensionnement des voiles	23	
	II.7.1	Voile périphérique sous-sol	24	
	II.7.2	Voile de contreventement du Rez-de-Chaussée	24	
	II.7.3	Voile de contreventement des étages courants	24	
		« CHAPITRE III »		
		ETUDE ET FERRAILLAGE DES PLANCHERS		
III.1	Introd	uction	25	
III.2	Calcul	des sollicitations et ferraillages des planchers corps creux	26	
	III.2.1	Calcul de la combinaison d'actions ELU du plancher-terrasse	26	

	III.2.2 Calcul de	la combinaison d'actions ELS du plancher-terrasse	26
	III.2.3 Calcul de	la combinaison d'actions ELU du plancher-Rdc du type1	27
	III.2.4 Combinai	son d'actions à ELS du plancher-Rdc du type1	27
III.3	Calcul des mome	ents fléchissants dans les poutrelles du plancher-Rdc	27
	III.3.1 Condition	s d'application de la méthode forfaitaire	28
	III.3.2 Calcul du	moment de comparaisons dans la travée 1-2 des poutrelles	29
	III.3.3 Calcul des	s moments dans les appuis de la travée 1-2 des poutrelles	29
III.4	Calcul du rapport	des charges d'exploitation et permanentes	29
III.5	Calcul des mome	ents dans la travée 1-2 des poutrelles	30
III.6	Calcul des efforts	s tranchants dans les poutrelles du plancher du Rdc	32
III.7	Calcul du ferraill	age des poutrelles	33
	III.7.1 Calcul des	s armatures longitudinales en travée	34
	III.7.1.1	Calcul du moment de la table	34
	III.7.1.2	Condition de non fragilité	36
	III.7.1.3	Armatures finales en travée	36
	III.7.2 Calcul des	s armatures longitudinales en appui	36
	III.7.2.1	Condition de non fragilité	37
	III.7.2.2	Armatures finales en appui	37
III.8	Calculs numériqu	ues des sollicitations dans les poutrelles des planchers	38
	III.8.1 Moments	fléchissants du plancher-Rdc, 1 et 2ème étages à ELU	38
	III.8.2 Moments	fléchissants du plancher-Rdc, 1 et 2ème etages à ELS	39
	III.8.3 Efforts tra	ınchants du plancher-Rdc, 1 et 2ème etages à ELU	39
	III.8.4 Moments	fléchissants du plancher-étage courant à ELU	39
	III.8.5 Moments	fléchissants du plancher-étage courant à ELS	40
	III.8.6 Efforts tra	inchants du plancher-étage courant à ELU	40
	III.8.7 Moments	fléchissants du plancher-terrasse à ELU	40
	III.8.8 Moments	fléchissants du plancher-terrasse à ELS	41
	III.8.9 Efforts tra	inchants du plancher-terrasse à ELU	41
III.9	Ferraillage de la	dalle de compression	41
	III.9.1 Armature	s perpendiculaires aux nervures	42
	III.9.2 Armature	s parallèles aux nervures	42

« CHAPITRE IV »

ETUDE ET FERRAILLAGE DES ELEMENTS NON STRUCTURAUX

IV.1	Introduction	44
IV.2	Etude et calcul de ferraillage du balcon	44
	IV.2.1 Évaluation des charges permanentes et d'exploitations	44
	IV.2.2 Évaluation des actions à ELU	45
	IV.2.3 Diagramme des moments fléchissants à ELU	45
	IV.2.4 Calcul et schéma du ferraillage du balcon	46
IV.3	Etude et calcul de ferraillage de l'acrotère	47
	IV.3.1 Evaluation des charges permanentes et d'exploitation	47
	IV.3.2 Evaluation des actions	48
	IV.3.2.1 Evaluation des actions à ELU	48
	IV.3.2.2 Evaluation des actions à ELS	48
	IV.3.3 Calcul et schéma de ferraillage de l'acrotère à ELU	49
	IV.3.3.1 Vérification de l'existence des armatures comprimées	49
	IV.3.3.2 Vérification à la flexion composée	50
	IV.3.4 Calcul et schéma de ferraillage de l'acrotère à ELS	50
	IV.3.5 Condition de non fragilité	52
	IV.3.6 Armatures de répartitions	52
	IV.3.7 Vérification de la contrainte de cisaillement	52
IV.4	Etude et calcul de ferraillage des escaliers	53
	IV.4.1 Type d'escalier	53
	IV.4.2 Choix des dimensions des marches d'escaliers	53
	IV.4.3 Evaluation des charges permanente et d'exploitation de l'escalier	54
	IV.4.4 Calcul des actions sur la paillasse	55
	IV.4.5 Calcul des actions sur le palier de repos	56
	IV.4.6 Calcul le moment et l'effort tranchant	56
	IV.4.7 Calcul le ferraillage	58
IV.5	Introduction	60
IV.6	Etude d'ascenseur	61
	IV.6.1 Définir le poids de l'ascenseur	61
	IV.6.2 Dalle machine	62
	IV.6.2.1 Introduction	62

		17.0.2.3	Charge et surface	03
		IV.6 .2.4	Calcul des sollicitations	65
		IV.6 .2.5	Ferraillage de la dalle machine	66
			IV.6 .2.5.1 Condition non fragilité	68
			IV.6 .2.5.2 Armature de répartition	68
			IV.6 .2.5.3 Calcul d'espacement	68
		IV.6.2.6	Vérification au cisaillement	68
		IV.6.2.7	Vérification à E.L.S	69
		IV.6.2.8	Vérification de flèche	70
			« CHAPITRE V »	
			CALCULS DYNAMIQUES ET SISMIQUES	
V.1	Introdu	ıction		71
V.2	Choix	de la méth	node de calculs	71
V.3	Modél	isation de	la structure porteuse du bâtiment avec portiques auto-stables	71
	V.3.1	Résultats	de la modélisation de la structure porteuse auto-stables	73
	V.3.2	Compara	ison des périodes propres fondamentales	74
V.4	Modél	isation de	la structure porteuse du bâtiment avec contreventement mixte	75
	V.4.1	Périodes	propres, modes propres, masses cumulées et masses modales	76
	V.4.2	Caractéria	stiques dynamiques et sismiques de la structure porteuse mixte	76
		V.4.2.1	Coefficient d'accélération de zone	76
		V.4.2.2	Facteur de correction d'amortissement	76
		V.4.2.3	Périodes caractéristiques du site	77
		V.4.2.4	Période empirique fondamentale	77
		V.4.2.5	Coefficient de comportement global de la structure porteuse	78
		V.4.2.6	Facteur de qualité	78
		V.4.2.7	Poids de la structure	79
V.5	Résult	ats de la m	nodélisation de la structure porteuse avec contreventement	79
	V.5.1	Périodes	propres, modes propres, masses cumulées et masses modales	79
	V.5.2	Modes de	e vibrations de la structure porteuse avec contreventement mixte	80
	V.5.3	Compara	ison des périodes propres fondamentales	81

IV.6.2.2 Pré dimensionnement de la dalle machine

	V.5.5 Excentricités théoriques et réglementaires	83
V.6	Vérification des forces sismiques statiques et dynamiques	84
	V.6.1 Force sismique totale de la méthode statique équivalente	84
	V.6.2 Calcul du facteur d'amplification dynamique moyen	84
	V.6.3 Force sismique totale de la méthode modale spectrale	85
V.7	Justification des déplacements inter-étages	85
V.8	Vérification de l'effort normal réduit	86
V.9	Justification de l'effet P-Delta	87
V.10	Vérification de la compatibilité du système de contreventement	88
	« CHAPITRE VI »	
	ETUDE ET FERRAILLAGE DES ELEMENTS STRUCTURAUX	
VI.1	Introduction	90
	VI.1.1 Combinaisons d'actions	90
VI.2	Calcul de ferraillage des poteaux	90
VI.3	Exemple de calcul de ferraillage du poteau	92
	VI.3.1 Armatures longitudinales sous combinaison ELU	92
	VI.3.2 Armatures longitudinales sous combinaison $G + Q \pm E$	93
	VI.3.3 Armatures longitudinales minimales et maximales selon DTR-BC 2.41	94
	VI.3.4 Armatures longitudinales minimales et maximales selon DTR-BC 2.48	94
	VI.3.5 Armatures longitudinales retenues pour les poteaux	95
	VI.3.6 Distances entre les barres et longueurs de recouvrement selon DTR-BC 2.48	95
	VI.3.7 Calcul des armatures transversales	96
	VI.3.7.1 Armatures transversales minimales selon DTR-2.41	96
	VI.3.7.2 Armatures transversales minimales selon DTR-BC 2.48	97
	VI.3.7.3 Espacements des armatures transversales selon DTR-BC 2.48	97
	VI.3.8 Schémas de ferraillage des poteaux	98
VI.4	Calcul de ferraillage des poutres	98
VI.5	Combinaisons d'actions	98
VI.6	Calcul des armatures longitudinales des poutres principales	99

V.5.4 Coordonnées des centres de masses et de torsions des différents étages

	$VI.6.2$ Armatures longitudinales en appuis sous combinaison $G+Q\pm E$	100
	VI.6.3 Armatures longitudinales minimales et maximales selon DTR-BC 2.41	100
	VI.6.4 Armatures longitudinales minimales et maximales selon DTR-BC 2.48	100
	VI.6.5 Armatures longitudinales retenues pour les poutres principales	101
	VI.6.6 Distances entre les barres et longueurs de recouvrement selon DTR-BC 2.48	101
	VI.6.7 Calcul des armatures transversales	101
	VI.6.8 Armatures transversales minimales selon DTR-2.41	102
	VI.6.9 Armatures transversales minimales selon DTR-2.48	102
	VI.6.10Espacements des armatures transversales selon DTR-BC 2.41	102
	VI.6.11Espacements des armatures transversales selon DTR-BC 2.48	103
	VI.6.12Schémas de ferraillage des poutres principales et secondaires	103
VI.7	Calcul de ferraillage des murs voiles	104
	VI.7.1 Combinaisons d'actions	104
	VI.7.2 Sollicitations ETABS	104
	VI.7.3 Armatures minimales	106
	VI.7.4 Armatures finales	106
	VI.7.5 Espacement	106
	VI.7.6 Choix des armatures verticales	106
	VI.7.7 Choix des armatures horizontales	107
	VI.7.8 Choix des armatures transversales	107
	VI.7.9 Vérification à l'effort tranchant	107
	« CHAPITRE VII »	
	ETUDE ET FERRAILLAGE DE L'INFRASTRUCTURE	
VII.1	1 Introduction	109
VII.2	2 Etude du voile périphérique	109
VII.3	3 Calcul de la poussée des terres	109
VII.	Combinaisons d'action et calcul de sollicitations	110
VII.5	5 Calcul des rapports de dimensions	110
VII.	6 Calcul des moments caractéristiques	110

VII.7 Calcul des moments en travée et en appui

VI.6.1 Armatures longitudinales en travées sous combinaison ELU

99

VII.8	Calcul de	s armatures longitudinales	111
VII.9	Schémas	de ferraillage du mur voile périphérique	112
VII.10	Dimensio	ns de la fondation	112
	VII.10.1	Vérification au chevauchement	112
VII.11	l Prédimen	sionnement du radier	113
	VII.11.1	Condition de coffrage	113
	VII.11.2	Vérification de condition de rigidité	114
	VII.11.3	La surface du radier	115
VII.12	2 Vérificati	on nécessaires	115
	VII.12.1	Vérification au poinçonnement	115
	VII.12.2	Vérification au cisaillement	116
	VII.12.3	Vérification de la contrainte du sol	117
	VII.12.4	Vérification de la stabilité au renversement	117
	VII.12.5	Vérification de la poussé hydrostatique	118
VII.13 Le ferraillage			118
	VII.13.1	La dalle de radier	118
	VII.13.2	Calcul des sollicitations	119
	VII.13.3	Condition de non fragilité	120
VII.14	Calcul de	s nervures	123
	VII.14.1	Les sollicitations sur les nervures	123
		VII.14.1.1 Moments aux appuis	123
		VII.14.1.2 Moment en travée	123
	VII.14.2	Ferraillage	126
	VII.14.3	Schéma de ferraillage des nervures	127

CONCLUSION GENERALE ET BIBLIOGRAPHIQUE

LISTE DES FIGURES

CHAPITRE I

PRESENTATION DU PROJET

Figure I.1: Plan d'implantation	1
Figure I.2: Plan du sous-sol	2
Figure I.3 : Plan du rez-de-chaussée	2
Figure I.4: Plan du premier et second étage	3
Figure I.5 : Plan du 3 au 12 ^{éme} étage	3
Figure I.6 : Coupes verticales sur la superstructure de l'immeuble	4
Figure I.7 : Plancher étage courant	5
Figure I.8: Plancher terrasse inaccessible	5
Figure I.9 : Types de briques creuses utilisées	6
Figure I.10 : Différents types d'escaliers	6
Figure I.11 : Configuration de l'ascenseur	7
CHAPITRE II	
PREDIMENSIONNEMENT DES ELEMENTS STRUCTURAUX	
Figure II.1: Disposition des poutrelles dans un plancher en corps creux	11
Figure II.2: Notations utilisées pour la poutrelle d'un plancher corps creux type	12
Figure II.3: Dimensions finales de la poutrelle d'un plancher corps creux	13
Figure II.4: Dimensions de la section transversale des poutres principales	14
Figure II.5 : Dimensions de la section transversale des poutres secondaires	15
Figure II.6 : Diagramme de régression des charges d'exploitation	19
Figure II.7 : Cotation poteau central isolé	20
Figure II.8 : Géométrie et notations utilisées pour les voiles de contreventement	24

CHAPITRE III

ETUDE ET FERRAILLAGE DES PLANCHERS

Figure III.1: Disposition des poutrelles dans les planchers en corps creux

25

Figure III.2 : Poutrelles du type-1 du plancher corps creux du Rez-de-Chaussée	28
Figure III.3: Notations utilisées pour la poutrelle d'un plancher corps creux	34
Figure III.4: Modélisation des poutrelles type-1 à l'aide du logiciel ETABS	38
Figure III.5 : Moments fléchissants du plancher-Rdc, 1 et 2ème etages à ELU	38
Figure III.6 : Moments fléchissants du plancher-RdC, 1 et 2ème etages à ELS	39
Figure III.7 : Efforts tranchants du plancher-Rdc, 1 et 2ème étages à ELU	39
Figure III.8 : Moments fléchissants du plancher-étage courant à ELU	39
Figure III.9: Moments fléchissants du plancher-étage courant à ELS	40
Figure III.10: Efforts tranchants du plancher-étage courant à ELU	40
Figure III.11: Moments fléchissants du plancher-terrasse à ELU	40
Figure III.12 : Moments fléchissants du plancher-terrasse à ELS	41
Figure III.13: Efforts tranchants du plancher-terrasse à ELU	41
Figure III.14: Ferraillage de la dalle de compression	42
Figure III.15 : Schéma de ferraillage des poutrelles du plancher corps creux	43
CHAPITRE IV	
ETUDE ET FERRAILLAGE DES ELEMENTS NON STRUCTURAUX	
Figure IV.1 : Diagramme des moments fléchissants du balcon	45
Figure IV.2 : Schéma de ferraillage du balcon	46
Figure IV.3 : Schéma de l'acrotère	47
Figure IV.4 : Vue 3D de l'escalier	53
Figure IV.5 : Schéma statique de calcul des escaliers	56
Figure IV.6 : Schéma de ferraillage escalier Type II	59
Figure IV.7 : Schéma de ferraillage de la poutre palière	59
Figure IV.8 : Les différents parties d'un ascenseur	60

CHAPITRE V

CALCULS DYNAMIQUES ET SISMIQUES

Figure V.1: Modèle 3D de la structure porteuse auto-stable	72
Figure V.2 : Disposition des poteaux de la structure porteuse auto-stable	73
Figure V.3: 3D de la structure porteuse avec un contreventement	75
Figure V.4: Disposition des murs-voiles dans la structure porteuse du bâtiment	76
Figure V.5(a) : Premier mode propre (Translation, $T = 0.85s$ et Masse modale $Ux = 57.15\%$)	80
Figure V.5(b) : Second mode propre (Translation, $T=0.83~s$ et Masse modale $Uy=59.59~\%$)	80
Figure V.5(c) : Troisième mode propre (Rotation, T = 0,74 s et M modales = 7,50 et 4,32 %)	81
CHAPITRE VI	
ETUDE ET FERRAILLAGE DES ELEMENTS STRUCTURAUX	
ETODE ET FERRAILLAGE DES ELEMENTS STRUCTURAUX	
Figure VI.1 : Schémas de ferraillages des poteaux	98
Figure VI.2 : Schémas de ferraillage des poutres principales et secondaires	103
Figure VI.3 : Schéma de ferraillage des murs voiles en 3D	107
Figure VI.4 : Schéma de ferraillage des murs voiles	108
CHAPITRE VII	
ETUDE ET FERRAILLAGE DE L'INFRASTRUCTURE	
Figure VII.1 : Schéma de ferraillage du voile périphérique	112
Figure VII.2 : Radier général avec libage	113
Figure VII.3 : Zone de contact poteau radier	115
Figure VII.4 : Schéma de ferraillage du radier	122
Figure VII.5: Charges transmises aux nervures principales de radier	124
Figure VII.6 : Charges transmises aux nervures secondaires de radier	125
Figure VII.7 : Section à ferrailler	126
Figure VII.8 : Ferraillage des nervures de fondation	127

LISTE DES TABLEAUX

CHAPITRE I PRESENTATION DU PROJET

Tableau I.1 : Composition du béton coulé sur place	7
Tableau I.2 : Différents types et caractéristiques des aciers utilisés	9
CHAPITRE II	
PREDIMENSIONNEMENT DES ELEMENTS STRUCTURAUX	
Tableau II.1: Evaluation des charges plancher terrasse	16
Tableau II.2 : Evaluation des charges plancher étage courant	16
Tableau II.3 : Evaluation des charges plancher 1er et 2eme étage	17
Tableau II.4: Evaluation des charges plancher rdc	17
Tableau II.5: Evaluation des charges et surcharges de la maçonnerie	18
Tableau II.6: Tableau récapitulatif des charges	19
Tableau II.7: Tableau récapitulatif des sections des poteaux	22
Tableau II.8: Tableau récapitulatif des vérifications des poteaux centraux	23
CHAPITRE III	
ETUDE ET FERRAILLAGE DES PLANCHERS	
Tableau III.1: Récapitulation des charges et des combinaisons d'actions	27
Tableau III.2 : Rapports des portées de poutrelles	28
Tableau III.3: Récapitulation des moments fléchissants isostatiques dans les travées	31
Tableau III.4: Récapitulation des moments fléchissants isostatiques en appuis	31
Tableau III.5: Récapitulation des moments fléchissants en travées	31
Tableau III.6 : Efforts tranchants dans les appuis des poutrelles du plancher-rdc	33
Tableau III.7 : Moments fléchissants et efforts tranchants dans les poutrelles	33

CHAPITRE IV

ETUDE ET FERRAILLAGE DES ELEMENTS NON STRUCTURAUX

Tableau IV.1: Charges et surcharge agissantes sur le balcon	44
Tableau IV.2: Charges et surcharge agissantes sur l'escalier type I	54
Tableau IV.3: Charges et surcharge agissantes sur l'escalier type II	55
Tableau IV.4 : Charges et surcharge agissantes sur le palier de repos de l'escalier type II	55
Tableau IV.5 : Tableau récapitulatif du ferraillage	59
Tableau IV.6 : Descente de charge d'Ascenseur	64
CHAPITRE V	
CALCULS DYNAMIQUES ET SISMIQUES	
Tableau V.1 : Valeurs des périodes, des masses cumulées et des masses modales	73
Tableau V.2 : Facteurs de qualité Q	78
Tableau V.3: Valeurs des périodes, des masses cumulées et des masses modales	79
Tableau V.4 : Coordonnées des centres de masses et de rotations	82
Tableau V.5 : Excentricités dans les différents étages du bâtiment	83
Tableau V.6: Forces sismiques totales obtenues des méthodes (MSE) et (MMS)	85
Tableau V.7 : Déplacements entre les différents étages du bâtiment	85
Tableau V.8: Vérification de l'effort normal réduit	86
Tableau V.9 : Vérification de l'effet P-Delta dans les poteaux des différents étages	87
Tableau V.10 : Pourcentage des charges verticales dans les poteaux et murs voiles/(Z)	88
Tableau V.11 : Pourcentage des charges horizontales dans les poteaux et murs voiles/(X)	89
Tableau V.12 : Pourcentage des charges horizontales dans les poteaux et murs voiles/(Y)	89

CHAPITRE VI

ETUDE ET FERRAILLAGE DES ELEMENTS STRUCTURAUX

Tableau VI.1: Types et sections de poteaux	91
Tableau VI.2 : Valeurs utilisées dans les calculs	92
Tableau VI.3 : Sollicitations dans les poteaux selon le logiciel ETABS	92
Tableau VI.4 : Sections d'armatures des poteaux	97
Tableau VI.5 : Résultats des moments et des efforts tranchants ETABS	99
Tableau VI.6 : Ferraillage des poutres principales et secondaires	103
Tableau VI.7 : Sollicitation du mur voile le plus défavorable RDC	104
ETUDE ET FERRAILLAGE DE L'INFRASTRUCTURE	
Tableau VII.1: Ferraillage du voile périphérique	111
Tableau VII.2 : Résumé des résultats de ferraillage de radier	120
Tableau VII.3: Vérification des contraintes de radier	121
Tableau VII.4: Vérification des contraintes de radier	122
Tableau VII.5 : Sollicitations de la nervure de radier dans le sens (x-x)	124
Tableau VII.6 : Sollicitations de la nervure de radier dans le sens (y-y)	125
Tableau VII 7 · Résumé des résultats de ferraillage	126

TABLEAU DES SYMBOLES ET NOTATIONS

Symboles	Notations					
G	Action permanente					
Q	Action d'exploitation					
E	Action accidentelle					
— о _{be}	Contrainte admissible du béton					
— O st	Contrainte admissible de l'acier					
- τ _u	Contrainte ultime de cisaillement					
$\sigma_{ m bc}$	Contrainte du béton					
$\sigma_{ m st}$	Contrainte d'acier					
$ au_{ m u}$	Contrainte de cisaillement					
\mathbf{f}_{cj}	Résistance à la compression du béton a {j} jours					
\mathbf{f}_{tj}	Résistance à la traction du béton a {j} jours					
$\mathbf{f}_{\mathrm{c28}}$	Résistance caractéristique à la compression du béton a 28 jours d'âge					
f _{t 28}	Résistance caractéristique à la traction du béton a 28 jours d'âge					
A _{st}	Section d'armature					
$\mathbf{A_r}$	Armature de répartition					
$\gamma_{ m b}$	Coefficient de sécurité de béton					
γs	Coefficient de sécurité d'acier					
θ	Coefficient d'application					
η	Facteur de correction d'amortissement					
I	Moment d'inertie					
i	Rayon de giration					
μ	Moment ultime réduit					
α	Position relative de la fibre neutre					
β	Bras de levier					
d	Distance séparant entre la fibre la plus comprimée et les armatures inferieures					
ď'	Distance entre les armatures et la fibre neutre (armature inférieur)					
\mathbf{B}_{r}	Section réduite					
M	Moment fléchissant					

V	Effort tranchant					
N	Effort normal					
A	Coefficient d'accélération de zone					
D	Facteur d'amplification dynamique					
ξ	Pourcentage d'amortissement critique					
R	Coefficient de comportement global de la structure					
Q	Facteur de qualité					
W	Poids total de la structure					
T	La période					
V_{st}	Force sismique total					
Wi	Poids au niveau {i}					
CT	Coefficient de période					
β	Coefficient de pondération					
St	Espacement					
λ	Elancement					
e	Epaisseur, excentricité					
a	Une dimension (en générale longitudinal)					
b	Une dimension (largeur d'une section)					
h _e	Hauteur libre d'étage					
n	Coefficient d'équivalence acier-béton					
f _{adm}	Flèche admissible					
L	Longueur ou portée					
$\mathbf{l_f}$	Longueur de flambement					
$\mathbf{M_t}$	Moment en travée					
Ma	Moment en appui					
K	Coefficient de raideur de sol					
$\mathbf{f_e}$	Limite d'élasticité de l'acier					
\mathbf{E}_{ij}	Module d'élasticité instantané					
\mathbf{E}_{vj}	Module d'élasticité différé					

Introduction Générale

L'étude des structures est une étape clef et un passage obligé dans l'acte de bâtir. Cette étude vise à mettre en application les connaissances acquises durant les cinq années de formation en génie civil à travers l'étude d'un ouvrage en béton armé.

Chaque étude de projet du bâtiment a des buts :

- La sécurité (le plus important) : assurer la stabilité de l'ouvrage.
- ♣ L'Economie : sert à diminuer les coûts du projet (les dépenses).
- **♣** Le Confort
- L' Esthétique

L'utilisation du béton armé (**B.A**) dans la réalisation c'est déjà un avantage d'économie, car il est moins chère par rapport aux autres matériaux (charpente en bois ou métallique) avec beaucoup d'autres avantages comme par exemples :

- **♣** Souplesse d'utilisation.
- Durabilité (duré de vie).
- Résistance au feu.

Dans le cadre de ce projet de fin d'étude, nous avons procédé au calcul d'un bâtiment comportant un RDC + SOUS-SOL + 12 étages à usage multiple assuré par des voiles.

Dans cette étude, on a utilisé le logiciel de calcul par éléments finis **ETABS 2016 (V 16.2.0)** particulièrement efficace dans la modélisation des bâtiments à plusieurs étages. Il nous a permis non seulement la détermination des caractéristiques dynamiques de la structure, mais aussi les efforts internes qui sollicitent chaque élément de la structure.

Les efforts engendrés dans le bâtiment, sont ensuite utilisés pour ferrailler les éléments résistants suivant les combinaisons et les dispositions constructives exigées par la réglementation algérienne dans le domaine du bâtiment à savoir les Règles Parasismiques Algériennes "RPA99/V 2003" et les Règles de Conception et de Calcul des Structures en Béton Armé "CBA 93", BAEL 91 (béton armé aux états limite).

Chapitre I

PRESENTATION DU PROJET

I.1 Introduction

Le projet de fin de cycle porte sur l'étude d'un bâtiment à usage multiple (commerce, bureaux et logements). Le projet entier consiste en un ensemble de quatre blocs de différents niveaux, séparés par des joints sismiques. La figure I.1 montre le plan d'implantation des différents blocs. Le bâtiment étudié est composé d'un niveau en sous-sol et deux 13 niveaux (R+12) hors sol. Le bâtiment est implanté à Oran et est entièrement réalisé en béton armé.

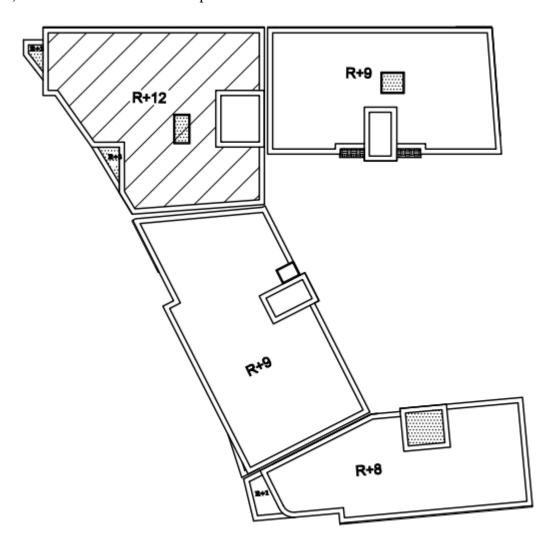
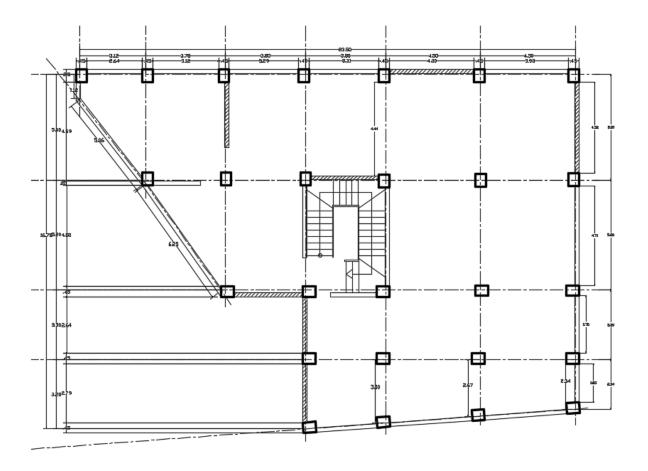



Figure I.1: Plan d'implantation

Les différents niveaux de l'immeuble étudié assurent diverses fonctions. Le sous-sol sert de stockage, la figure I.2 montre le plan du sous-sol. Le rez-de-chaussée est réservé aux locaux commerciaux, la figure I.3 montre le plan du rez-de-chaussée. Le premier et le deuxième étage sont réservés à des bureaux, la figure I.4 montre le plan. Les étages supérieurs sont réservés à des appartements de type F3 et la figure I.5 montre la vue en plan d'un étage type.

Figure I.2 : Plan du sous-sol

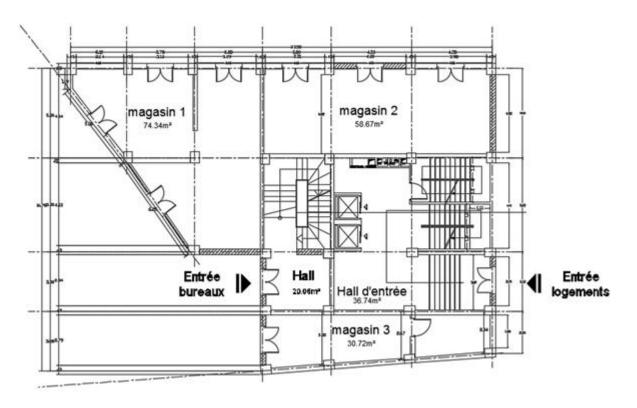


Figure I.3: Plan du rez-de-chaussée

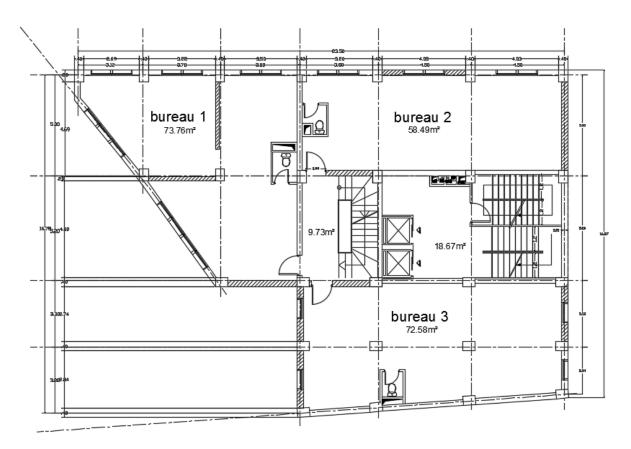
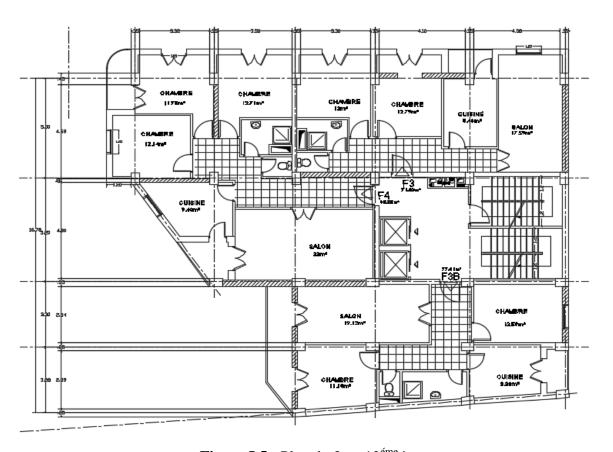



Figure I.4: Plan du premier et second étage

Figure I.5 : Plan du 3 au 12^{éme}étage

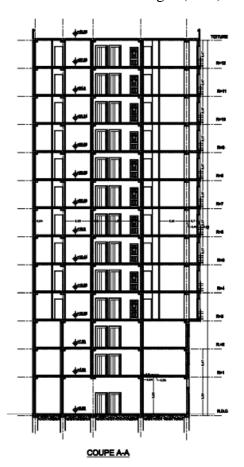
L'immeuble est implanté à Oran (Zone sismique IIa) selon la carte de zonage sismique du RPA99 (version 2003), groupe d'usage 2 (ouvrage courant ou d'importance moyenne) selon l'article 3.2 du RPA99/version 2003, Le site est considéré comme ferme (S2) et la capacité portante du sol est de 2 bars à 5 mètres de profondeur.

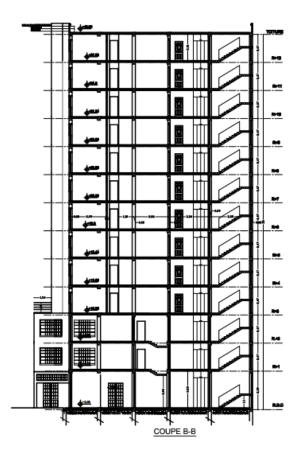
I.2 Description du bloc étudié

I.2.1 Géométrie

Le bâtiment étudié est en forme d'un trapèze. La circulation verticale entre les différents niveaux est assurée par des escaliers en béton armé et deux ascenseurs. La figure I.6 montre deux coupes verticales de l'immeuble et les dimensions principales du bloc étudié sont :

- Longueur du bâtiment : 23,50 m


- Largeur du bâtiment : 16,78 m


- Hauteur totale de la superstructure : 44,03m

- Hauteur du sous-sol : 04,65 m

- Hauteur du rez-de-chaussée : 04,25 m

- Hauteur des étages (1-12) : 03,06m

Figure I.6 : Coupes verticales sur la superstructure de l'immeuble

I.2.2 Stabilité du bâtiment

La stabilité du bâtiment est assurée par des murs voiles, des poteaux et un radier général.

I.2.3 Planchers en corps creux

Les planchers de tous les étages sont réalisés en corps creux. Ces planchers reposent sur un ensemble de portiques et de voiles en béton armé.

I.2.4 Revêtement des planchers

- Enduit en plâtre pour les plafonds.
- Enduit en ciment pour les locaux humides (WC, S.D.B, CUISINE).
- Enduit en ciment pour les murs extérieurs et les cloisons.
- Revêtement en carrelage pour les planchers.
- Le plancher terrasse sera recouvert par une étanchéité multicouche imperméable évitant la pénétration de eaux pluviales et assurant une isolation thermique.

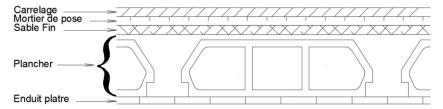


Figure I.7: Plancher étage courant

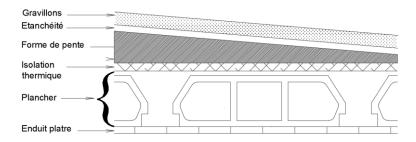


Figure I.8: Plancher terrasse inaccessible

I.2.5 Murs extérieurs et intérieurs

Le remplissage des façades est réalisé en maçonnerie. Ces murs sont composés de deux rangées en briques creuses de 10 cm d'épaisseur (briques à 8 trous) avec une lame d'air de 5cm d'épaisseur. Les murs de séparation sont constitués d'une seule rangée de briques creuse de 10cm, La figure I.9 montre le type de la brique creuse utilisée.

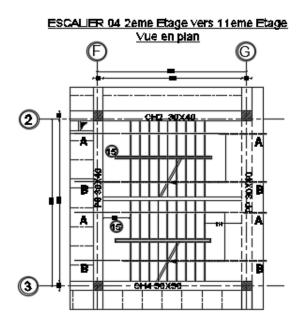
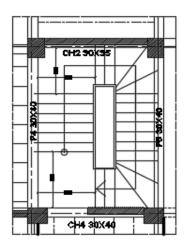


Figure I.9 : Types de briques creuses utilisées


I.2.6 Circulation verticale

La circulation verticale et assurée par des escaliers et des ascenseurs. Le bâtiment est muni de deux cages d'escalier en béton armé et de deux ascenseurs. La figure I.10 montre l'escalier type de l'immeuble. La figure I.11 montre la configuration horizontale de l'espace réservé à l'ascenseur.

ESCALIER 01 SOUS-SOL VERS RDC Vue en plan C+2 30k3s

ESCALIER 02 RDC vers 1er Etage Vue en plan

ESCALIER 03 1er Etage vers 2eme Etage Vue en plan

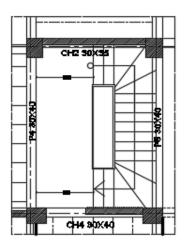


Figure I.10: Différents types d'escaliers

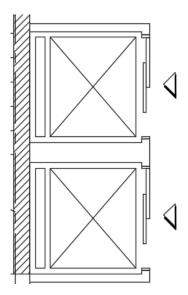


Figure I.11 : Configuration de l'ascenseur

I.3 Système de fondations

I.3.1 Caractéristiques géotechniques du sol

D'après le rapport géotechnique (essais in-situ et au laboratoire qui ont été réalisé) le sol présente une bonne assiette pour le bâtiment. La contraint admissible du sol est de 3 bars à 5 mètre, le coefficient d'élasticité est égale à 40MN/m3, nous avons un sol ferme classé (S2).

I.3.2 Choix du système de fondations

Le niveau du sous-sol du bâtiment est composé d'un voile périphérique, des voiles intérieurs (murs de refends) et des poteaux. Le voile périphérique sert aussi de mur de soutènement s'opposant à la poussée des terres. Le type du sol et l'importance de la hauteur et des charges du bâtiment imposent une solution de type radier général.

I.4 Matériaux utilisés

I.4.1 Béton

L'ensemble de la structure porteuse est réalisé en béton armé. Le béton est coulé sur place. Le ciment utilisé dans ce béton doit être dosé à 300 kg/m³ au minimum (Article A.1, DTR-BC-2.41). La résistance à la compression doit être comprise entre 20 MPa et 45 MPa (Article 7.2.1, DTR-BC-2.48). Le tableau I.1 donne la composition du béton coulé sur place. Les caractéristiques physiques et mécaniques sont données ci-dessous.

Tableau I.1 : Composition du béton coulé sur place

Constituants	Ciment CEM II A	Sable	Gravier	Eau
Quantités	350Kg	400Kg	800Kg	175L

I.4.1.1 Poids volumique

La masse volumique du béton armé utilisé est prise égale à $25~\text{kg/m}^3$ (Article A.3.1.2.1, DTR-BC-2.41) :

$$\gamma_b = 25 \ MN/m^2$$

I.4.1.2 Résistance à la compression

La valeur de la résistance à la compression à l'âge de 28 jours, dite valeur caractéristique requise et notée fc28 est prise égale à 30 MPa (fc28 = 30 MPa), (Article A.2.1.1.1, DTR-BC-2.41).

I.4.1.3 Résistance à la traction

La valeur de la résistance caractéristique à la traction du béton à l'âge de 28 jours (Article A.2.1.1.2, DTR-BC-2.41) est définie par la relation :

$$f_{t28} = 0.6 + 0.06 f_{c28}$$

$$f_{128} = 0.6 + 0.06x30$$

$$f_{t28} = 2.4 MPa$$

I.4.1.4 Module de déformation longitudinale instantané

Le module d'élasticité longitudinale instantanée du béton pour des sollicitations normales d'une durée inférieure à 24 heures contraintes et pour une résistance de compression de 28 jours (fc28 = 30 MPa), Article A.2.1.2.1, DTR-BC-2.41, est :

$$E_{ij} = 11000 \sqrt[3]{f_{c28}}$$

$$E_{ij} = 11000\sqrt[3]{30}$$

$$E_{ij} = 34179,56 \text{ MPa}$$

I.4.1.5 Module de déformation longitudinale différé

Le module d'élasticité longitudinale différée du béton traitant du retrait et du fluage pour une résistance de compression de 28 jours (fc28 = 30 MPa), Article A.2.1.2.1, DTR-BC-2.41, est :

$$E_{ij} = 3700 \sqrt[3]{f_{c28}}$$

$$E_{ii} = 3700 \sqrt[3]{30}$$

$$E_{ij} = 11496,76 \text{ MPa}$$

I.4.1.6 Contraintes normale limites à l'état limite ultime (ELU)

La contrainte de compression admissible (Article A.4.3.4.1, DTR-BC-2.41) vaut :

$$\sigma bc = \frac{0.85}{\theta x \gamma_b} f_{cj}$$

Où : (θ) est égal à 1 pour une durée d'application des actions supérieure à 24 heures, à 0.9 pour une durée d'actions comprise entre 1 heure et 24 heures et à 0,85 pour une durée d'actions inférieure à 1h (Article A.4.3.4.1, DTR-BC-2.41). Le coefficient (γb) (Article A.4.3.4.1, DTR-BC-2.41) est pris égal à 1,50 pour les combinaisons fondamentales et 1,15 pour les combinaisons accidentelles (voir plus loin dans ce mémoire).

I.4.1.7 Coefficient de Poisson

Le coefficient de Poisson est pris égal à 0,20 (υ = 0.20) pour le calcul des déformations à l'état limite de service et à 0 (υ = 0) pour le calcul des sollicitations à l'état limite ultime (Article A.2.1.3, DTR-BC-2.41).

I.4.2 Acier

Le module d'élasticité longitudinale de l'acier (Es) est pris égal à 200000 MPa (Article A.2.2, DTR-BC-2.41). A l'exception des armatures transversales qui sont en ronds lisses, les armatures des éléments structuraux doivent être de haute adhérence, avec une limite d'élasticité égale à 500 MPa (fe = 500 MPa), Article 7.2.2, DTR-BC-2.48. Les treillis soudés ont une limite d'élasticité égale à 520 MPa (fe = 520 MPa), Le tableau I.2 donne les caractéristiques des différents types d'aciers utilisés.

Tableau	I.2:	Différents	types et	caractéristique	es de	s aciers	utilisés
---------	------	------------	----------	-----------------	-------	----------	----------

Aciers	Désignation	fe	Diamètre	Utilisation
		(MPa)	(mm)	
RL	FeE235	235	6 et 8	Armatures transversales
HA	FeE500	500	10 à 20	Armatures longitudinales
TS	TLE520	520	≤ 6	Emplois courant (planchers et dalles)

I.4.2.1 Contrainte limite de l'acier à l'état limite ultimes ELU

La contrainte de traction admissible des armatures (Article A.4.3.4.1, DTR-BC-2.41) vaut :

$$\sigma s = \frac{fe}{\gamma s}$$

Ou γs est égal à 1,15 en situation durable ou transitoire et à 1 en situation accidentelle. (Article A.4.3.4.1, DTR-BC-2.41).

I.4.2.2 Contrainte limite de l'acier à l'état limite de service ELS

Dans le cas où la fissuration est supposée peu préjudiciable, il n'y a aucune limite sur la contrainte de traction admissible (Article 7.3.2.3, DTR-BC-2.4 8).

Dans le cas où la fissuration est supposée préjudiciable, on observe les règles suivantes (Article A.4.5.3.3, DTR-BC-2.41) :

$$\sigma s = \min \left(\frac{2}{3} fe; 110 \sqrt{\eta \times f_{tj}} \right)$$

Dans le cas où la fissuration est supposée très préjudiciable, le diamètre des armatures ne doit pas être inférieur à 8 mm et on observe les règles suivantes (Article A.4.5.3.3, DTR-BC-2.41):

$$\sigma s = \min \left(\frac{1}{2} fe; 90 \sqrt{\eta \times f_{tj}} \right)$$

Où:

(η) est le coefficient de fissuration qui vaut 1 pour les ronds lisses et les treillis soudés et 1.6 pour les armatures à haute adhérence, à l'exception des armatures de moins de 6 mm pour lesquelles on prend 1.3 (Article A.4.5.3.3, DTR-BC-2.41).

I.4.2.3 Coefficient de Poisson

Un seul coefficient de Poisson est utilisé. Celui-ci est pris égal à 0.30.

I.5 Outils informatiques

- Logiciel Etabs 2016 version 16.2.0;
- Logiciel Autodesk Auto-Cad 2016;
- Microsoft Office Word;
- Microsoft Office Excel.

Chapitre II

Chapitre II

PREDIMENSIONNEMENT DES ELEMENTS STRUCTURAUX

II.1 Introduction

Les éléments structuraux prédimensionnés sont les planchers corps creux composés d'une dalle de compression (hourdis), de poutrelles supportant les corps creux (entrevous), les poutres principales supportant les poutrelles, les poutres secondaires, les voiles (murs refends) et les poteaux. Le prédimensionnement de ces éléments structuraux est effectué conformément aux Règles Parasismiques Algériennes, RPA99/version 2003 (DTR-BC-2.48) et/ou les règles de béton armé (DTR-BC-2.41 et BAEL91/version 99). La figure II.1 ci-dessus montre une vue en plan de la disposition des poutrelles d'un plancher corps creux type.

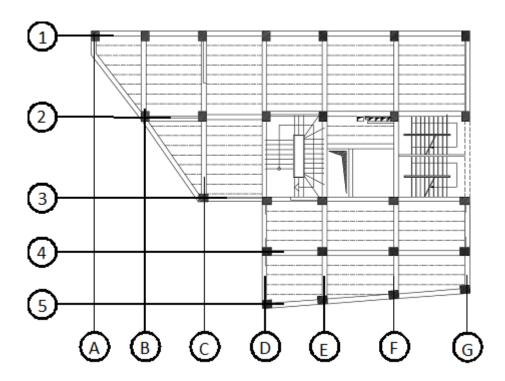


Figure II.1: Disposition des poutrelles dans un plancher en corps creux

Le prédimensionnement des éléments de planchers permet de déterminer le poids propre du hourdis, des poutrelles, des poutres principales et des poutres secondaires. Ce poids propre est une partie des charges permanentes des planchers. En tenant compte de celui-ci et en ajoutant le poids propre des revêtements de chaque plancher et les charges d'exploitations correspondantes, on procédera à la détermination des sections des poteaux de tous les étages du bâtiment. Les murs voiles ou murs refends sont prédimensionnés selon les Règles Parasismiques Algériennes, RPA99/version 2003 (DTR-BC-2.48) uniquement.

II.2 Prédimensionnement des planchers

Les planchers sont constitués de poutrelles et de corps creux, le tout surmonté d'une dalle de compression.

II.2.1 Epaisseur totale du plancher corps creux

L'épaisseur totale du plancher corps creux est déterminée à partir du critère de rigidité selon les règles de béton armé. Le prédimensionnement du plancher en corps creux est effectué pour la poutrelle de la plus grande portée (Lmax = 450cm) comprise entre les files 1 et 6, voir figure II.1. La condition de rigidité s'écrit alors :

$$\frac{L_{max}}{20} \ge ht \ge \frac{L_{max}}{25}$$

$$\frac{450}{20} \ge ht \ge \frac{450}{25}$$

$$22,5 \ge ht \ge 18$$

d'où on adoptera une hauteur totale du plancher corps creux de 20 cm (ht = h + ho = 20 cm).

II.2.2 Prédimensionnement de la poutrelle

La poutrelle d'un plancher en corps creux est calculée comme une section en Té. La figure II.2 en donne une illustration.

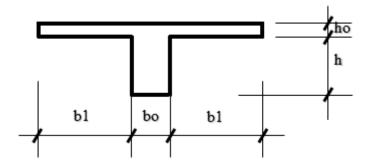


Figure II.2: Notations utilisées pour la poutrelle d'un plancher corps creux type

L'épaisseur de l'âme de la section en Té est déterminée à partir de la relation suivante et selon les règles de béton armé :

$$0.3 \text{ x ht} \le \text{bo} \le 0.5 \text{ x ht}$$

 $0.3 \text{ x } 20 \le \text{bo} \le 0.5 \text{ x } 20$
 $6 \text{ cm} \le \text{bo} \le 10 \text{ cm}$

d'où on prendra une largeur d'âme égale à 10cm (bo = 10cm), voir figure II.3.

La portée maximale la poutrelle est 450 cm (Lmax = 450 cm) et l'entraxe des poutrelles est de 60 cm (2b1+bo = 60 cm), respectivement. La détermination de la largeur (b1) de la table de compression est limitée par les relations suivantes :

$$b1 = \min \frac{L_{\text{max}}}{10} ou \frac{b - bo}{2}$$

$$b1 = \min \frac{450}{10} ou \frac{60-10}{2}$$

$$b1 = min \left(45 \ cm \ ou \ 25 \ cm \right)$$

D'où on prendra une largeur égale à 25 cm (b1 = 25cm), voir figure II.3.Le plancher corps creux aura une épaisseur totale de 20 cm (ht = 20cm). Cette épaisseur est composée de la dalle de compression (ho = 4cm) et de la poutrelle (h = 16 cm).

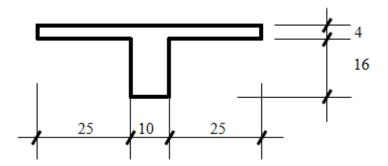


Figure II.3: Dimensions finales de la poutrelle d'un plancher corps creux

II.3 Prédimensionnement des poutres

La hauteur et la largeur minimales des poutres principales et des poutres secondaires doivent satisfaire les Règles Parasismiques Algériennes (RPA99/version 2003) et la condition de la flèche.

II.3.1 Prédimensionnement des poutres principales

Les poutres principales ont des travées comprises entre 200 cm et 520 cm. Les calculs sont effectués pour la poutre principale ayant la travée la plus grande (Lmax = 520 cm). La condition de rigidité exige que la hauteur de la poutre principale soit comprise entre les valeurs dictées par les relations suivantes :

$$\frac{L_{\text{max}}}{15} \le h \le \frac{L_{\text{max}}}{10}$$
$$\frac{520}{15} \le h \le \frac{520}{10}$$
$$35 \text{ cm} \le h \le 52 \text{ cm}$$

d'où on prendra une poutre principale avec une hauteur de 40 cm (h = 40 cm). La largeur de la poutre principale doit être comprise entre 40% et 80% de sa hauteur, à savoir :

$$0.4 \text{ x h} \le b \le 0.8 \text{ x h}$$

 $0.4 \text{ x } 40 \le b \le 0.8 \text{ x } 40$
 $16 \text{ cm} \le b \le 32 \text{ cm}$

Les Règles Parasismiques Algérien, RPA99/version 2003 (Article 7.5.1, DTR-BC-2.48)

h
$$\geq$$
30 cm 40 \geq 30 cm C.V
b \geq 20 cm 30 \geq 20 cm C.V
 $\frac{h}{b} \leq$ 4 C.V

d'où on prendra une largeur de la poutre principale de 40 cm (b = 30 cm). On adoptera donc des poutres principales de sections transversales rectangulaires ($b \times h$) = ($30 \text{ cm} \times 40 \text{ cm}$) et pour lesquelles le rapport (h/b = 40/30 = 1,33), voir figure II.4.

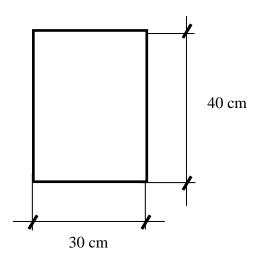


Figure II.4 : Dimensions de la section transversale des poutres principales

II.3.2 Prédimensionnement des poutres secondaires

S'agissant des conditions de rigidités, les poutres secondaires ayant la travée la plus grande (Lmax = 450 cm). La hauteur de la poutre secondaire doit être comprise entre les valeurs dictées par les relations suivantes :

$$\frac{L_{max}}{15} \le h \le \frac{L_{max}}{10}$$
$$\frac{450}{15} \le h \le \frac{450}{10}$$
$$30 \text{ cm} \le h \le 45 \text{ cm}$$

d'où on prendra une poutre secondaire avec une hauteur de 35 cm (h = 35 cm). La largeur de la poutre secondaire doit être comprise entre 40% et 80% de sa hauteur, à savoir :

$$0.4 \text{ x h} \le b \le 0.8 \text{ x h}$$

 $0.4 \text{ x } 35 \le b \le 0.8 \text{ x } 35$
 $14 \text{ cm} \le b \le 28 \text{ cm}$

Les Règles Parasismiques Algérien, RPA99/version 2003 (Article 7.5.1, DTR-BC-2.48)

h ≥ 30 cm 35 ≥ 30 cm C.V
b ≥ 20 cm 30 ≥ 20 cm C.V

$$\frac{h}{b}$$
 ≤ 4 $\frac{35}{30}$ ≤ 4 C.V

On adoptera donc des poutres secondaires rectangulaires (b x h) = (30 cm x 35 cm); voir figure II.4.

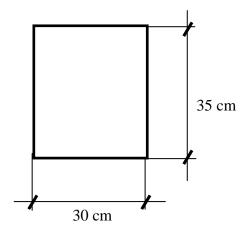


Figure II.5 : Dimensions de la section transversale des poutres secondaires

II.4 Descente de charge

La descente de charge a pour but d'évaluer les charges permanentes (G) et les charges d'exploitation (Q) revenant surtout aux poteaux. Les voiles ne sont pas concernés par l'évaluation de ces deux charges. Ils sont prédimensionnés uniquement par les Règles Parasismiques Algériennes (DTR-BC-2.48).

II.4.1 Évaluation des charges permanentes et d'exploitations

Les charges permanentes (G) et les charges d'exploitations (Q) sont évaluées selon le document technique réglementaire (DTR-BC-2.2).

II.4.1.1 Plancher terrasse

Tableau II.1: Evaluation des charges plancher terrasse

Matériaux	Poids Volumique	Epaisseur	Charge
	(kN/m^2)	(m)	(kN/m^2)
Protection en gravillon roulé	20	0,05	1,00
Étanchéité multicouches	6	0,02	0,12
Forme de pente (1%)	20	0,08	1,60
Plancher (16+4)		0,20	2,85
Isolation thermique en liège	4	0,04	0,16
Enduit en plâtre	13	0,02	0,26
		1	5,99

 $G=5,99 \text{ kN/m}^2$

Q=1,00 kN/m² (Inaccessible)

II.4.1.2 Planchers étages courants

Tableau II.2: Evaluation des charges plancher étage courant

Matériaux	Poids Volumique (kN/m²)	Epaisseur (m)	Charge (kN/m²)
Carrelage	22	0,02	0,44
Mortier de pose	20	0,02	0,40
Lit de Sable	18	0,02	0,36
Plancher 16+4		0,20	2,85
Enduit en Plâtre	13	0,02	0,26
Cloison Légère		0,10	0,75
		1	5,06

 $G=5,06 \text{ kN/m}^2$

Q=1,50kN/m² (Habitations)

II.4.1.3 Planchers des premier et deuxième étages

Tableau II.3: Evaluation des charges plancher 1er et 2eme étage

Matériaux	Poids Volumique	Epaisseur	Charge
	(kN/m^2)	(m)	(kN/m^2)
Carrelage	22	0,02	0,44
Mortier de pose	20	0,02	0,40
Lit de Sable	18	0,02	0,36
Plancher 16+4		0,20	2,85
Enduit en Plâtre	13	0,02	0,26
Cloison Légère		0,10	0,75
	1	'	5,06

 $G=5,06 \text{ kN/m}^2$

Q=2,50k N/m^2 (Bureaux)

II.4.1.4 Plancher du rez-de-chaussée

Tableau II.4: Evaluation des charges plancher rdc

Matériaux	Poids Volumique (kN/m²)	Epaisseur (m)	Charge (kN/m²)
Carrelage	22	0,02	0,44
Mortier de pose	20	0,02	0,40
Lit de Sable	18	0,02	0,36
Plancher 16+4		0,20	2,85
Enduit en Plâtre	13	0,02	0,26
Cloison Légère		0,10	0,75
			5,06

 $G=5,06 \text{ kN/m}^2$

Q=2,50k N/m^2 (Commerce)

II.4.1.5 Maçonnerie

Tableau II.5 : Evaluation des charges et surcharges de la maçonnerie

Matériaux	Poids Volumique	Epaisseurs	Charge
	(kN/m^3)	(m)	(kN/m^2)
Enduit extérieur	22	0,02	0,44
Brique creuse(10 cm)	14	0,10	1,40
Brique creuse(8 cm)	14	0,08	1,12
Enduit intérieur	22	0,02	0,44
			3,4

avec 30 % d'ouverture
$$G= 3,40 \text{ kN/m}^2$$

$$G= 3,40 \text{ x } 0,70$$

$$G= 2,38 \text{ kN/m}^2$$

II.5 Calcul des charges selon la loi de dégression

La loi de dégression des charges s'applique aux bâtiments avec un nombre de niveaux supérieur ou égal à 5. Elle s'applique uniquement aux charges d'exploitation. Comme il est supposé qu'il est rare que toutes les charges d'exploitation agissent simultanément, on applique pour leur détermination la loi de dégression qui consiste à réduire les charges identiques à chaque étage de 10% jusqu'à 0,5xQ. Ce qui donne (DTR B.C 2.2), voir aussi diagramme de la figure II.6:

Sous plancher terrasse	(niveau 00)	Q = Qo
Sous plancher dernier étage	(niveau 01)	Q = Qo + Q1
Sous plancher étage 2	(niveau 02)	Q = Qo + 0.95 (Q1 + Q2)
Sous plancher étage 3	(niveau 03)	Q = Qo + 0.90 (Q1 + Q2 + Q3)
Sous plancher étage 4	(niveau 04)	Q = Qo + 0.85 (Q1 + Q2 + Q3 + Q4)

A partir du sous plancher étage 5 et plus, on appliquera la relation suivante pour le calcul des charges d'exploitation :

$$Q = Qo + \frac{3+n}{2n} (Q_1 + Q_2 + \cdots + Q_n)$$

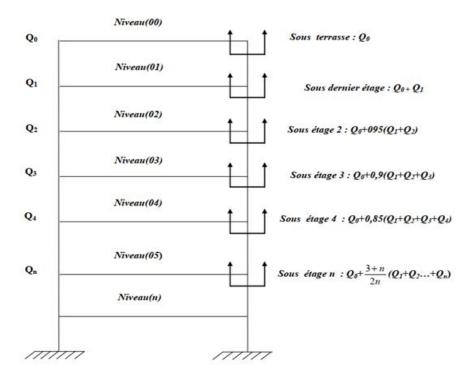


Figure II.6 : Diagramme de régression des charges d'exploitation

Tableau II.6 Tableau récapitulatif des charges

E4	N°	Coeff.	G	G cumulé	Q	Q cumulé	1,35 x G + 1,5 x Q
Etage	IN		(kN/m^2)	(kN/m^2)	(kN/m^2)	(kN/m^2)	(kN/m^2)
Terrasse	0	1.00	6,00	6,00	1.00	1,00	9,60
12	1	0,90	5,06	11,06	1,50	2,5	18,68
11	2	0,85	5,06	16,12	1,50	3,85	27,53
10	3	1.00	5,06	21,18	1,50	5,05	36,16
9	4	0,88	5,06	26,24	1,50	6,1	44,57
8	5	0,80	5,06	31,30	1,50	7	52,75
7	6	0,75	5,06	36,36	1,50	7,75	60,71
6	7	0,71	5,06	41,42	1,50	8,5	68,66
5	8	0,69	5,06	46,48	1,50	9,25	76,62
4	9	0,67	5,06	51,54	1,50	10	84,58
3	10	0,65	5,06	56,60	1,50	10,75	92,53
2	11	0,64	5,06	61,66	2,50	12,13	101,45
1	12	0,63	5,06	66,72	2,50	13,5	110,32
RDC	13	0,62	5,06	71,78	2,50	14,85	119,17
Sous-sol	14	0,61	5,06	76,84	2,50	16,18	128,01

II.6 Exemple de prédimensionnement d'un poteau

Le prédimensionnement concerne le poteau ayant la surface afférente horizontale la plus importante. Le poteau central appartenant à la file F et la file 2 est choisi ici pour le calcul de l'effort normal, voir figure II.7.

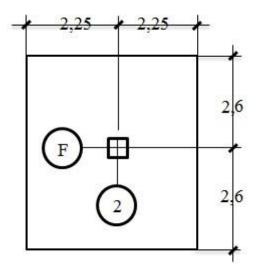


Figure II.7: Cotation poteau central isolé

II.6.1 Critère des Règles Parasismiques Algériennes

En zone IIa, les dimensions (b et h) de la section transversale des poteaux (Article 7.1 du DTR-BC-2.48) doivent satisfaire les conditions suivantes :

$$\begin{aligned} & \min{(b\,,h)} \, \geq 25\,\text{cm} \\ & \min{(b\,,h)} \, \geq \frac{he}{20} \\ & \min{(b\,,h)} \, \geq \frac{465}{20} = 23{,}25 \qquad \qquad \text{Sous-sol} \\ & \min{(b\,,h)} \, \geq \frac{425}{20} = 21{,}25 \qquad \qquad \text{Rez-de-Chaussée} \\ & \min{(b\,,h)} \, \geq \frac{306}{20} = 15{,}30 \qquad \qquad \text{Etage courant} \\ & \frac{1}{4} \leq \frac{b}{h} \leq 4 \end{aligned}$$

II.6.2 Critère de résistance

Le prédimensionnement est déterminé en supposant que les poteaux sont soumis à la compression centrée. Pour que toutes les armatures participent à la résistance, on fixe la valeur de l'élancement du poteau égale à 35 (λ =35 \leq 50) et la valeur de As = 0,01 x Br :

$$\alpha = \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^2}$$
 si $\lambda \le 50$

$$\alpha = \frac{0.85}{1 + 0.2 \left(\frac{35}{35}\right)^2}$$

$$\alpha = \frac{0.85}{1 + 0.2}$$

$$\alpha = 0.71$$

$$Br \ge \frac{\text{Nu}}{\alpha \frac{fc28}{0.9 \, x \, \gamma_b} + \frac{0.01 \, x \, fe}{\gamma_s}}$$

$$Br \ge \frac{\text{Nu}}{\alpha \frac{30}{0.9 \times 1.5} + \frac{0.01 \times 500}{1.15}}$$

$$Br \ge 0.53 x Nu$$

II.6.3 Calcul de l'effort normal ultime

$$Nu = (1,35 \times G + 1,5 \times Q) \times Saff + 1,35 (Pp + Ps) \times n$$

Saff	Pp	Ps	Nu	Br	Section adopté (cm²)	
(m ²)	(KN)	(KN)	(KN)	(Cm ²)		
23,40	15,60	11,81	261,64	138,66	35	35
23,40	15,60	11,81	474,11	251,27	35	35
23,40	15,60	11,81	718,20	380,64	40	40
23,40	15,60	11,81	957,15	507,28	40	40
23,40	15,60	11,81	1190,95	631,20	40	40
23,40	15,60	11,81	1419,36	752,26	45	45
23,40	15,60	11,81	1642,63	870,59	45	45
23,40	15,60	11,81	1865,66	988,79	45	45
23,40	15,60	11,81	2088,93	1107,13	50	50
23,40	15,60	11,81	2312,20	1225,46	50	50
23,40	15,60	11,81	2535,23	1343,67	50	50
23,40	15,60	11,81	2780,96	1473,90	55	55
23,40	15,60	11,81	3025,53	1603,53	55	55
23,40	15,60	11,81	3269,62	1732,89	55	55
23,40	15,60	11,81	3513,48	1862,14	55	55

Tableau II.7: Tableau récapitulatif des sections des poteaux

Les dimensions de la section adoptée pour les poteaux (dernière colonne du tableau ci-dessus) sont vérifiées avec les exigences des Règles parasismiques Algériennes (DTR-BC-248) et la largeur minimale des poutres principales et secondaires. Ces dimensions sont ensuite ajustées de manière à avoir une même section pour le poteau pour un ensemble de niveaux successifs.

II.6.4 Vérification du critère de flambement

$$\lambda = \frac{lf}{i} \le 35$$

$$i = \sqrt{\frac{a^2}{12}} = \frac{a}{2\sqrt{3}}$$

Niveaux	b (cm)	Longueur initiale (cm)	Longueur flambement (cm)	λ	he/20 (cm)	Obsérvation
			, í			
Terrasse	35	306	214	21,18	15,3	✓ Vérifié
12	35	306	214	21,18	15,3	✓ Vérifié
11	40	306	214	18,53	15,3	✓ Vérifié
10	40	306	214	18,53	15,3	✓ Vérifié
9	40	306	214	18,53	15,3	✓ Vérifié
8	45	306	214	16,46	15,3	✓ Vérifié
7	45	306	214	16,46	15,3	✓ Vérifié
6	45	306	214	16,46	15,3	✓ Vérifié
5	50	306	214	14,83	15,3	✓ Vérifié
4	50	306	214	14,83	15,3	✓ Vérifié
3	50	306	214	14,83	15,3	✓ Vérifié
2	55	306	214	13,54	15,3	✓ Vérifié
1	55	306	214	13,54	15,3	✓ Vérifié
RDC	55	425	298	18,86	21,25	✓ Vérifié
Sous-Sol	55	465	326	20,50	23,25	✓ Vérifié

Tableau II.8: Tableau récapitulatif des vérifications des poteaux centraux

II.7 Prédimensionnement des voiles

Les voiles de contreventement doivent satisfaire les conditions des Règles Parasismiques Algériennes, RPA 99/version 2003(DTR-BC-2.48). L'épaisseur des parois des voiles de contreventement est déterminée en fonction de la hauteur de l'étage considéré (he), voir figure II.8 :

Les Règles Parasismiques Algériennes, RPA 99/version 2003(DTR-BC-2.48) exigent une épaisseur minimale de 15 cm :

$$e \ge 15cm$$

$$-e \ge \frac{he}{20}$$

II.7.1 Voile périphérique sous-Sol

$$e \ge \frac{465 - 40}{20}$$
$$e \ge 21,25 cm$$
$$e = 25 cm$$

II.7.2 Voile de contreventement du Rez-de-Chaussée

$$e \ge \frac{425 - 40}{20}$$

 $e \ge 19,25 \text{ cm}$
 $e = 20 \text{ cm}$

 $e \geq \frac{306-40}{20}$

II.7.3 Voile de contreventement des étages courants

Figure II.8 : Géométrie et notations utilisées pour les voiles de contreventement

Chapitre III

ETUDE ET FERRAILLAGE DES PLANCHERS

III.1 Introduction

Ce chapitre est dédié au calcul des armatures et au ferraillage de la dalle de compression et des poutrelles.

En principe, nous présenterons uniquement les résultats numériques obtenus du logiciel ETABS. Mais, nous présenterons aussi les calculs et résultats effectués par des méthodes théoriques pour validations. Les différents planchers à corps creux étudiés supportent des charges d'exploitations d'intensité Q=1.00 kN/m² (terrasse inaccessible), Q=1.50 kN/m² (planchers étages courants) et Q=2.50 kN/m² (planchers du RdC et des deux premiers étages). La figure III.1 donne un aperçu sur la disposition des poutrelles dans les planchers du bâtiment.

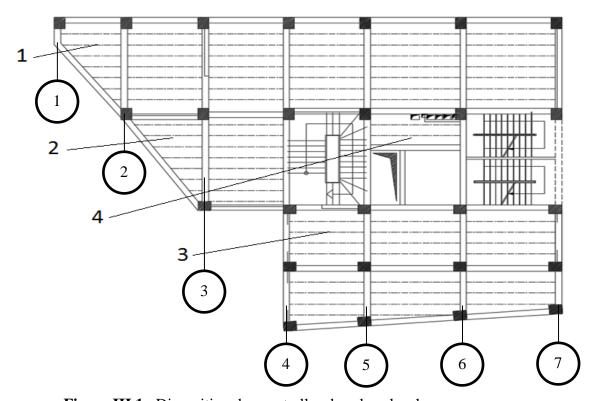


Figure III.1: Disposition des poutrelles dans les planchers en corps creux

Tous les planchers sont constitués d'une dalle de compression horizontale montée sur des entrevous en béton et associée à un système de poutres à nervures. Les poutres à nervures sont les poutrelles, les poutres secondaires et les poutres principales.

Dans la suite, on exposera les calculs de sollicitations et de ferraillage des poutrelles du plancher-RdC. Les calculs des moments fléchissants et des efforts tranchants sont entrepris

par la méthode forfaitaire. L'application de la méthode forfaitaire pour le plancher-RdC est justifiée et les critères de justification sont exposés ci-dessous. Les calculs des sollicitations et des ferraillages pour les autres planchers sont réalisés à l'aide du logiciel ETABS et les résultats issus de ces calculs numériques sont présentés.

III.2 Calcul des sollicitations et ferraillages des planchers corps creux

Ce type de plancher est composé d'entrevous reposant sur des poutrelles et d'une dalle de compression. On commencera par l'évaluation des charges calculées à partir des combinaisons d'actions aux deux états limites de service et de résistance. Les charges permanentes et les charges d'exploitation sont rapportées dans les tableaux du chapitre 2 (sous-sections II.5.1.1 à II.5.1.4). Les poutrelles sont espacées de 0.60 m (L = 60 cm)

III.2.1 Calcul de la combinaison d'actions ELU du plancher-terrasse

 $G = 5.99 \text{ kN/m}^2$

 $Q = 1.00 \text{ kN/m}^2$

Qu = 1.35 G + 1.50 Q

 $Qu = 1.35 \times 5.99 + 1.50 \times 1.00$

 $Qu = 9,586 \text{ kN/m}^2$

 $qu = 0.60 \times 9,586$

qu = 5.75 kN/m

III.2.2 Calcul de la combinaison d'actions ELS du plancher-terrasse

 $G = 5.99 \text{ kN/m}^2$

 $Q = 1,00 \text{ kN/m}^2$

Qs = G + Q

Qs = 5.99 + 1.00

 $Qs = 6.99 \text{ kN/m}^2$

 $qs = 0.60 \times 6.99$

qs = 4,19 kN/m

III.2.3 Calcul de la combinaison d'actions ELU du plancher-Rdc du type 1

$$G = 5,06 \text{ kN/m}^2$$

$$Q = 2,50 \text{ kN/m}^2$$

$$Qu = 1.35 \times G + 1.50 \times Q$$

$$Qu = 1.35 \times 5,06 + 1,50 \times 2,50$$

$$Qu = 10,58 \text{ kN/m}^2$$

$$qu = 0,60 \times 10,58$$

$$qu = 6,35 \text{ kN/m}$$

III.2.4 Combinaison d'actions à ELS du plancher-Rdc du type-1

$$G = 5,06 \text{ kN/m}^2$$

$$Q = 2,50 \text{ kN/m}^2$$

$$Qs = G + Q$$

$$Qs = 5,06 + 2,50$$

$$Qs = 7,56 \text{ kN/m}^2$$

$$qs = 0.60 \times 7.56$$

$$qs = 4,54 \text{ kN/m}$$

Tableau III.1 : Récapitulation des charges et des combinaisons d'actions

Décionations	G	Q	Qu	Qs	qu	qs
Désignations	(kN/m ²)	(kN/m ²)	(kN/m ²)	(kN/m ²)	(kN/m)	(kN/m)
Plancher-terrasse	5,99	1,00	9,59	6,99	5,75	4,19
Planchers étages-courants	5,06	1,50	9,08	6,56	5,4486	3,94
Planchers RDC-1-2éme	5,06	2,50	10,51	7,56	6,35	4,54

III.3 Calcul des moments fléchissants dans les poutrelles du plancher-Rdc

Le plancher-RdC est considéré ici comme exemple. Nous appliquerons la méthode forfaitaire au type-1 des poutrelles (voir figure 3.2, ci-dessous). Le principe de la méthode est exposé dans l'article B 6.2.2.1.1 (DTR-BC 2.41).

Nous débuterons par vérifier les conditions d'applications de la méthode forfaitaire (voir tableau 3.1 pour la vérification des rapports de portées). Une fois les conditions d'application de la méthode forfaitaires sont remplies, nous aborderons les calculs des moments fléchissants et des efforts tranchants. Nous considérons d'abord la combinaison fondamentale $(1,35 \times G + 1,5 \times Q)$ à ELU.

III.3.1 Conditions d'application de la méthode forfaitaire

La méthode forfaitaire s'applique lorsque les conditions suivantes sont vérifiées :

- La fissuration du plancher-courant est considérée comme non préjudiciable ;
- La charge d'exploitation $Q = 2.5 \text{ kN/m}^2 < \text{max} (2 \text{ x} 5.06 \text{ kN/m}^2 \text{ ou } 5 \text{ kN/m}^2)$;
- Les inerties des sections transversales sont les mêmes dans les différentes travées ;
- Les rapports des portées est compris entre 0,8 et 1,25, voir tableau 3.1, ci-dessous.

Tableau III.2 :Rapports des portées de poutrelles

Désignations	Rapports des portées de poutrelles
Travées 1-2/2-3	$\frac{3,12}{3,78} = 0,83$
Travées 2-3/3-4	$\frac{3,78}{3,80} = 0,99$
Travées 3-4/4-5	$\frac{3,80}{3,80} = 1,00$
Travées 4-5/5-6	$\frac{3,80}{4,50} = 0,84$
	$\frac{4,50}{4,50} = 1,00$
Travées 5-6/6-7	

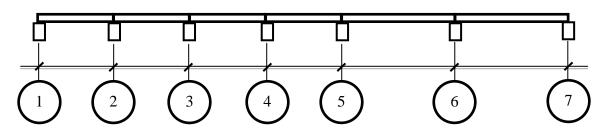


Figure III.2: Poutrelles du type-1 du plancher corps creux du Rez-de-Chaussée

III.3.2 Calcul du moment de comparaisons dans la travée 1-2 des poutrelles

$$M_{1-2}^{o} = \frac{q_u \times L_{12}^{2}}{8}$$

$$M_{1-2}^{o} = \frac{6,35 \times 3,12^{2}}{8}$$

$$M_{1-2}^{o} = 7,72 \text{ kNm}$$

III.3.3 Calcul des moments dans les appuis de la travée 1-2 des poutrelles

$$M_1 = 0.2 \times M_{12}^0$$

$$M_1 = 0.2 \times 7.72$$

$$M_1 = 1,54 \text{ kNm}$$

$$M_2^W = 0.5 \times M_{12}^O$$

$$M_2^W = 0.5 \times 7.72$$

$$M_2^W = 3,86 \text{ kNm}$$

$$M_2^e = 0.5 \times M_{23}^o$$

$$M_2^e = 0.5 \times 11.34$$

$$M_2^e = 5,67 \text{ kNm}$$

III.4 Calcul du rapport des charges d'exploitation et permanentes

$$\alpha = \frac{Q}{G + Q}$$

$$\alpha = \frac{2,50}{5,06 + 2,50}$$

$$\alpha = 0.33$$

III.5 Calcul des moments dans la travée 1-2 des poutrelles

$$M_{1-2}^{t} + \frac{M_{e} + M_{w}}{2} \ge \max \left((1 + 0.3 \times \alpha) \times M_{12}^{o} \text{ ou } 1.05 \times M_{12}^{o} \right)$$

$$M_{1-2}^{t} + \frac{1.54 + 5.67}{2} \ge \max \left((1 + 0.3 \times 0.23) \times 7.72 ; 1.05 \times 7.72 \right)$$

$$M_{1-2}^{t} + 3.61 \ge 8.49$$

$$M_{1-2}^{t} \ge 8.49 - 3.61$$

$$M_{1-2}^{t} \ge 4.88 \text{ kNm}$$

On prend $M_{1-2}^t = 4,88 \text{ kNm}$ et on fait la vérification suivante :

$$M_{1-2}^{t} \ge \frac{(1,2+0,3 \times \alpha)}{2} \times M_{12}^{o}$$

$$M_{1-2}^{t} \ge \frac{(1,2+0,3 \times 0.33)}{2} \times 7,72$$

$$M_{1-2}^{t} \ge 4,25 \text{ kNm}$$

$$M_{1-2}^{t} = 4,28 \text{ kNm} > 4,25 \text{ kNm}$$

Ci-dessus, nous avons montré les calculs des moments fléchissants dans les appuis et dans la travée de la poutrelle 1-2.

Les mêmes calculs sont effectués dans les autres travées et appuis des poutrelles type-1 du plancher RdC.

Tableau III.3 : Récapitulation des moments fléchissants isostatiques dans les travées

Travées	Longueur	Mo-ELU	Mo-ELS
Travees	(m)	(kNm)	(kNm)
Travée 1-2	3,12	7,72	5,52
Travée 2-3	3,78	11,34	8,10
Travée 3-4	3,80	11,46	8,19
Travée 4-5	3,80	11,46	8,19
Travée 5-6	4,50	16,07	11,49
Travée 6-7	4,50	16,07	11,49

Le tableau III.4 contient les valeurs des moments fléchissants isostatiques en appuis de toutes les poutrelles type-1 sous les actions ELU et ELS.

Tableau III.4: Récapitulation des moments fléchissants isostatiques en appuis

	Mo-ELU	Mo-ELS
Appuis	(kNm)	(kNm)
M1	1,54	1,10
M2	5,67	4,05
M3	4,58	3,27
M4	4,58	3,27
M5	6,42	4,59
M6	8,03	5,74
M7	3,21	2,29

Tableau III.5 : Récapitulation des moments fléchissants en travées

Travée	Mt à ELU	Mt à ELS	
	(kNm)	(kNm)	
M_{1-2}^{t}	4,88	3,49	
M_{2-3}^t	7,24	5,24	
M_{3-4}^t	8,01	5,72	
M_{4-5}^{t}	7,09	5,07	
M_{5-6}^t	10,43	7,45	
M_{6-7}^{t}	12,04	8,60	

III.6 Calcul des efforts tranchants dans les poutrelles du plancher du Rdc

Pour les travées intermédiaires, on ne tient pas compte de la continuité des poutrelles et l'effort tranchant à ELU est donc pris égale à celui de la poutre isostatique reposant sur deux appuis.

$$V_1^u = \frac{q_u \times L}{2}$$

$$V_1^u = \frac{6,35 \times 3,12}{2}$$

$$V_1^u = 10,89 \text{ kN}$$

Pour les travées de rive, l'effort tranchant à ELU pris égale à celui de la poutre isostatique reposant sur deux appuis, est majoré de 10%.

$$V_1^{u} = 1,10 \times \frac{q_u \times L}{2}$$

$$V_1^{u} = 1,10 \times \frac{6,35 \times 3,12}{2}$$

$$V_1^{u} = 11,98 \text{ kN}$$

Pour les travées intermédiaires, on ne tient pas compte de la continuité des poutrelles et l'effort tranchant à ELS est donc pris égale à celui de la poutre isostatique reposant sur deux appuis.

$$V_{1}^{S} = \frac{q_{S} \times L}{2}$$

$$V_{1}^{S} = \frac{4,54 \times 3,12}{2}$$

$$V_{1}^{S} = 7,08 \text{ kN}$$

Pour les travées de rive, l'effort tranchant à ELU pris égale à celui de la poutre isostatique reposant sur deux appuis, est majoré de 10%.

$$V_1^{s} = 1,10 \times \frac{q \times L}{2}$$

$$V_1^{u} = 1,10 \times \frac{4,54 \times 3,12}{2}$$

$$V_1^{u} = 7,79 \text{ kN}$$

Nous allons maintenant montrer les calculs des efforts tranchants dans les appuis des poutrelles du plancher-RdC type-1. Les calculs sont effectués dans les autres travées et appuis des poutrelles type-1 du plancher RdC. Ces calculs sont réalisés sur EXCEL et ne sont pas présentés dans ce mémoire. Le tableau III.4 contient les valeurs des moments fléchissants dans les travées de toutes les poutrelles type-1 sous les actions ELU et ELS.

Tableau III.6 :Efforts tranchants dans les appuis des poutrelles du plancher-rdc

Efforts tranchants	ELU	ELS
	(kN)	(kN)
v_1	10,89	8,58
V_2	11,99	9,44
V_3	12,06	8,62
V_4	12,06	8,62
V5	14,28	10,20
V6	15,71	11,22
V ₇	15,71	11,22

III.7 Calcul du ferraillage des poutrelles

Le tableau III.7 ci-dessous contient les valeurs des moments fléchissants et des efforts tranchants dans les travées les plus défavorables du plancher-RdC type-1. Ces valeurs sont nécessaires pour le calcul de ferraillage et sont données à l'ELU et L'ELS.

Tableau III.7: Moments fléchissants et efforts tranchants dans les poutrelles

	Moment		
	(kNm)		Effort tranchant
	Appuis	Travées	(kN)
ELU	-8,03	12,04	15,71
ELS	-5,74	8,60	11,22

Nous présenterons ici les résultats de calculs de ferraillage de la travée la plus sollicitée (travée FG) des poutrelles du plancher-RdC type-1. La poutrelle d'un plancher en corps creux est calculée comme une section en té. La figure III.3 en donne une illustration. La section en té est calculée en flexion simple.

III.7.1 Calcul des armatures longitudinales en travée

Nous entamons ici le calcul des armatures longitudinales en travée de la travée 12 du plancher-RdC. La poutrelle 12 est calculée en flexion simple et la section de la poutrelle est une section en té (figure III.3). La fissuration est supposée peu préjudiciable. Ci-après, les calculs de ferraillages entrepris :

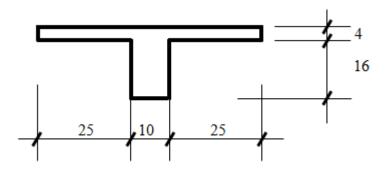


Figure III.3: Notations utilisées pour la poutrelle d'un plancher corps creux

$$M_{67}^{u} max = 12,04 kNm$$

III.7.1.1 Calcul du moment de la table

$$\sigma_{bc} = 0.85 \, x \, \frac{f_{cj}}{\theta \, x \, \gamma_b}$$

$$\sigma_{bc} = 0.85 \, x \, \frac{30}{1 \, x \, 1.5}$$

$$\sigma_{bc} = 17 \text{ MPa}$$

$$d = 0.9 x h$$

$$d = 0.9 \times 20$$

$$d=18 \, cm$$

$$M_t^u = \sigma_{bc} \times b \times ho \times (d - \frac{ho}{2})$$

$$M_t^u = 17 \times 10^3 \times 0.60 \times 0.04 \times (0.18 - \frac{0.04}{2})$$

$$M_t^u = 65,28 \text{ kNm}$$

$$M_t^u = 65,28 \text{ kNM} > M_{67}^u = 12,04 \text{ kNm}$$

L'axe neutre se trouve dans la table de compression ; le calcul sera fait pour une section rectangulaire (60×20) cm².

$$\mu = \frac{M_{67}^u}{b \, x \, d^2 x \, \sigma_{bc}}$$

$$\mu = \frac{12040}{60 \, x \, 18^2 \, x \, 17}$$

$$\mu = 0.036$$

$$\mu_{ab} = 0.186$$

$$\mu = 0.036 \le \mu_{ab} = 0.186$$
Pivot A

$$\alpha = \frac{fe}{\gamma s}$$

$$\sigma s = \frac{500}{1.15}$$

$$\sigma s = 435 \, MPa$$

$$\alpha = 1.25 \, x \, (1 - \sqrt{1 - 2\mu})$$

$$\alpha = 1.25 \, x \, (1 - \sqrt{1 - 2 \, x} \, 0.036)$$

$$\alpha = 0.046$$

$$\beta = 1 - (0.4 \, x \, \alpha)$$

$$\beta = 1 - (0.4 \, x \, 0.036)$$

$$\beta = 0.98$$

$$A_{U}^t = \frac{M_{67}^u}{\sigma s \, x \, \beta \, x \, d}$$

$$A_{U}^t = \frac{12040}{435 \, x \, 0.98 \, x \, 18}$$

$$A_{U}^t = 1.57 \, cm^2$$

III.7.1.2 Condition de non fragilité

$$A_{min} = 0.23 \times b \times d \times \frac{f_{tj}}{f_e}$$

$$A_{min} = 0.23 \times 0.60 \times 0.18 \times \frac{1.7}{500}$$

$$A_{min} = 1.19 \text{ cm}^2$$

III.7.1.3 Armatures finales en travée

$$A^{t} = max (A_{u}^{t}; A min)$$
 $A^{t} = max (1,57 cm^{2}; 1,19 cm^{2})$
 $A^{t} = 1,57 cm^{2}$
 $A^{t} = 3HA10$
 $A^{t} = 2,36 cm^{2}$

III.7.2 Calcul des armatures longitudinales en appui

$$M_6^u \max = 8,03 \text{ kNm}$$

Le moment est négatif, la table de la section en té se trouve dans la zone tendue. Les calculs sont effectués pour une section rectangulaire de 10 cm x 20 cm. Les résultats obtenus sont :

$$\begin{split} \mu &= \frac{M_6^u}{b \, x \, d^2 x \, \sigma_{bc}} \\ \mu &= \frac{8030}{10 \, x \, 18^2 \, x \, 17} \\ \mu &= 0,\!146 \\ \mu_{ab} &= 0,\!186 \\ \mu &= 0,\!036 \leq \mu_{ab} = 0,\!186 \quad \text{Pivot A} \qquad \text{A'}u = 0 \\ \sigma_S &= \frac{fe}{\gamma_S} \\ \sigma_S &= \frac{500}{1,\!15} \\ \sigma_S &= 435 \, \text{MPa} \end{split}$$

$$\alpha = 1,25 \text{ x } (1 - \sqrt{1 - 2\mu})$$

$$\alpha = 1,25 \text{ x } (1 - \sqrt{1 - 2 \text{ x } 0,146})$$

$$\alpha = 0.198$$

$$\beta = 1 - 0.4 \times \alpha$$

$$\beta = 1 - (0.4 \times 0.198)$$

$$\beta = 0.92$$

$$A_u^t = \frac{M_6^u}{\sigma s \, x \, \beta \, x \, d}$$

$$A_u^t = \frac{8030}{435 \times 0.92 \times 18}$$

$$A_u^t = 1,11 \, \text{cm}^2$$

III.7.2.1 Condition de non fragilité

$$A_{\min} = 0.23 \times b \times d \times \frac{f_{tj}}{f_{e}}$$

$$A_{\min} = 0.23 \times 0.10 \times 0.18 \times \frac{1.7}{500}$$

$$A_{\min} = 1,40 \, cm^2$$

III.7.2.2 Armatures finales en appui

$$A^t = \max(A_u^t; A \min)$$

$$A^{t} = \max(1,11 \, cm^{2}; 1,40 \, cm^{2})$$

$$A^{t} = 1,40 cm^{2}$$

$$A^{t} = 2T10$$

$$A^{t} = 1.57 \text{ cm}^{2}$$

III.8 Calculs numériques des sollicitations dans les poutrelles des planchers

Dans cette partie du chapitre, on exposera les calculs de sollicitations et de ferraillage des poutrelles du plancher-RdC

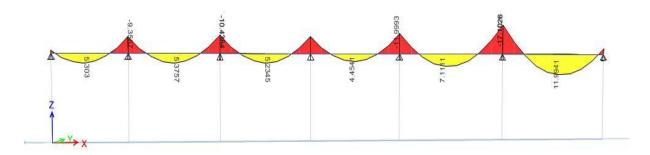
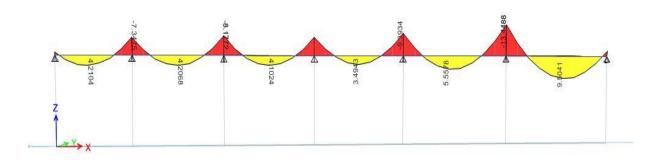
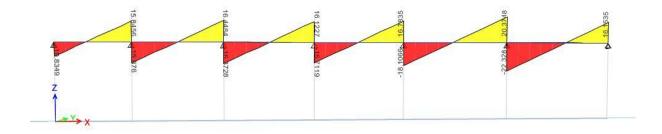



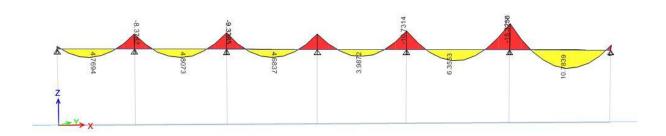
Figure III.4: Modélisation des poutrelles type-1 à l'aide du logiciel ETABS


Les calculs des moments fléchissants et des efforts tranchants sont entrepris par la méthode forfaitaire. L'application de la méthode forfaitaire pour le plancher-RdC est justifiée et les critères de justification sont exposés ci-dessous. Les calculs des sollicitations et des ferraillages pour les autres planchers sont réalisés à l'aide du logiciel Autodesk-ROBOT et les résultats issus de ces calculs numériques sont présentés.

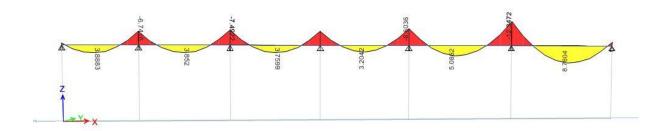
III.8.1 Moments fléchissants dans les poutrelles du plancher-Rdc, 1 et 2ème etages type-1 à ELU


Figure III.5: Moments fléchissants dans les poutrelles du plancher-Rdc, 1 et 2ème etages type-1 à ELU

III.8.2 Moments fléchissants dans les poutrelles du plancher-Rdc, 1 et 2ème etages type-1 à ELS


Figure III.6 : Moments fléchissants dans les poutrelles du plancher-RdC, 1 et 2ème etages type-1 à ELS

III.8.3 Efforts tranchants dans les poutrelles du plancher-Rdc, 1 et 2ème etages type-1 à ELU


Figure III.7 : Efforts tranchants dans les poutrelles du plancher-Rdc, 1 et 2ème étages type-1 à ELU

III.8.4 Moments fléchissants dans les poutrelles du plancher-étage courant type-1 à ELU

Figure III.8 : Moments fléchissants dans les poutrelles du plancher-étage courant type-1 à ELU

III.8.5 Moments fléchissants dans les poutrelles du plancher-étage courant type-1 à ELS

Figure III.9 : Moments fléchissants dans les poutrelles du plancher-étage courant type-1 à ELS

III.8.6 Efforts tranchants dans les poutrelles du plancher-étage courant type-1 à ELU

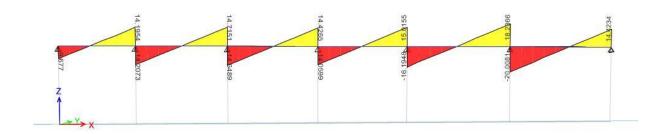


Figure III.10 : Efforts tranchants dans les poutrelles du plancher-étage courant type-1 à ELU

III.8.7 Moments fléchissants dans les poutrelles du plancher-terrasse type-1 à ELU

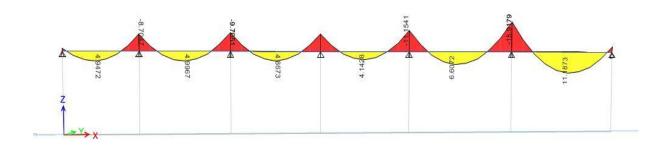


Figure III.11: Moments fléchissants dans les poutrelles du plancher-terrasse type-1 à ELU

III.8.8 Moments fléchissants dans les poutrelles du plancher-terrasse type-1 à ELS

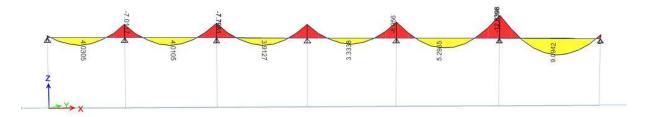


Figure III.12 : Moments fléchissants dans les poutrelles du plancher-terrasse type-1 à ELS

III.8.9 Efforts tranchants dans les poutrelles du plancher-terrasse type-1 à ELU

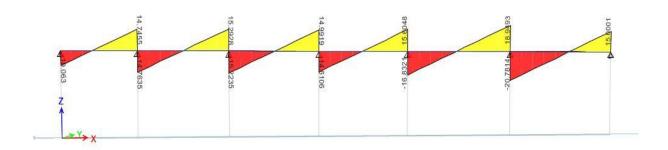


Figure III.13: Efforts tranchants dans les poutrelles du plancher-terrasse type-1 à ELU

III.9 Ferraillage de la dalle de compression

L'épaisseur du hourdis du plancher-RdC en corps creux est de 4 cm. Cette épaisseur est déterminée dans le chapitre de prédimensionnement (chapitre 2). Selon le DTR-BC2.41, l'hourdis doit être armé d'un quadrillage de barres (treillis soudé) dont les dimensions des mailles ne doivent pas dépasser :

- 20 cm (5p/ml) pour les armatures perpendiculaires (A⊥) aux nervures ;
- 33 cm (3p/ml) pour les armatures parallèles (A//) aux nervures ;
- lorsque la largeur totale de la poutrelle (L1) est comprise entre 50 cm et 80 cm (50 cm \leq L1 \leq 80 cm, la section des barres d'acier est égale à :

$$A\perp \geq 4 \times \frac{L1}{fe}$$

$$A \! / \! / \geq \frac{A}{2}$$

avec:

(A) désigne la section des armatures perpendiculaires aux nervures ; (A //) la section des armatures parallèles aux nervures ; (L₁) la distance entre axes des nervures ; (fe) la limite élastique (treillis soudé $\phi \le 6$ mm).

III.9.1 Armatures perpendiculaires aux nervures

La largeur totale de la table de la poutrelle est de 60 cm. Cette largeur est calculée dans le chapitre 2. La fissuration du plancher-RdC est supposée peu préjudiciable.

$$A \ge 4 \times \frac{L1}{fe}$$

$$A \ge 4 \times \frac{60}{520}$$

$$A \ge 0.46 \text{ cm}^2/\text{ml}$$

$$A = 5\phi6$$

$$A = 1.41 \text{ cm}^2/\text{ml}$$

III.9.2 Armatures parallèles aux nervures

$$A// \ge \frac{A}{2}$$

$$A// \ge \frac{1,41}{2}$$

$$A// \ge 0,71 \text{ cm}^2/\text{ml}$$

$$A = 5\phi6$$

$$A = 1,41 \text{ cm}^2/\text{ml}$$

Pour le ferraillage de la dalle de compression on adopte un treillis soudé ϕ 6 dont les dimensions des mailles sont de 15 cm x 15 cm, suivant les deux sens.

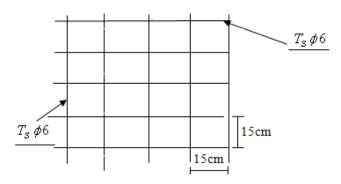


Figure III.14: Ferraillage de la dalle de compression

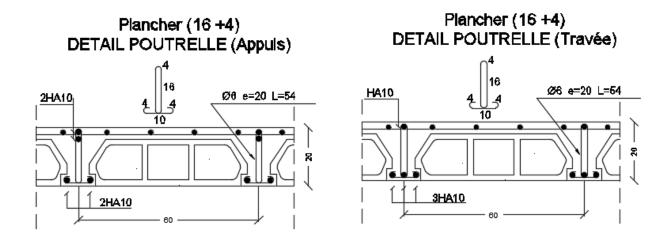


Figure III.15 : Schéma de ferraillage des poutrelles du plancher corps creux

On remarque des écarts entre les sollicitations obtenues par la méthode forfaitaire et celle des calculs numériques. La méthode forfaitaire donne des valeurs plus élevées, mais cela va dans le sens de la sécurité.

Chapitre IV

ETUDE ET FERRAILLAGE DES ELEMENTS NON STRUCTURAUX

IV.1 Introduction

Les éléments non-structuraux (secondaires) concernés par cette étude et ce ferraillage sont le balcon, l'acrotère et les escaliers.

IV.2 Etude et calcul de ferraillage du balcon

Le balcon est étudié comme une console, encastré à l'extrémité dans la poutre de rive. Le balcon est sollicité par une charge permanente (G), une surcharge d'exploitation (Q) et une charge concentré (P) due au poids du mur en briques de hauteur 1.20m et d'épaisseur 30cm. Le balcon est considéré comme une dalle pleine et son épaisseur est calculée par la formule suivante :

$$\frac{L}{15} \le e \le \frac{L}{20}$$

$$\frac{125}{15} \le e \le \frac{125}{20}$$

$$e = 15 \text{ cm}$$

IV.2.1 Évaluation des charges permanentes et d'exploitations

Les charges permanentes (G) et les charges d'exploitations (Q) sont évaluées selon le document technique réglementaire (DTR-BC-2.2).

Le tableau IV.1 contient les valeurs des charges permanentes et d'exploitation agissantes sur le balcon et la figure IV.1 montre le schéma statique de calcul du balcon (Wp= 5,04 kN/m est la charge permanente concentrée du mur brique).

Tableau IV.1 : Charges et surcharge agissantes sur le balcon

Matériaux	P.Volumique	Epaisseur	Poids
	(kN/m^3)	(m)	(kN/m^2)
Carrelage	22	0,02	0,44
Mortier de pose	20	0,02	0,40
Dalle pleine	25	0,15	3,75
Enduit en Plâtre	10	0,02	0,20

$$G = 4,79 \text{ kN/m}^2$$

 $Q = 3,50 \text{ kN/m}^2$

IV.2.2 Évaluation des actions à ELU

$$Pu = 1,35 \times G + 1,5 \times Q$$

$$Pu = 1,35 \times 4,79 + 1,5 \times 3,50$$

$$Pu = 11,72 \text{ kN/m}^2$$

$$p_{II} = 11,72 \times 1.00 = 11,72 \text{ kN/m}$$

calcul effectué pour une bande de 1 m

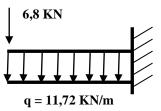
$$W_p = 14 \times 0.3 \times 1.2 \times 1.00$$

$$W_p = 5.04 \text{ kN}$$

$$W_p^u = 1,35 \text{ x Wp x 1,00}$$

$$W_p^u = 1,35 \times 5,04 \times 1,00$$

$$W_p^u = 6.8 \, kN$$


Calcul le moments fléchissants

$$0 \le x \le 1,25 \ cm$$

$$M(x) = -11,72 \times \frac{x^2}{2} - 6.8x$$

$$M(0) = 0$$

$$M(1,25) = -17,66 \text{ KN.m}$$

IV.2.3 Diagramme des moments fléchissants à ELU

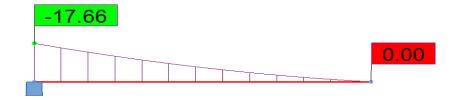


Figure IV.1 : Diagramme des moments fléchissants du balcon

IV.2.4 Calcul et schéma du ferraillage du balcon

$$M_u = -17,66 \text{ kNm}$$

$$\mu = \frac{M_u}{b \ x \ d^2 \ x \ \sigma_{bc}}$$

$$\mu = \frac{17660}{100 \ x \ 13^2 \ x \ 17}$$

$$\mu = 0,061$$

$$\mu \le \mu_{ab} = 0,186$$
 Pivot A

$$A_{\mathbf{u}}' = 0$$

 $A_u^t = \frac{M_u}{\sigma s \, x \, \beta \, x \, d}$

$$\sigma s = \frac{fe}{\gamma s}$$
 $\sigma s = \frac{500}{1,15}$ $\sigma s = 435 \, \text{MPa}$

$$\alpha = 1,25 \text{ x } (1 - \sqrt{1 - 2\mu})$$

$$\alpha = 1,25 \text{ x } (1 - \sqrt{1 - 2 \text{ x } 0,061})$$

$$\alpha = 0,07$$

$$\beta = 1 - 0.4 \alpha$$

$$\beta = 1 - (0.4 \times 0.078)$$

$$\beta = 0.96$$

$$A_{u}^{t} = \frac{17660}{435 \times 0,96 \times 13}$$

$$A_{u}^{t} = 3.25 \text{ cm}^{2}$$

$$A_{u}^{t} = 5\text{HA}10$$

$$A_{u}^{t} = 3,93 \text{ cm}^{2}$$

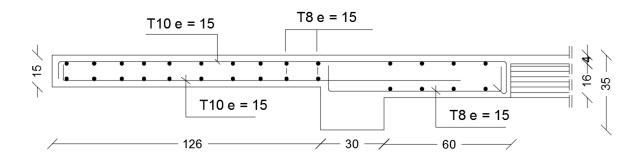


Figure IV.2 : Schéma de ferraillage du balcon

IV.3 Etude et calcul de ferraillage de l'acrotère

L'acrotère est calculé comme une console encastrée au niveau de la poutre du plancher terrasse. Il est soumis à son poids propre et à la poussé latéral de la main courante et calculé en flexion composée. Cette dernière entraîne des fissures et des déformations importantes les fissures sont considérées comme préjudiciables.

IV.3.1 Evaluation des charges permanentes et d'exploitation

L'acrotère est soumis à une charge verticale due à son poids propre, une surcharge due à l'action de la main courante (Q = 1 kN/m) et une force d'origine sismique Fp (Article 6.2.3, DTR-BC 2.48).

$$Fp = 4 \times A \times Cp \times Wp$$
 (Article 6.2.3, DTR-BC 2.48)

où:

(A = 0,15 en zone IIa et groupe d'usage 2) est le coefficient d'accélération de la zone sismique ; (Cp = 0,8 (Tableau 6.1, DTR-BC 2.48)) est le facteur de force horizontale et (Wp) est le poids propre de l'élément.

$$Wp = \gamma b \times S$$

$$S = (0.5 \times 0.1) + (0.1 \times 0.07) + (0.03 \times \frac{0.10}{2})$$

$$S = 0.0585 \text{ cm}^2$$

$$W_p = 25 \times 1.00 \times 0.058$$

$$Wp = 1.46 \text{ kN}$$

$$Fp = 4 \times 0.15 \times 0.8 \times 1.46$$

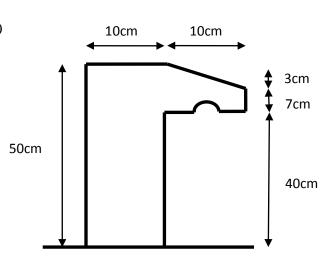


Figure IV.3 : Schéma de l'acrotère

Fp = 0.7 kN

IV.3.2 Evaluation des actions

La section dangereuse se trouve au niveau de l'encastrement. Elle est sollicitée par à un effort normal (N) et un moment de flexion (M) du à la charge horizontale.

IV.3.2.1 Evaluation des actions à ELU

$$N_{11} = 1,35 \text{ x Wp}$$

$$N_u = 1,35 \times 1,46$$

$$N_u = 1.97 \text{ kN/m}$$

$$T_u = 1.5 x Fp$$

$$T_u = 1.5 \times 0.7$$

$$T_{\rm u} = 1.05 \, \rm kN/m$$

$$M_u = 1.5 x FP x h$$

$$M_u = 1.5 \text{ x}, 0.7 \text{ x} 0.50$$

$$M_{\rm u} = 0.53 \,\mathrm{kNm}$$

IV.3.2.2 Evaluation des actions à ELS

$$N_S = Wp$$

$$N_S = 1,46 \text{ kN}$$

$$T_S = Fp$$

$$T_{\rm S} = 0.7 \text{ kN/m}$$

$$M_S = Fp \times h$$

$$M_S = 0.7 \times 0.50$$

$$M_{\rm S} = 0.35 \, \rm kNm$$

IV.3.3 Calcul et schéma de ferraillage de l'acrotère à ELU

Le ferraillage est calculé par mètre linéaire. Celui-ci devra assurer la résistance d'une section rectangulaire de 100 cm x 10 cm, soumise à la flexion composée.

$$\begin{split} e_{O} &= \frac{M_{u}}{N_{u}} \\ e_{O} &= \frac{0,53}{1,97} \\ e_{O} &= \frac{1}{2} \\ e_{O} &= \frac{50}{2} \\ e_{O} &= 25 \text{ cm} \\ e_{O} &= 26 \text{ cm} \\ \end{split}$$

L'effort normal de compression (Nu) est appliqué en dehors du segment limité par les armatures. Donc, la section partiellement comprimée. Le calcul du ferraillage se fait en flexion simple avec un moment (Mu) qui est le moment par rapport aux armatures tendues :

$$M_u = N_u x$$
 $e_o + (\frac{h}{2} + c)$ $M_u = 1,97x$ $0,27 + (\frac{0,10}{2} + 0,02)$ $M_u = 591 \text{ Nm}$

IV.3.3.1 Vérification de l'existence des armatures comprimées

$$\mu = \frac{M_u}{\sigma_b \ x \ b \ x \ d^2}$$

$$\mu = \frac{591}{17 \ x \ 100 \ x \ 8^2}$$

$$\mu = 0.186 \quad \text{Pivot A}$$

$$A_u' = 0$$

$$\sigma_s = \frac{fe}{\gamma_s}$$

$$\sigma_s = \frac{500}{1.15}$$

$$\sigma_s = 435 \, \text{MPa}$$

$$\alpha = 1,25 \text{ x } (1 - \sqrt{1 - 2\mu})$$

$$\alpha = 1,25 \text{ x } (1 - \sqrt{1 - 2 \text{ x } 0,0005})$$

$$\alpha = 0,0006$$

$$\beta = 1 - 0.4 \alpha$$

$$\beta = 1 - (0.4 \times 0.0006)$$

$$\beta = 0.997$$

$$A_{u} = \frac{M_{u}}{\sigma s \times \beta \times d}$$

$$A_{u} = \frac{591}{435 \times 0,997 \times 8}$$

$$A_{u} = 0,17 \text{ cm}^{2}/\text{m}$$

IV.3.3.2 Vérification à la flexion composée

$$A_{u} = \frac{N_{c}}{100 \text{ x } \sigma_{s}}$$

$$A_{u} = \frac{1970}{100 \text{ x } 435}$$

$$A_{u} = 0.12 \text{cm}^{2}/\text{m}$$

$$A'= 0$$

IV.3.4 Calcul et schéma de ferraillage de l'acrotère à ELS

$$e_O = \frac{M_S}{N_S}$$

$$e_O = \frac{0,35}{1.46}$$

$$e_O = 0,24 \text{ m}$$

$$e_O > \frac{h}{2}$$

$$c = 0,03m$$
 section partiellement comprimée

$$M_S = N_S x (e_O + \frac{h}{2} c)$$

$$M_S = 1460 \times (0.24 + \frac{0.1}{2} \quad 0.02)$$

$$M_S = 394,2 \text{ Nm}$$

$$\overline{\sigma}_{S} = \min \left(\frac{2}{3} x \text{ fe}; 110 \sqrt{n x f_{tj}} \right)$$

$$\overline{\sigma}_{S} = \min \left(\frac{2}{3} \times 500; 110 \times \sqrt{1,6 \times 2,4} \right)$$

$$\overline{\sigma}_{S} = \min(333; 216)$$

$$\overline{\sigma}_{S} = 216 \text{ MPa}$$

$$\mu = \frac{M_S}{\overline{\sigma}_S \times b \times d^2}$$

$$\mu = \frac{394,2}{216 \times 100 \times 8^2}$$

$$\mu = 0.,0003.$$

$$\mu = 0.0003\alpha_1$$

$$\mu_1 = 0.092$$

$$K = 148,04$$

$$\beta = 0.97$$

$$\overline{\sigma}_{bc} = \frac{\overline{\sigma}_{s}}{K}$$

$$\overline{\sigma}_{bc} = \frac{216}{148.04}$$

$$\overline{\sigma}_{bc} = 1,46 \text{ MPa}$$

$$\sigma_b = 0.6 \text{ x f}_{c28}$$

$$\sigma_b = 0.6 \times 30$$

$$\sigma_b = 18 \text{ MPa}$$

$$A_{S} = \frac{M_{S}}{\sigma_{S} x \beta x d}$$

$$A_{S} = \frac{M_{S}}{\sigma_{S} x \beta x d}$$
 $A_{S} = \frac{394,2}{216 x 0,97 x 8}$ $A_{S} = 0,23 \text{cm}^{2}/\text{m}$

$$A_S = 0.23 \text{cm}^2/\text{m}$$

$$A_S = A_S - \frac{N}{100 \times \sigma_S}$$

$$A_S = A_S - \frac{N}{100 \text{ x } \sigma_S}$$
 $A_S = 0.23 - \frac{1460}{100 \text{ x } 216}$ $A_S = 0.16 \text{ cm}^2/\text{m}$

$$A_S = 0.16 \text{ cm}^2/\text{m}$$

IV.3.5 Condition de non fragilité

$$A_{min} = 0.23 \text{ x b x d x } \frac{f_{t28}}{fe}$$

$$A_{min} = 0.23 \times 100 \times 8 \times \frac{2.4}{500}$$

$$A_{\min} = 0.88 \text{ cm}^2/\text{m}$$

$$A= \max (A_S; A_u; A_{\min})$$

$$A = \max(0,12;0,12;0,88)$$

$$A = 0.88 \text{ cm}^2/\text{m}$$

$$A=4HA8/m$$

$$A = 2.01 \text{cm}^2 / \text{m}$$

$$S_t = 25 \text{ cm}$$

IV.3.6 Armatures de répartitions

$$A_r = \frac{A}{4}$$

$$A_r = \frac{2,01}{4}$$

$$A_r = 0.50 \text{ cm}^2/\text{ m}$$

$$A_r = 0.88 \text{ cm}^2/\text{m}$$
 $A_r = 4\text{HA8/m}$

$$A_r = 4HA8/m$$

$$A_r = 2.01 \text{cm}^2 / \text{m}$$

$$S_t = 25 \text{ cm}$$

IV.3.7 Vérification de la contrainte de cisaillement

$$T max = 1.5 x F_p$$

$$T \max = 1.5 \times 1050$$

$$T \max = 1575 \text{ N}$$

$$\tau_u = \frac{T \max}{b \ x \ d}$$

$$\tau_u = \frac{1575}{100 \text{ x } 100 \text{ x } 10}$$

$$\tau_{\rm u}=0.016\,{
m MPa}$$

$$\bar{\tau}_u = \min (0.15 \text{ x } \frac{f_{c28}}{\gamma_b}; 4\text{MPa})$$

$$\bar{\tau}_{u} = \min (0.15 \text{ x} \frac{30}{1.5}; 4\text{MPa})$$
 $\bar{\tau}_{u} = \min (3 \text{ MPa}; 4\text{MPa})$ $\bar{\tau}_{u} = 3 \text{ MPa}$

$$\tau_u = 0{,}016\,MPa < \overline{\tau}_u = 3\,MPa \hspace{1cm} A_t = 0 \hspace{1cm} \text{pas de reprise de bétonnage}$$

IV.4 Etude et calcul de ferraillage des escaliers

Les escaliers sont en béton armé. Les types d'escaliers, les dimensions des marches et de dalle de paillasse sont calculées de la manière montrée ci-dessous.

IV.4.1 Type d'escalier

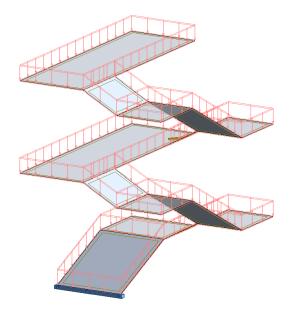


Figure IV.4: Vue 3D de l'escalier

IV.4.2 Choix des dimensions des marches d'escaliers

$0,75 \text{ m} \le \text{emmarchement} \le 1,00 \text{ m}$	escaliers de service
$1,50 \text{ m} \le \text{emmarchement} \le 2,00 \text{ m}$	grands escaliers

h = 17cm	hauteur de la marche	
he= 3,06 m	n = 18	nombre de contres-marches
he= 4,25 m	n = 25	nombre de contres-marches
he= 4,65 m	n=28	nombre de contres-marches

$$59 \text{ cm} \le G + 2h \le 66 \text{ cm}$$
 formule de BLONDEL
 $59 \text{ cm} \le G + 2x17 \le 66 \text{ cm}$
 $25 \text{ cm} \le G \le 32 \text{ cm}$ => $G = 28 \text{ cm}$

 $e \ge 13 \text{ cm}$ épaisseur de la dalle de paillasse DTR-BC 2.41 isolation phonique $e \ge 13 \text{ cm}$ épaisseur de la dalle de paillasse DTR-BC 2.41 isolation acoustique $e \ge 11 \text{ cm}$ épaisseur de la dalle de paillasse DTR-BC 2.41 condition d'incendie

$$\frac{L}{45} \le e \le \frac{L}{40}$$
 condition de rigidité
$$\frac{250}{45} \le e \le \frac{250}{40}$$
 2,44 cm \le e \le 6,25 cm

e = 14 cm épaisseur de la dalle de paillasse DTR-BC 2.41

IV.4.3 Evaluation des charges permanente et d'exploitation de l'escalier

Tableau IV.2: Charges et surcharge agissantes sur l'escalier type I

Désignation	P.Volumique (kN/m³)	Epaisseur (m)	Poids (kN/m²)
Mortier de pose	20	0,02	0,40
Marche	22	0,17/2	1,87
Paillasse	25	0,14/cos	4,54
Carrelage	10	0,02	0,20
Enduit en plâtre	10	0,01	0,10

 $G = 7.11 \text{kN/m}^2$ $Q = 2.50 \text{ kN/m}^2$

Désignation P. Volumique **Poids Epaisseur** (kN/m^3) (kN/m^2) (m) Mortier de pose 20 0,02 0,40 22 0,17/2 La marche 1,87 25 0,14/cos 5,14 Paillasse 10 0,02 0,20 Carrelage 0,01 Enduit en plâtre 10 0,10

Tableau IV.3: Charges et surcharge agissantes sur l'escalier type II

$$G = 7.71 \text{ kN/m}^2$$

$$Q = 2.50 \text{ kN/m}^2$$

IV.4.4 Calcul des actions sur la paillasse

$$q_{u} = (1,35 \times G + 1,5 \times Q) \times 1,00$$

$$q_{u} = 14,16 \times \cos \alpha$$

$$q_{u} = 9,63 \text{ kN/m}$$

$$q_{s} = (G + Q) \times 1,00$$

$$q_{s} = 10,21 \times \cos \alpha$$

$$q_{s} = 6,94 \text{ kN/m}$$

Tableau IV.4 : Charges et surcharge agissantes sur le palier de repos de l'escalier type II

Désignation	P. Volumique	Epaisseur	Poids	
	(kN/m ³)	(m)	(kN/m^2)	
Mortier de pose	20	0,02	0,40	
Marche	22	0,17/2	1,87	
Paillasse	25	0,14/cos	5,14	
Carrelage	10	0,02	0,20	
Enduit en plâtre	10	0,01	0,10	

 $G = 4,20 \text{ kN/m}^2$

 $Q = 2,50 \text{ kN/m}^2$

IV.4.5 Calcul des actions sur le palier de repos

$$q_u = (1,35 \times G + 1,5 \times Q) \times 1,00$$
 $q_u = 9,42 \text{ kN/m}$

$$q_S = (G + Q) \times 1,00$$

$$q_S = 6,70 \, \text{kN/m}$$

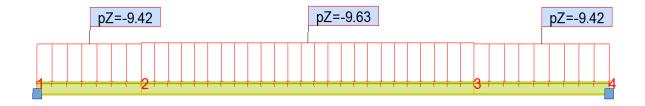


Figure IV.5 : Schéma statique de calcul des escaliers

IV.4.6 Calcul le moment et l'effort tranchant

$$\sum F = 0$$

$$V_A + V_B = 9,63 \times 2,24 + 9,42 \times 1,4 + 9,42 \times 1,16$$

$$V_A + V_B = 45,68KN$$

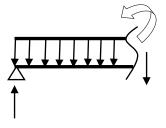
$$\sum M/A = 0 \Rightarrow V_B \times 4.8 - 13.18 \times 4.1 - 21.57 \times 2.28 - 10.22 \times 0.58$$

$$=> V_B = 22,83KN$$

$$V_A = 22,83 KN$$

Coupe 1-1:

$$0 < x \le 1,16$$


$$M(x) = 22,83x - 9,42x \times \frac{x^2}{2}$$

$$M(1,16) = 20,14 \text{ KN.m}$$

$$T(x) = -9,42 x + 22,83$$

$$T(1,16) = 11,90 \text{ KN}$$

$$T(0) = 22,83KN$$

Coupe 2-2:

$$1,16 < x \le 3,4$$

$$M(x) = 22,83x - 10,92(x - 0,58) - 9,63 \times \frac{(x-1,16)^2}{2}$$

$$M(1,16) = 20,14 \text{ KN.m}$$

$$M(3,4) = 22,7 \text{ KN.m}$$

$$T(x) = 22,83 - 10,92 - 9,63 \times (x - 1,16)$$

$$T(1,16) = 11,90 \text{ KN}$$

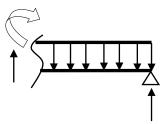
$$T(3,4) = -9,37 \text{ KN}$$

$$T(x) = 0 \Rightarrow 9,63 \ x = 11,91 + 11,17$$
 $x = 2,39 \ m$

$$x = 2,39 \text{ m}$$

$$M_{\text{max}}(2,39) = 27,51 \text{ KN.m}$$

Coupe 3-3:



$$M(x) = 22,83x - 9,42x \times \frac{x^2}{2}$$

$$M(1,4) = 22,7$$
 KN.m

$$T(x) = -22,83 + 9,42 x$$

$$T(1,4) = -9,64 \text{ KN}$$

Moment en appui:

$$M_a = -0.5 \times M_{max} = -13,76 \text{ KN.m}$$

Moment en travée:

$$M_t=0.75\times M_{max}=20.63\ KN.m$$

IV.4.7 Calcul le ferraillage

> En Travée

$$\sigma_{bc} = 17 \text{ MPa}$$

$$\mu = \frac{M_u}{bd^2 \sigma_{bc}} \implies \mu = \frac{20,63 \times 10^{-3}}{1 \times (0,126)^2 \times 17} \implies 0,076 \le 0,186$$

$$\sigma_s = \frac{F_e}{\gamma_s} = \frac{500}{1,15} = 434,78 \text{ MPa}$$

$$\alpha = 1,25 \times (1 - \sqrt{1 - 2\mu})$$

$$\alpha = 0,1$$

$$\beta = 0,96$$

$$A_{\rm u} = \frac{M_{\rm u}}{\beta d\sigma_{\rm s}} = \frac{20,63 \times 10^{-3}}{0,96 \times 0,126 \times 434,78}$$

$$A_{u} = 3,92 \text{ cm}^2$$
 => $4T12 = 4,52 \text{ cm}^2$

Les armatures transversale

$$A_T = \frac{Au}{4} = \frac{3.92}{4} = 0.98 \text{ cm}^2$$
 => $2T8 = 1.01 \text{ cm}^2$

> En Appui

$$\sigma_{bc} = 17 \text{ MPa}$$

$$\mu = \frac{M_u}{bd^2 \sigma_{bc}} \implies \mu = \frac{13,76 \times 10^{-3}}{1 \times (0,126)^2 \times 17} \implies 0,05 \le 0,186$$

$$\sigma_{\rm s} = \frac{F_e}{\gamma_s} = \frac{500}{1,15} = 434,78 \text{ MPa}$$

$$\alpha = 1,25 \times (1 - \sqrt{1 - 2\mu})$$

$$\alpha = 0,064$$

$$\beta = 0,97$$

$$A_{u} = \frac{1}{\beta d\sigma_{s}} = \frac{1}{0.97 \times 0.126 \times 434.78}$$

$$A_{u} = 2.59 \text{ cm}^{2} \qquad = \sqrt{4T12 = 4.52 \text{ cm}^{2}}$$

Les armatures transversale

$$A_T = \frac{Au}{4} = \frac{2,59}{4} = 0,65 \text{ cm}^2$$
 => $2T8 = 1,01 \text{ cm}^2$

Tableau IV.5 : Tableau récapitulatif du ferraillage

Ferraillages	Au (cm²)	A _{adopté} (cm ²)	Choix /ml
Appui (palier de repos)	2,59	4,52	4T12
Travée (paillasse)	3,92	4,52	4T12

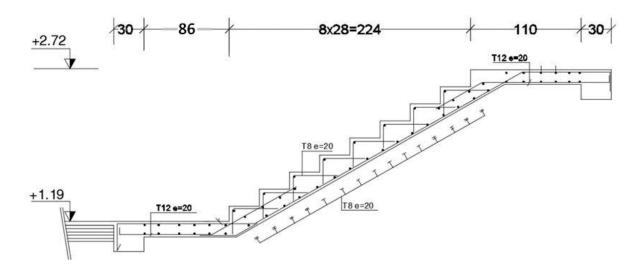


Figure IV.6 : Schéma de ferraillage escalier Type II

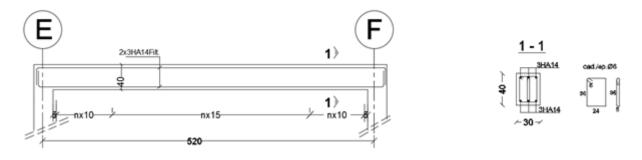


Figure IV.7 : Schéma de ferraillage de la poutre palière

IV.5 Introduction

Un ascenseur est un dispositif mobile assurant le déplacement des personnes (et des objets) en hauteur sur des niveaux définis d'une construction

Les dimensions et la construction et le contrôle en temps réel pendant l'usage des ascenseurs permettent l'accès sécurisé des personnes.

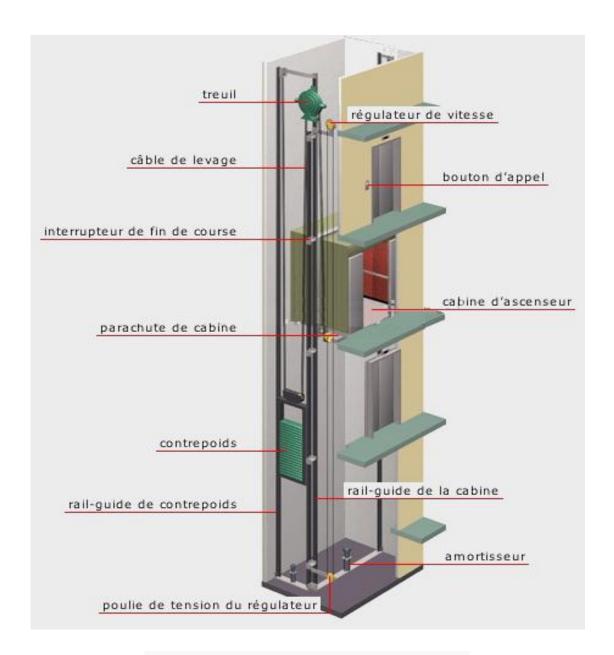


Figure IV.8: Les différents parties d'un ascenseur

IV.6 Etude d'ascenseur

L'ascenseur moderne mécanique est constitué de trois composants :

- ✓ Le treuil de levage et sa poulie.
- ✓ La cabine ou la benne.
- ✓ Le contre poids

Calcule le poids du contre poids

$$P_{cp} = P_m + \frac{Q}{2}$$

Avec:

 P_m « poids mort » : le poids de la cabine, étrier, accessoire, câbles.

Q: la charge en cabine.

 P_{cp} : le poids de contre poids

Dans notre structure l'ascenseur est spécialement aménagé en vue du transport des personnes dont la charge nominale est de 675 kg pour 9 personnes

- La charge nominale : 675 kg
- Vitesse nominale: 1m/s
- Hauteur: 1.8m
- Largeur: 1.5m
- L'épaisseur de la dalle qui supporte l'ascenseur : h = 25cm

IV.6.1 Définir le poids de l'ascenseur

- 1. Poids du treuil et du moteur est égale à 12,00KN
- 2. Le poids de la cabine P_c est égale à 466 Kg = 4.66 KN
- 3. Le poids mort total est :

$$p_m = \sum M_i = 2350Kg = 23.50KN$$

4. Le contre poids P_{cp} :

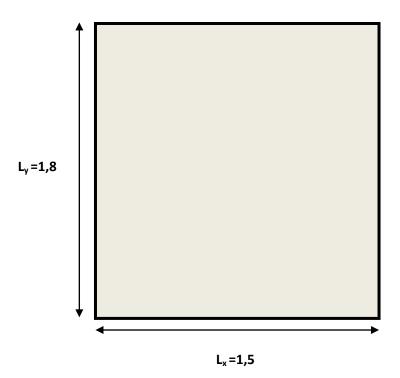
$$P_{cp} = 2350 + \frac{675}{2} = 2687.5Kg = 26.88KN$$

Le poids des câbles M_g :

$$M_g = m \times n \times l$$

$$A \, vec egin{cases} m: la \ \text{masse lin\'eaire de cable} & m = 0.515 \text{Kg/m} \\ \text{n: le nombre des cables} & \text{n} = 2 \ \text{cables} \\ L: longeur \ \text{des cables} & \text{L} = 37.4 \text{m} \\ \end{cases}$$

$$M_{g} = 38.52Kg$$


IV.6.2 Dalle machine

IV.6.2.1 Introduction

La dalle machine est une dalle pleine, qui reprend un chargement important par rapport à celle des dalles de l'étage courant ou terrasse, cela est due au mouvement de L'ascenseur ainsi qu'à son poids, en tenant compte de la variation des efforts de la machine par rapport à la dalle.

IV.6.2.2 Pré dimensionnement de la dalle machine

La dalle d'ascenseur doit avoir une certaine rigidité vu le poids de la machine.

$$S_{ascenseur} = 1.8 \times 1.5$$

$$S_{ascenseur} = 2.7 \text{ cm}^2$$

Résistance à la flexion

$$\frac{L_y}{50} \le e \le \frac{L_y}{40}$$

$$\frac{180}{50} \le e \le \frac{180}{40}$$

$$3.6 \le e \le 4.5$$

Condition de l'E.N.A

L'entreprise nationale des ascenseurs (E.N.A) préconise que l'épaisseur de la dalle machine e≥ 25cm

Condition de flèche :

$$\frac{e}{Ly} \ge \frac{1}{20} \times \frac{Mt}{My}$$

Avec:

 $M_t = 0.85 M_v$

Alors:

$$\frac{e}{Ly} \ge \frac{1}{20} \times \frac{0.85 My}{My}$$

$$\frac{e}{180} \ge \frac{1}{20} \times 0.85$$

On prend l'épaisseur minimale de la dalle machine $extbf{e} = 25 \text{cm}$

IV.6.2.3 Charge et surface

• Charges permanentes :

$$G_{ascenseur} \!\!=\! \frac{Pm \!+\! Pcp \!+\! Ptreuil \!+\! Mg}{S}$$

$$G_{ascenseur} = \frac{23.50 + 26.88 + 12 + 0.38}{2.7}$$

$$G_{ascenseur} = 23.24 KN/m^2$$

$$G_{dalle\ machine} = e \times P_{b \acute{e}ton}$$

Avec:

e : épaisseur de la dalle machine

P : poid propre de béton

Tableau IV.6 : Descente de charge d'Ascenseur

Dalle Machine	EP = 25cm	P = 25	$0.25 \times 25 = 6.25$ KN/m ²
Enduit en ciment	EP = 2cm	P = 20	$0.2 \times 20 = 0.40 \text{KN/m}^2$

$$G_{Dalle\ machine} = 6.65\ KN/m^2$$

$$G_T = G_{ascenseyr} + G_{Dalle\ machine}$$

$$G_T = 23.24 + 6.65$$

$$G_T = 29.89 KN/m^2$$

• Surcharge d'exploitation :

Surcharge d'ascenseur : Q = 675 kg = 6,75 KN

$$Q_{Ascenseur} = \frac{Q}{S}$$

Avec:

S : surface de la dalle machine

$$Q_{Ascenseur} = \frac{6.75}{2.7}$$

$$Q_{Ascenseur} = 2.5 \text{ KN/m}^2$$

$$Q_{Dalle\;machine}\!\!=1KN\!/\!m^2$$

$$Q_T = Q_{Ascenseur} \ + Q_{Dalle\ machine}$$

$$Q_T = 2.5 + 1$$

$$Q_{\rm T} = 3.5 \; \rm KN/m^2$$

IV.6 .2.4 Calcul des sollicitations

• ELU

$$q_u = 1.35G + 1.5Q$$

$$q_u = 1.35(29.89) + 1.5(3.5)$$

$$q_u = 45.60 \text{ KN/m}$$

• ELS

$$q_u = G + Q$$

$$q_u = 29.89 + 3.5$$

$$q_u = 33.39KN/m$$

• Calcul des efforts :

$$\rho = \frac{Lx}{Ly} \ge 0.4$$

$$\rho = \frac{1.5}{1.8} \ge 0.4$$

$$\rho = 0.83 \ge 0.4$$

Donc la dalle porte dans les deux sens.

$$\begin{cases} \mu_x = \frac{1}{8(1+2.4\rho^2)} \\ \mu_y = \rho^3 (1.9 - 0.9\rho) \end{cases}$$

$$\begin{cases} \mu_x = \frac{1}{8(1+2.4(0.83)^2)} \\ \mu_y = 0.83^3 (1.9 - 0.9(0.83)) \end{cases}$$

$$\begin{cases} \mu_x = 0.047 \\ \mu_y = 0.66 \end{cases}$$

$$M_x = \mu_x \times q_u \times (Lx)^2$$

$$M_x = 0.047 \times 45.60 \times (1.5)^2 = 4.82 \text{KN.m}$$

$$M_y = \mu_y \times M_x$$

$$M_y = 0.66 \times 4.82 = 3.18 KN.m$$

Calcule des moments

• En Travée

$$M_{utx} = 0.85M_x = 0.85 \times 4.82 = 4.1 \text{ KN.m}$$

$$M_{uty} = 0.85M_y = 0.85 \times 3.18 = 2.70 \text{ KN.m}$$

$$M_{uT} = max(M_{utx}; M_{uty}) = 4.1 \text{ KN.m}$$

• En appuie

$$M_{utx} = 0.85M_x = 0.3 \times 4.82 = 1.47 \text{ KN.m}$$

$$M_{uty} = 0.85M_y = 0.3 \times 3.18 = 0.95 \text{ KN.m}$$

$$M_{uT} = \max(M_{utx}; M_{uty}) = 1.47 \text{ KN.m}$$

IV.6.2.5 Ferraillage de la dalle machine

• ELU

En Travée

On a: b = 100cm; h = 25cm; d = 0,9h = 22,5cm
$$\delta s = \frac{fe}{\gamma s} = 434,78 \text{ MPa}$$

$$\delta_{bc} = \frac{0.85 \times fc28}{\gamma b} = 17\text{MPa}$$

On a
$$M_{uT} = 4.1$$
 KN.m

$$\mu = \frac{_{M_{ut}}}{_{bd^2f_{bc}}} = \frac{_{4.1\times10^{-3}}}{_{1\times0.225^2\times17}} = 0.0047 < 0.186$$

Pivot A

$$\alpha = 1.25 (1 - \sqrt{1 - 2\mu}) = 1.25 (1 - \sqrt{1 - 2 \times 0.047})$$

$$\Rightarrow \quad \alpha = 0.06$$

$$\beta = 1 - 0.4 \alpha = 1 - (0.4 \times 0.073) = 0.97$$

$$\begin{split} A_{st} = & \frac{M_{ut}}{\beta d\sigma_s} = \frac{4.1 \times 10^{-3}}{0.97 \times 0.225 \times 434,78} = \ 0.000043 \, \text{m}^2 = 0.43 \, \text{cm}^2 \\ \Rightarrow & \left[A_{st} = & 0.43 \, \text{cm}^2 \right] \end{split}$$

On prend **7T12** avec $A_{st} = 7.92 \text{cm}^2$

> En appuie

$$\delta s = \frac{fe}{\gamma s} = 343,78 \text{ MPa}$$

$$\delta_{bc} = \frac{0.85 \times fc28}{\gamma b} = 17 \text{ MPa}$$

On a $M_{uT}=1.47$ KN.m

$$\mu = \frac{M_{ut}}{hd^2f_{ho}} = \frac{1.47 \times 10^{-3}}{1 \times 0.225^2 \times 17} = 0.002 < 0.186$$

Pivot A

$$\alpha = 1.25 (1 - \sqrt{1 - 2\mu}) = 1.25 (1 - \sqrt{1 - 2 \times 0.002})$$

$$\Rightarrow \quad \alpha = 0.0037$$

$$\beta = 1 - 0.4 \alpha = 1 - (0.4 \times 0.0037) = 0.998$$

$$\begin{split} A_{st} = & \frac{M_{ut}}{\beta d\sigma_s} = \frac{1.47 \times 10^{-3}}{0.998 \times 0.225 \times 434,78} = \ 0.0000150 m^2 = 0.15 cm^2 \\ \Rightarrow & \left(A_{st} = 0.15 \ cm^2 \right) \end{split}$$
 On prend **7T12** avec $\left(A_{st} = 7.92 cm^2 \right)$

IV.6 .2.5.1 Condition non fragilité

$$A_{st} {\geq} \frac{0.23 {\times} bd\, f_{tj}}{f_e} = \, \frac{0.23 {\times} 1 {\times} 0.225 {\times} 2.4}{500} = \, 0.000248 m^2$$

$$A_{st} = 7.91 \text{cm}^2 \ge 2.48 \text{ cm}^2$$

IV.6.2.5.2 Armature de répartition

$$A_r = \frac{A_{st}}{4}$$

$$A_r = \frac{7.91}{4}$$
 \Rightarrow $A_{r=} = 1.97 \text{cm}^2$

On prend **7T12** avec $A_{st} = 7.92 \text{cm}^2$

IV.6.2.5.3 Calcul d'espacement

$$E_{sp} = \min(1.5d; 40cm)$$

$$E_{sp} = min((22.5) \times 1.5; 40cm)$$

$$E_{sp} = min(33.75; 40cm)$$

$$\Rightarrow \qquad \boxed{E_{sp=} = 33.75 \text{cm}}$$

On prend $E_{sp}=20cm$

On adopte **7T12** de section **7,91 cm²** pour les armatures longitudinales et de répartition

IV.6.2.6 Vérification au cisaillement

$$\tau_u = \frac{T_{umax}}{b_0 * d}$$

$$T_{umax} = max(T_x; T_y)$$

$$\begin{cases} T_x = \frac{q_u \times L_x \times L_y}{2L_x + L_y} & \begin{cases} T_x = \frac{45.60 \times 1.5 \times 1.8}{2(1.5) + 1.8} \end{cases} & \begin{cases} T_x = 25.65 \text{ KN} \end{cases} \\ T_y = \frac{(q_u \times L_x)}{3} & \begin{cases} T_y = \frac{(45.60 \times 1.5)}{3} \end{cases} \end{cases} \end{cases}$$

$$T_{umax} = max(T_x; T_v)$$

$$T_{umax} = 25.65 \text{ KN}$$

$$\tau_{\rm u} = \frac{T_{\rm umax}}{b_0 * d}$$

$$\tau_u = \frac{25.65 \times 10^{-3}}{1 * 0.225}$$

$$\tau_u=0.11\,\text{Mpa}$$

Fissuration peu préjudiciable

$$\tau_{max} = min\left(0.2 \times \frac{f_{c28}}{\gamma_b} \text{ ; 5Mpa}\right) = min\left(0.2 \times \frac{30}{1.5} \text{ ; 5Mpa}\right) = 4 \text{ Mpa}$$

$$\tau_{u} \leq \tau_{max}$$
 C.V

IV.6.2.7 Vérification à E.L.S

Donc la dalle porte dans les deux sens

$$\begin{cases} \mu_x = \frac{1}{8(1+2.4\rho^2)} \\ \mu_y = \rho^3 (1.9 - 0.9\rho) \end{cases}$$

$$\begin{cases} \mu_x = \frac{1}{8(1+2.4(0.83)^2)} \\ \mu_y = 0.83^3(1.9-0.9(0.83)) \end{cases}$$

$$\begin{cases} \mu_{x} = 0.047 \\ \mu_{y} = 0.66 \end{cases}$$

$$q_{u ELS} = 33.39$$

$$M_x = \mu_x \times q_u \times (Lx)^2$$

$$M_x = 0.047 \times 33.39 \times (1.5)^2 = 3.53 \text{KN.m}$$

$$M_y = \mu_y \times M_x$$

$$M_y = 0.66 \times 3.53 = 2.33 \text{KN.m}$$

$$M_{utx} = 0.85M_x = 0.8 \times 3.53 = 2.82KN.m$$

$$M_{uty} = 0.85 M_y = 0.8 \times 2.33 = 1.86 \text{ KN.m}$$

$$M_a = 0.5M_x = 0.5 \times 3.53 = 1.77 \text{ KN.m}$$

IV.6.2.8 Vérification de flèche

$$\begin{cases} \frac{h}{L_x} \ge \frac{M_t}{20M_x} \\ \frac{h}{L_x} \ge \frac{1}{27} \grave{a} \frac{1}{35} \\ \frac{A_{st}}{b \times d} \ge \frac{2}{f_e} \end{cases}$$

$$\begin{cases} \frac{0.25}{1.5} \ge \frac{4.1 \times 10^{-3}}{20 \times 4.1 \times 10^{-3}} \\ \frac{0.25}{1.5} \ge \frac{1}{27} \quad \text{à} \frac{1}{35} \\ \frac{2.71 \times 10^{-4}}{1 \times 0.225} \ge \frac{2}{500} \\ 0.16 \ge 0.05 \\ 0.16 \ge 0.03 \quad \text{à} \quad 0.02 \\ 0.0012 \ge 0.004 \end{cases}$$

CV

Alors Il n'est pas nécessaire de faire la vérification de la flèche

Chapitre V

CALCULS DYNAMIQUES ET SISMIQUES

V.1 Introduction

Le bâtiment à usage multiple (commerce, bureaux et logements) est composé d'un niveau en sous-sol et deux 13 niveaux (R+12) hors sol. Le bâtiment est implanté à Oran et est entièrement réalisé en béton armé. Les voiles du sous-sol ont une épaisseur de 25 cm, ceux du rez-de-chaussée une épaisseur de 20 cm et les voiles des étages courants ont une épaisseur de 15 cm. Tous ces voiles sont continus du sous-sol jusqu'au plancher de la toiture. Les poteaux et les poutres sont prédimensionnés dans le chapitre II.

V.2 Choix de la méthode de calculs

Le RPA99/version 2003 (DTR-BC 2.48) recommande d'utiliser trois méthodes de calcul des forces sismiques (Article 4.1.1) et sont les suivantes :

- ♣ la méthode statique équivalente ;
- ♣ la méthode dynamique spectrale modale ;
- **♣** la méthode d'analyse dynamique par accélérogramme.

La méthode statique équivalente n'est pas applicable au bâtiment étudié compte-tenu des dissymétries en plan et en élévation du bâtiment (Article 4.1.2, DTR-BC 2.48). La méthode d'analyse dynamique par accélérogramme n'est pas applicable non plus d'une part par l'absence d'accélérogramme et d'autre part manque de qualification. Ainsi, on appliquera la méthode d'analyse modale spectrale pour les calculs des périodes propres, des modes propres des masses modales et des forces sismiques.

La méthode statique équivalente servira, toutefois, aux vérifications exigées par le Règlement Parasismique Algérien (RPA99/version 2003 ou DTR-BC 2.48).

V.3 Modélisation de la structure porteuse du bâtiment avec portiques auto-stables

Le bâtiment est situé dans la wilaya d'Oran. Il est considéré implanté en zone sismique Iia (DTR-BC 2.48). L'ouvrage est un bâtiment de logements, de bureaux et de commerces. Les planchers en corps creux sont considérés comme des diaphragmes rigides. La masse de chaque niveau est supposée concentrée au centre de masse du plancher.

Les calculs sont réalisés par le logiciel de calcul ETABS 2016. Pour effectuer ces calculs, on doit introduire (1) les distances entre-axes horizontales et hauteurs des étages de la structure porteuse ; (2) les sections des éléments structuraux (poutres, poteaux et refends) et (3) les propriétés des matériaux des différents éléments structuraux.

Une fois toutes ces données introduites, on doit spécifier (1) le nombre des modes à considérer ; (2) lancer les calculs numériques et (3) analyser et vérifier les résultats obtenus selon les recommandations du DTR-BC 2.48.

C'est dans un souci d'apaisement de curiosité de notre part qu'on a d'abord procédé à une modélisation de la structure porteuse du bâtiment sans les murs voiles.

Cette modélisation est montrée sur la figure V.1, ci-dessus y compris la disposition des poteaux (figure V.2)

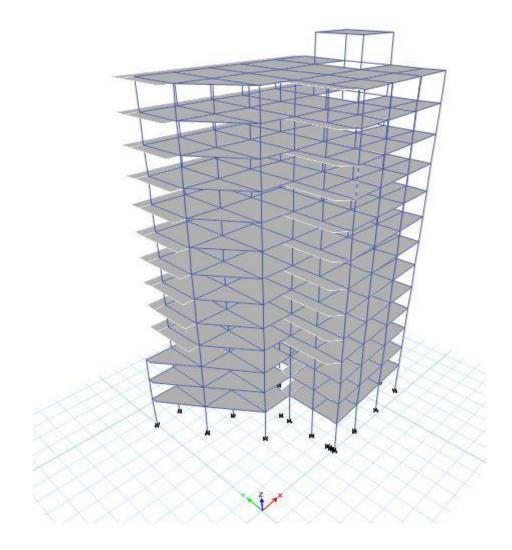


Figure V.1 : Modèle 3D de la structure porteuse auto-stable

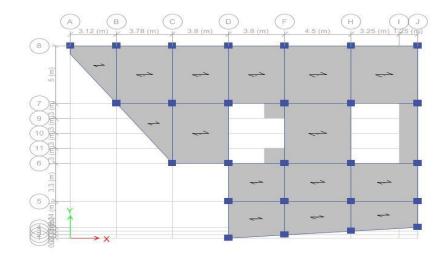


Figure V.2 : Disposition des poteaux de la structure porteuse auto-stable

V.3.1 Résultats de la modélisation de la structure porteuse avec portiques auto-stables

Les résultats de calculs numériques effectués par ETABS (Modes propres, périodes propres, masses modales et masses cumulées) sont rapportés dans le tableau V.1, ci-dessous. Le comportement de la structure porteuse du bâtiment s'avère très souple, ce qui justifie la mise en place des murs voiles. Cela fait aussi partie des recommandations du DTR-BC 2.48 (Article 3.4, alinéas 1a et 1b). En ce sens, les bâtiments ne doivent pas dépasser 4 étages ou 1 m en zone IIa (portiques auto-stables avec ou sans remplissage en maçonnerie rigide).

Tableau V.1 : Valeurs des périodes, des masses cumulées et des masses modales

Modes	Périodes	M. cumulées	M. cumulées	M. modales	M. modale
propres	(s)	Ux(%)	Uy(%)	U x(%)	Uy(%)
1	2,07	14,96	28,34	14,96	28,34
2	1,91	73,63	37,35	58,66	9,02
3	1,42	73,78	72,96	0,15	35,6
4	0,75	75,45	78,78	1,68	5,82
5	0,67	86,85	79,86	11,39	1,08
6	0,49	86,87	86,16	0,03	6,3
7	0,43	87,29	88,68	0,42	2,52
8	0,38	91,28	89,03	3,98	0,35
9	0,31	91,46	89,91	0,18	0,88
10	0,28	91,65	92,02	0,19	2,11

Le mode propre fondamental (colonne 1) est un mode de torsion autour de l'axe (z). Il correspond à une période propre de 2,07 s (colonne 2) et une masse modale Ux de 14,96% (colonne 5) et d'une une masse modale Uy de 28,34%.

V.3.2 Comparaison des périodes propres fondamentales

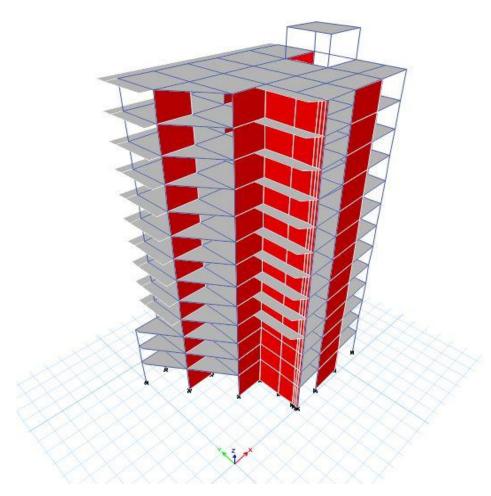
La période empirique fondamentale (T) de la structure porteuse est calculée par la formule 4.6 (Article 4.2.4, DTR-BC 2.48) :

Temp =
$$C_T \times h_N^{0,75}$$
 Article 4.2.4, DTR-BC 2.48
Temp = $0.05 \times 44.03^{0,75}$
Temp = 0.85 s

avec:

(hN = 44,03m) est la hauteur totale du bâtiment, mesurée à partir de la base de la structure jusqu'à au dernier niveau ; (CT = 0,05) est le coefficient du système de contreventement (Tableau 4.6, Article 4.2.4, DTR-BC 2.48).

D'après le RPA99/version 2003 (DTR-BC 2.48), la valeur de la période fondamentale numérique (Tc) calculée ne doit pas dépasser celle estimée à partir de la formule empirique (Te) appropriée de plus de 30% :


$$T_{\text{num}} = 2,07 \text{ s}$$

 $1,3 \times T_{\text{emp}} = 1,11 \text{ s}$
 $2,07 \text{ s} \ge 1,11 \text{ s}$

La période fondamentale issue des calculs numériques est largement supérieure à celle empirique majorée de 30%. Le contreventement du bâtiment par des portiques auto-stables ne suffit pas. Un contreventement mixte portiques-murs voiles de la structure porteuse du bâtiment est considéré.

V.4 Modélisation de la structure porteuse du bâtiment avec contreventement mixte

Le modèle 3D de la structure porteuse avec un contreventement mixte portiquesmurs voiles est montré sur la figure V.3,ci-dessus et la disposition des murs-voiles dans la figure V.4, ci-dessous.

Ci-dessous, on donnera les caractéristiques nécessaires pour les calculs dynamiques et sismiques de la structure porteuse du bâtiment avec un contreventement System 2. Dans ce système de contreventement, Le système est constitué de voiles uniquement ou de voiles et de portiques. Dans ce dernier cas les voiles reprennent plus de 20% des sollicitations dues aux charges verticales. On considère que la sollicitation horizontale est reprise uniquement par les voiles. (Article 3.4, Alinéa 2, DTR-BC 2.48).

Figure V.3: 3D de la structure porteuse avec un contreventement mixte portiques-murs voiles

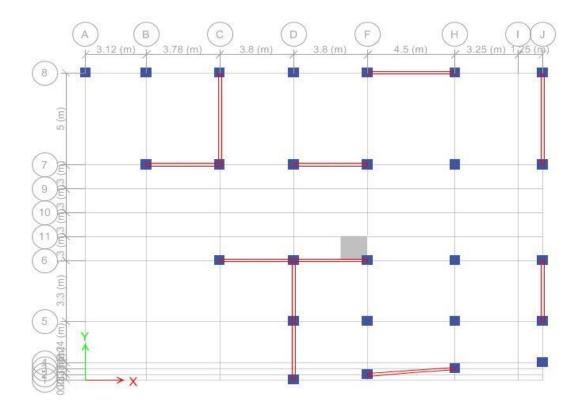


Figure V.4 : Disposition des murs-voiles dans la structure porteuse du bâtiment

V.4.1 Périodes propres, modes propres, masses cumulées et masses modales

Les valeurs des périodes propres, des masses cumulées et des masses modales dans les deux directions orthogonales horizontales du bâtiment sont montrées dans le tableau V.3

V.4.2 Caractéristiques dynamiques et sismiques de la structure porteuse mixte

Les données dynamiques et sismiques utilisées dans les calculs sont prises du Règlement parasismiques Algérien (RPA99/version 2003, DTR-BC 2.48).

V.4.2.1 Coefficient d'accélération de zone

Pour la zone sismique (IIa) et le groupe d'usage (2), A est égal à 0.15 (Tableau 4.1, Article 4.2.3, DTR-BC 2.48).

$$A = 0.15$$

Tableau 4.1, Article 4.2.3, DTR-BC 2.48

V.4.2.2 Facteur de correction d'amortissement

Ce facteur est calculé par la formule 4.3 (Article 4.2.3, DTR-BC 2.48). Ce facteur tient compte du coefficient (ζ) qui représente le pourcentage d'amortissement du matériau

(béton armé), du type de la structure porteuse et de l'importance des remplissages. La valeur de (ζ=8.50%) est donnée par le tableau 4.2 (Article 4.2.3, DTR-BC 2.48). D'où :

$$\eta = \sqrt{\frac{7}{\xi + 2}} \ge 0.7$$
 Tableau 4.2, Article 4.2.3, DTR-BC 2.48

$$\eta = \sqrt{\frac{7}{8,5+2}} = 0.816$$

V.4.2.3 Périodes caractéristiques du site

Les périodes caractéristiques du site (T1 et T2) sont associées à la catégorie du site S2 et sont égales à 0.15 s et 0.40 s, respectivement (Tableau 4.7, Article, 4.3.3, DTR-BC 2.48).

V.4.2.4 Période empirique fondamentale

La période empirique fondamentale (T) de la structure porteuse est calculée par la formule 4.6 (Article 4.2.4, DTR-BC 2.48) :

$$Temp = C_T \times h_N^{0,75} \qquad \text{Article 4.2.4, DTR-BC 2.48}$$

$$Temp = 0.05 \times 44.03^{0,75}$$

$$Temp = 0.85 \text{ s}$$

avec:

(hN = 44,03m) est la hauteur totale du bâtiment, mesurée à partir de la base de la structure jusqu'à au dernier niveau ; (CT = 0,05) est le coefficient du système de contreventement (Tableau 4.6, Article 4.2.4, DTR-BC 2.48).

V.4.2.5 Coefficient de comportement global de la structure porteuse

Les voiles reprennent plus de 20% des sollicitations dues aux charges verticales. Les sollicitations horizontales sont reprises uniquement par les voiles (Tableau 4.3, Article 4.2.3, DTR-BC 2.48).

V.4.2.6 Facteur de qualité

$$Q = 1 + \sum_{i=1}^{6} Pq$$
 Tableau 4.3, Article 4.2.3, DTR-BC 2.48
$$Q = 1 + (4 \times 0 + 0.05 + 0.05)$$

$$Q = 1,10$$

Tableau V.2 : Facteurs de qualité Q

	Pq	
Critères (q)	Suivant x	Suivant y
1- Conditions minimales sur les files de contreventement	0	0
2- Redondance en plan	0	0
3- Régularité en plan	0,05	0,05
4- Régularité en élévation	0,05	0,05
5- Contrôle de la qualité des matériaux	0	0
6- Somme Σ	0,1	0,1

avec:

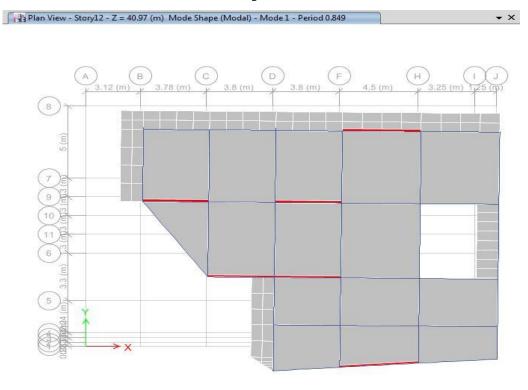
(Pq) est la pénalité à retenir selon le critère de qualité (q) (Tableau 4,4, Article 4.2.3, DTR-BC 2.48).

V.4.2.7 Poids de la structure

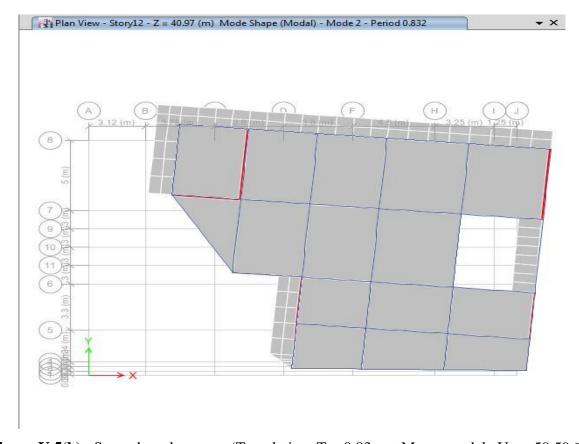
Le poids total de la structure est calculé par le logiciel ETABS 2016. Celui-ci est égal à 49883,18 kN (W= 49883,18 kN).

V.5 Résultats de la modélisation de la structure porteuse avec contreventement

Les valeurs des périodes propres, des masses cumulées et des masses modales dans les deux directions orthogonales horizontales du bâtiment sont montrées dans le tableau V.3 et les valeurs des excentricités (coordonnées des centres de masses et des centres de torsion au niveau de chaque étage) dans le tableau V.4.


V.5.1 Périodes propres, modes propres, masses cumulées et masses modales

Le tableau V.3 donne les valeurs des périodes propres, des masses cumulées et des masses modales dans les deux directions orthogonales horizontales du bâtiment.


Tableau V.3: Valeurs des périodes, des masses cumulées et des masses modales

Modes	Périodes	M. Cumulées	M. Cumulées	M. Modales	M. Modales
propres	(s)	Ux (%)	Uy (%)	Ux (%)	Uy (%)
1	0,85	57,15	1,62	57,15	1,62
2	0,83	57,37	61,22	0,22	59,59
3	0,74	64,87	65,54	7,50	4,32
4	0,22	72,09	69,24	7,23	3,70
5	0,20	77,72	73,52	5,62	4,28
6	0,19	77,73	81,18	0,02	7,66
7	0,16	81,66	81,53	3,92	0,35
8	0,14	83,77	84,42	2,12	2,89
9	0,14	83,91	84,89	0,13	0,46
10	0,09	87,42	86,36	3,51	1,48
11	0,09	88,19	91,18	0,77	4,82
12	0,08	90,49	91,24	2,30	0,07

V.5.2 Modes de vibrations de la structure porteuse avec contreventement mixte

Figure V.5(a): Premier mode propre (Translation, T = 0.85s et Masse modale Ux = 57.15%)

Figure V.5(b): Second mode propre (Translation, T = 0,83 s et Masse modale Uy = 59,59 %)

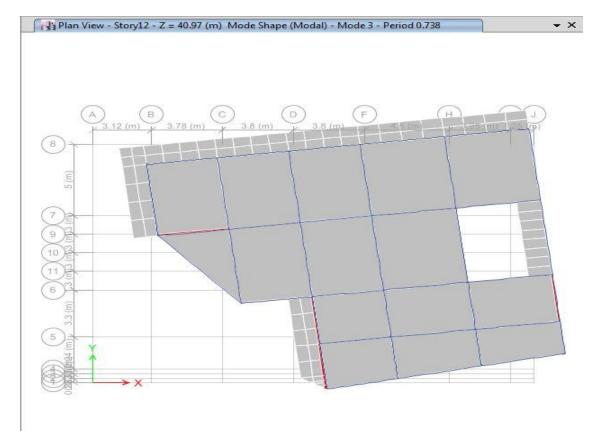


Figure V.5(c): Troisième mode propre (Rotation, T = 0.74 s et M modales = 7.50 et 4.32 %)

Le mode propre fondamental (colonne 1) est un mode de translation (voir figure V. 5(a)) dans la direction (x). Il correspond à une période propre de 0,85 s (colonne 2) et une masse modale de 57,15% (colonne 5). Le second mode propre est aussi un mode de translation (voir figure V.5(b)), dans la direction (y) et avec une période propre de 0,83 s et une masse modale de 59,59%.

Enfin, le troisième mode propre est celui d'une torsion (voir figure V.5(c)) et correspond à une période propre de 0,74 s et une masse faible participation modale (7,5) %/(x) et 4,32%/(y)).

V.5.3 Comparaison des périodes propres fondamentales

La période empirique fondamentale (T) de la structure porteuse est calculée par la formule 4.6 (Article 4.2.4, DTR-BC 2.48) :

Tc≤ 1.3 x Te

Tc = 0.85 s

voir tableau 4.1, ci-dessus

Te = 0.85 s

voir section V.4.2.4, ci-dessus

1,3 x Te = 1,3 x 0,85

1,3 x Te = 1,11 s

 $Tc = 0.85 s \le 1.3 x Te = 1.11 s$

V.5.4 Coordonnées des centres de masses et de torsions des différents étages

Les coordonnées des centres de masses (G) et des centres de torsions (R) dans les différents étages du bâtiment sont montrées dans le tableau V.4.

Tableau V.4 : Coordonnées des centres de masses et de rotations

Niveaux	G(x)	G(y)	G(z)	R(x)	R (y)	R(z)
Miveaux	(m)	(m)				
RDC	14,21	9,18	2,13	13,52	8,88	2,46
Etage 1	13,96	9,46	5,78	13,53	8,86	6,24
Etage 2	13,83	9,74	8,84	13,53	8,86	9,40
Etage 3	14,24	9,58	11,90	13,54	8,88	12,49
Etage 4	14,16	9,52	14,96	13,53	8,88	15,59
Etage 5	14,16	9,52	18,02	13,53	8,88	18,65
Etage 6	14,15	9,53	21,08	13,53	8,90	21,73
Etage 7	14,15	9,53	24,14	13,53	8,90	24,79
Etage 8	14,15	9,53	27,20	13,53	8,90	27,85
Etage 9	14,14	9,56	30,26	13,53	8,91	30,96
Etage 10	14,14	9,56	33,32	13,53	8,91	34,02
Etage 11	14,14	9,56	36,38	13,53	8,91	37,08
Etage 12	14,62	9,65	39,44	13,53	8,91	40,15
Etage 13	18,65	9,08	42,50	19,00	9,18	43,08

V.5.5 Excentricités théoriques et réglementaires

Les excentricités théoriques dans les directions orthogonales du bâtiment (0,05 x Lx et 0,05 x Ly) sont inférieures aux excentricités réglementaires (voir Tableau V.5). Les valeurs montrées dans le tableau suivant peuvent être déduite des valeurs rapportées dans le tableau V.4, précédent.

Tableau V.5: Excentricités dans les différents étages du bâtiment

Niveaux	Lx	5%xLx	ex	Ly	5%xLy	ey
Niveaux	(m)	(m)	(m)	(m)	(m)	(m)
Etage 13	9,00	0,45	0,35	5,20	0,26	0,1
Etage 12	23,50	1,09	1,09	18,23	0,91	0,74
Etage 11	23,50	1,09	0,60	18,23	0,91	0,64
Etage 10	21,73	1,09	0,60	18,23	0,91	0,64
Etage 9	21,73	1,09	0,60	18,23	0,91	0,64
Etage 8	21,73	1,09	0,62	18,23	0,91	0,63
Etage 7	21,73	1,09	0,62	18,23	0,91	0,63
Etage 6	21,73	1,09	0,62	18,23	0,91	0,63
Etage 5	21,73	1,09	0,62	18,23	0,91	0,64
Etage 4	21,73	1,09	0,62	18,23	0,91	0,64
Etage 3	21,73	1,09	0,70	18,23	0,91	0,69
Etage 2	23,50	1,18	0,31	16,78	0,91	0,87
Etage 1	23,50	1,18	0,43	16,78	0,84	0,6
RDC	23,50	1,18	0,69	16,78	0,84	0,31

Normalement dans le cas d'un calcul tridimensionnel (3D), en plus de l'excentricité théorique calculée dans chaque direction, une excentricité accidentelle (additionnelle) doit être considérée dans chaque direction orthogonale du bâtiment (ex+0,45m) par rapport à (x) et (ex+0,26m) par rapport à (y) et pour chaque plancher considéré (Article 4.3.7, DTR-BC 2.48).

V.6 Vérification des forces sismiques statiques et dynamiques

Le RPA exige que la résultante des forces sismique calculées par la méthode modale spectrale (MMS) doit être supérieure ou égale à 80% à la résultante des forces sismique calculées par la méthode statique équivalente (MSE) correspondant à la période fondamentale donnée par la formule empirique (Article 4.3.6, DTR-BC 2.48).

V.6.1 Force sismique totale de la méthode statique équivalente

La force sismique totale issue de la méthode statique équivalente et appliquée à la base de la structure est calculée par la formule 4.1 (Article 4.2.3, DTR-BC 2.48) :

$$V_S = \frac{A \times D \times Q}{R} \times W$$
 Article 4.2.3, DTR-BC 2.48

où:

- (A) est le coefficient d'accélération de zone, (D) le facteur d'amplification dynamique moyen,
- (Q) le facteur de qualité, (R) le coefficient de comportement et (W) le poids total de la structure. Les paramètres A, D, Q, R et W sont définis ci-dessus.

V.6.2 Calcul du facteur d'amplification dynamique moyen

Le facteur d'amplification dynamique est calculé par la formule 4.2 (Article 4.2.3, DTR-BC 2.48) :

$$Tx = \frac{0.09 \text{ x Hn}}{\sqrt{Lx}}$$

$$Tx = \frac{0,09 \times 44,03}{\sqrt{23,5}}$$

$$Tx = 0.81 s$$

où:

Hn est la hauteur totale du bâtiment mesurée à partir de la base (Niveau +0.00) et Lx est la largeur horizontale du bâtiment mesurée à sa base.

$$D = 2.5 x \eta x \left(\frac{T_2}{T}\right)^{\frac{2}{3}}$$
 0,40 s \le Te = 0,85 s \le 3 s (Article 4.2.3, DTR-BC 2.48)

$$D = 2.5 \times 0.82 \times \left(\frac{0.40}{0.85}\right)^{\frac{2}{3}}$$
 D = 1.24

$$Vs = \frac{0.15 \times 1.24 \times 1.10}{3.5} \times 49883$$

$$V_s = 2916 \text{ kN}$$

V.6.3 Force sismique totale de la méthode modale spectrale

Tableau V.6: Forces sismiques totales obtenues des méthodes (MSE) et (MMS)

	A	D	R	Q	W	Vst	0,8Vst	Vdyn
Directions					(kN)	(kN)	(kN)	(kN)
X	0,15	1,24	3,5	1,10	49883	2916	2333	2342,95
Y	0,15	1,24	3,5	1,10	49883	2916	2333	2651,08

V.7 Justification des déplacements inter-étages

Les déplacements latéraux relatifs ou inter-étages (δk), calculés selon l'article 4.4.3 (DTR-BC 2.48) ne doivent pas dépasser 1% de la hauteur de l'étage considéré (Article 510, DTR-BC 2.48). Le tableau V.7 donne les déplacements numériques calculés avec ETABS.

Tableau V.7 : Déplacements entre les différents étages du bâtiment

Niveaux	He	0.01xHe	δ _{ek} /(X)	δ _k /(X)	$\Delta_{\mathbf{k}}/(\mathbf{X})$	δ _{ek} /(Y)	δ _k /(Y)	$\Delta_{\mathbf{k}}/(\mathbf{Y})$
Wedux	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)
Etage 13	306	3,06	1,94	6,79	0,17	1,86	6,51	0,10
Etage 12	306	3,06	1,89	6,62	0,63	1,83	6,41	0,60
Etage 11	306	3,06	1,71	5,99	0,60	1,66	5,81	0,59
Etage 10	306	3,06	1,54	5,39	0,59	1,49	5,22	0,63
Etage 9	306	3,06	1,37	4,80	0,60	1,31	4,59	0,59
Etage 8	306	3,06	1,20	4,20	0,59	1,14	4,00	0,60
Etage 7	306	3,06	1,03	3,61	0,60	0,97	3,40	0,60
Etage 6	306	3,06	0,86	3,01	0,59	0,80	2,80	0,59
Etage 5	306	3,06	0,69	2,42	0,63	0,63	2,21	0,49
Etage 4	306	3,06	0,51	1,79	0,49	0,49	1,72	0,53
Etage 3	306	3,06	0,37	1,30	0,39	0,34	1,19	0,38
Etage 2	306	3,06	0,26	0,91	0,42	0,23	0,81	0,32
Etage 1	306	3,06	0,14	0,49	0,28	0,14	0,49	0,28
RDC	425	4,25	0,06	0,21	0,21	0,06	0,21	0,21

Les déplacements inter-étages (δk), calculés selon l'article 4.4.3 (DTR-BC 2.48) ne dépassent 1% de la hauteur de l'étage considéré (Article 5.10, DTR-BC 2.48).

V.8 Vérification de l'effort normal réduit

Outre les vérifications prescrites par le C.B.A et dans le but d'éviter ou limiter le risque de rupture fragile sous sollicitations d'ensemble dues au séisme, l'effort normal de compression de calcul est limité par la condition suivante :

$$v = \frac{Nd}{B_c.fc_{28}} \le 0,3$$

Tableau V.8: Vérification de l'effort normal réduit

		N _d (KN)	
Niveaux	Bc (cm2)	1,35 x G + 1,5 x Q	V
Etage 13	1225	205,6	0,06
Etage 12	1225	205,6	0,06
Etage 11	1600	230,16	0,05
Etage 10	1600	382,65	0,08
Etage 9	1600	548,38	0,11
Etage 8	2025	916,64	0,15
Etage 7	2025	916,64	0,15
Etage 6	2025	1109,41	0,18
Etage 5	2500	1312,42	0,18
Etage 4	2500	1522,38	0,20
Etage 3	2500	1740,48	0,23
Etage 2	3025	1982,24	0,22
Etage 1	3025	2166,27	0,26
RDC	3025	2365,64	0,26

V.9 Justification de l'effet P-Delta

Les effets du second ordre peuvent être négligés dans le cas des bâtiments si la condition suivante est satisfaite à tous les niveaux :

$$\theta = \frac{P_k \times \Delta_k}{V_k \times h_k} \le 0,1$$

avec:

(Pk) est le poids du bâtiment et des charges d'exploitation au-dessus du niveau (k), (Vk) est l'effort tranchant au niveau (k), (Δ k) est le déplacement relatif du niveau (k) par rapport au niveau (k-1) comme calculé dans le tableau 4.5 (section 4.6) et (hk) la hauteur de l'étage du niveau (k).

Tableau V.9: Vérification de l'effet P-Delta dans les poteaux des différents étages

	$P-\Delta \leq 0.10$							
Niveaux	Pk	Δ (cı			k N)	hk	(θ
	(kN)	Δk/(X)	Δk/(Y)	Vk/(X)	Vk/(Y)	(cm)	θ/(X)	θ/(Y)
Etage 13	473,87	0,17	0,10	111,96	105,52	306	0,003	0,002
Etage 12	2148,06	0,63	0,60	337,20	360,48	306	0,012	0,012
Etage 11	3733,44	0,60	0,59	715,53	788,03	306	0,010	0,009
Etage 10	3733,44	0,59	0,63	999,74	1117,86	306	0,007	0,007
Etage 9	3733,44	0,60	0,59	1221,52	1378,74	306	0,006	0,005
Etage 8	3848,25	0,59	0,60	1419,12	1608,83	306	0,005	0,005
Etage 7	3848,25	0,60	0,60	1601,06	1818,19	306	0,005	0,004
Etage 6	3848,25	0,59	0,59	1761,83	2002,67	306	0,004	0,004
Etage 5	3905,66	0,63	0,49	1900,86	2161,36	306	0,004	0,003
Etage 4	3904,98	0,49	0,53	2024,10	2299,18	306	0,003	0,003
Etage 3	3759,09	0,39	0,38	2132,20	2417,17	306	0,002	0,002
Etage 2	4028,06	0,42	0,32	2234,11	2528,31	306	0,002	0,002
Etage 1	4094,72	0,28	0,28	2308,19	2610,85	306	0,002	0,002
RDC	5046,04	0,21	0,21	2342,95	2651,08	425	0,001	0,001

Conformément aux Règles Parasismiques Algériennes (DTR-BC 2.48), les effets du second ordre sont négligeables et la structure porteuse du bâtiment est stable.

V.10 Vérification de la compatibilité du système de contreventement

Il est dit ci-dessus (section V.4.2.5) que les voiles reprennent plus de 20% des sollicitations dues aux charges verticales (Tableau 4.3, Article 4.2.3, Alinéa 2, DTR-BC 2.48). Le tableau V.10 donne les valeurs et pourcentages des charges verticales reprises par les poteaux et par les murs voiles.

Tableau V.10: Pourcentage des charges verticales dans les poteaux et murs voiles/(Z)

Niveaux	Fz	Pz	Pz	Vz	Vz
	(kN)	(kN)	(%)	(kN)	(%)
Etage 13	-648,60	-577,88	89,10	-70,72	10,90
Etage 12	-3523,90	-451,98	12,83	-3071,94	87,17
Etage 11	-9061,40	-2122	23,42	-6939,42	76,58
Etage 10	-14599	-3825,60	26,20	-10773,30	73,80
Etage 9	-20136	-6036,30	29,98	-14100,10	70,02
Etage 8	-25796	-9574,10	37,12	-16221,40	62,88
Etage 7	-31485	-11903	37,80	-19582,40	62,20
Etage 6	-37175	-14567	39,19	-22607,30	60,81
Etage 5	-42925	-18052	42,05	-24873,20	57,95
Etage 4	-48689	-21417	43,99	-27272,70	56,01
Etage 3	-54373	-26699	49,10	-27674,80	50,90
Etage 2	-60730	-31480	51,84	-29249,60	48,16
Etage 1	-67091	-34167	50,93	-32924,20	49,07
RDC	-75077	-34821	46,38	-40256	53,62

Excepté les murs voiles du dernier étage qui reprennent 10,90%, les murs voiles reprennent beaucoup plus de 20% des sollicitations dues aux charges verticales. Les tableaux V.11 et V.12 rapportent les valeurs et pourcentages des sollicitations horizontales reprises par les poteaux et par les murs voiles.

Tableau V.11: Pourcentage des charges horizontales dans les poteaux et murs voiles/(X)

Niveaux	Fx	Px	Px	Vx	Vx
	(kN)	(kN)	(%)	(kN)	(%)
Etage 13	111,96	67,79	60,55	44,17	39,45
Etage 12	337,20	258,22	76,58	78,98	23,42
Etage 11	715,53	258,83	36,17	456,69	63,83
Etage 10	999,74	276,20	27,63	723,54	72,37
Etage 9	1221,52	252,88	20,70	968,64	79,30
Etage 8	1419,12	399,51	28,15	1019,60	71,85
Etage 7	1601,06	390,50	24,39	1210,56	75,61
Etage 6	1761,83	376,87	21,39	1384,96	78,61
Etage 5	1900,86	404,96	21,30	1495,90	78,70
Etage 4	2024,10	365,13	18,04	1658,98	81,96
Etage 3	2132,20	405,35	19,01	1726,85	80,99
Etage 2	2234,11	376,54	16,85	1857,57	83,15
Etage 1	2308,19	315,77	13,68	1992,42	86,32
RDC	2342,95	531,39	22,68	1811,56	77,32

Tableau V.12: Pourcentage des charges horizontales dans les poteaux et murs voiles/(Y)

Niveaux	Fy	Py	Py	Vy	Vy
	(kN)	(kN)	(%)	(kN)	(%)
Etage 13	105,52	51,15	48,47	54,37	51,53
Etage 12	360,48	181,17	50,26	179,31	49,74
Etage 11	788,03	179,39	22,76	608,64	77,24
Etage 10	1117,86	198,08	17,72	919,77	82,28
Etage 9	1378,74	190,28	13,80	1188,46	86,20
Etage 8	1608,83	331,99	20,64	1276,84	79,36
Etage 7	1818,19	318,67	17,53	1499,51	82,47
Etage 6	2002,67	316,83	15,82	1685,84	84,18
Etage 5	2161,36	357,71	16,55	1803,65	83,45
Etage 4	2299,18	330,24	14,36	1968,94	85,64
Etage 3	2417,17	394,84	16,33	2022,33	83,67
Etage 2	2528,31	408,41	16,15	2119,90	83,85
Etage 1	2610,85	338,94	12,98	2271,91	87,02
RDC	2651,08	489,06	18,45	2162,02	81,55

Chapitre VI

ETUDE ET FERRAILLAGE DES ELEMENTS STRUCTURAUX

VI.1 Introduction

Les sollicitations dans les portiques (poteaux, poutres principales et secondaires) et les murs voiles sont réalisées à l'aide du logiciel ETABS 2016. Le calcul des armatures des portiques (poteaux, poutres principales et secondaires) et des murs voiles sont effectuées selon les prescriptions et combinaisons de charges fondamentales (DTR-BC 2.41) et accidentelles (DTR-BC 2.48). Des exemples de calculs manuels des armatures sont donnés et les résultats sont comparés avec ceux du Logiciel ETABS. D'autres résultats de calculs des armatures, effectués à l'aide du logiciel ETABS sont aussi présentés.

VI.1.1 Combinaisons d'actions

Les sollicitations de calculs vis-à-vis des états limites ultimes de résistance sont calculées à partir de la combinaison d'actions suivante :

Les sollicitations de calculs vis-à-vis des états limites de service sont calculées à partir de la combinaison d'action suivante :

Les combinaisons d'actions considérées pour la détermination des sollicitations accidentelles sont calculées à partir des relations suivantes :

$$0.8 \times G \pm E$$
 Article 5.2, DTR-BC 2.48
G+Q \pm E Article 5.2, DTR-BC 2.48

VI.2 Calcul de ferraillage des poteaux

Les poteaux sont calculés en flexion simple composée. Pour chaque poteau, on doit connaître (pour chaque combinaison d'actions) un seul effort (N) en plus des moments de flexion (M) et des efforts tranchants dans les deux directions orthogonales principales de la section du poteau et l'effort tranchant (V).

Les combinaisons d'actions considérées dans les calculs des armatures longitudinales et transversales des poteaux sont :

1,35 x G + 1,5 x Q Article A.3.3.2, DTR-BC 2.41
0.8 x G
$$\pm$$
 E Article 5.2, DTR-BC 2.48

$$G + Q \pm E$$
 Article 5.2, DTR-BC 2.48

Pour chaque combinaison d'actions, On doit d'abord déterminer les armatures longitudinales dans les poteaux. Pour cela, on doit connaître pour chaque poteau (dans les deux directions orthogonales) les valeurs défavorables des efforts normaux et moments suivantes :

Nmax et Mcorr

Mmax et Ncorr

Nmin et Mcorr

La section finale retenue des armatures longitudinales correspondra à la plus grande section obtenue par calcul.

La structure porteuse du bâtiment comprend 5 types de sections de poteaux. Ces types et sections sont rapportés dans le tableau VI.1 et les grandeurs utilisées dans les calculs sont rapportées dans le tableau VI.3.

Tableau VI.1: Types et sections de poteaux

Types de poteaux	Etages	Sections
I	Sous-sol, Rdc 1° et 2° étages	55 x 55
II	3°, 4° et 5° étages	50 x 50
III	6°, 7° et 8° étages	45 x 45
IV	9°, 10° et 11° étages	40 x 40
V	12° étage	35 x 35

Béton **Acier Actions** Fc28 σbc fe γb γs σs (MPa) (MPa) (MPa) (MPa) 30 17 Durable 1,5 1,15 500 435 Accidentelle 1,15 30 22,17 1,00 500 500

Tableau VI.2 : Valeurs utilisées dans les calculs

VI.3 Exemple de calcul de ferraillage du poteau

Nous nous proposons de calculer les armatures du poteau type-I de section (55 cm x 55cm). Les valeurs des sollicitations maximales et minimales des efforts normaux et des moments fléchissants ainsi que les valeurs maximales des efforts tranchants sont rapportées dans le tableau VI.3.

VI.3.1 Armatures longitudinales sous combinaison ELU

$$Nmax = 3276.62 \text{ kN}$$

$$Mcorr = -19.11 \text{ kNm}$$

Tableau VI.3: Sollicitations dans les poteaux selon le logiciel ETABS

Section	1,35G+1,5Q		$G + Q \pm E$				
(cm ²)	Nmax	Mcorr	Mmax	Ncorr	Nmin	Mcorr	Vmax
	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
55 x 55	3276,62	-19,11	-71,19	1577,55	28,76	-12,49	-70,80

$$e_G = \frac{M}{N}$$

$$e_G = \frac{19,11}{3276.62}$$

$$e_G = 0,0058 \text{ m} < \frac{h}{6} = 0,092 \text{ m}$$

L'excentricité est inférieure à 0,092 m, il va falloir mener les calculs sous l'effet d'une compression centrée.

$$\lambda = \frac{l_f}{h}$$

$$\lambda = \frac{0.7 \times 425}{55} \qquad \lambda = 5.4 \qquad \lambda < 50$$

$$\alpha = \frac{0.85}{1 + 0.2 \times (\frac{\lambda}{35})^2}$$

$$\alpha = \frac{0.85}{1 + 0.2 \times (\frac{5.4}{35})^2}$$

$$\begin{split} A_u^{'} & \ x \frac{f_e}{\gamma s} \geq \frac{N_u}{\alpha} - \frac{B_r \ x \ f_{c28}}{0.9 \ x \ \theta \ x \ \gamma_b} \\ A_u^{'} & = \frac{1,15}{500 \ x \ 10^2} \ x \bigg(\frac{3276,62x10^3}{0.85} - \frac{2809 \ x \ 30 \ x \ 10^2}{0.9 \ x \ 1,5} \bigg) \end{split} \qquad \boxed{A_u^{'} = -55 \ cm^2} \end{split}$$

 $A_u^{'} < 0$ la section du béton peut résister à elle seule à l'effort de compression Nmax (Nmax = 3276,62 kN).

VI.3.2 Armatures longitudinales sous combinaison $G + Q \pm E$

$$Mmax = -71,19 \text{ kNm}$$

 $Ncorr = 1577,55 \text{ kN}$

$$e_G = \frac{M}{N} = \frac{-71,19}{1577,55} = 0.05 \text{ m} < \frac{h}{6} = 0.092 \text{ m}$$

L'excentricité est inférieure à 0,092 m, il va falloir mener les calculs sous l'effet d'une compression centrée.

$$\lambda = \frac{l_f}{h}$$

$$\lambda = \frac{0.7 \times 425}{55}$$

$$\lambda = 5.4$$

$$\lambda < 50$$

$$\alpha = \frac{0.85}{1 + 0.2 \times (\frac{\lambda}{35})^2}$$

$$\alpha = \frac{0.85}{1 + 0.2 \times (\frac{\lambda}{35})^2}$$

$$\alpha = \frac{0,85}{1 + 0,2 \ x \left(\frac{5,4}{35}\right)^2}$$
 $\alpha = 0,85$

$$B_r = (h-2) x (b-2)$$

 $B_r = (55-2) x (55-2)$ $B_r = 2809 cm^2$

$$A_{u}^{'} \times \frac{f_{e}}{\gamma s} \ge \frac{N_{u}}{\alpha} - \frac{B_{r} \times f_{c28}}{0.9 \times \theta \times \gamma_{b}}$$

$$A_{u}^{'} = \frac{1,15}{500 \times 10^{2}} \times \left(\frac{1577,55 \times 10^{3}}{0.85} - \frac{2809 \times 30 \times 10^{2}}{0.9 \times 1.5} \right)$$

$$A_{u}^{'} = -101 \text{ cm}^{2}$$

 $\alpha = 0.85$

 $A_u^{'} < 0$, la section du béton peut résister à elle seule à l'effort de compression Nmax (Nmax = 1577,55 kN).

Armatures longitudinales minimales et maximales selon DTR-BC 2.41

Amin = max
$$(0,2\% \text{ x (b x h)}; 8\% \text{ x (b+h)})$$

Amin = max $(6,05 \text{ cm}^2; 8,8 \text{ cm}^2)$
Amin = $8,8 \text{ cm}^2$
Amin(BAEL) = $8,8 \text{ cm}^2$

VI.3.4 Armatures longitudinales minimales et maximales selon DTR-BC 2.48

Les armatures longitudinales doivent être à haute adhérence (HA) droites et sans crochets (Article 7.4.2.1, DTR-BC 2.48). Le pourcentage minimal des armatures longitudinales en zone IIa est de (Article 7.4.2.1, DTR-BC 2.48) :

 ϕ min = 12 mm

Amin = 0.8% x (b x h) zone IIa

Article 7.4.2.1, DTR-BC 2.48

Amin = $0.8\% \times (55 \times 55)$

 $Amin = 24,2 \text{ cm}^2$

Amax = 4% x (b x h)

zone courante

Article 7.4.2.1, DTR-BC 2.48

 $Amax = 4\% \ x (55 \ x 55)$

 $Amax = 121 cm^2$

Amax = 6% x (b x h)

recouvrement

Article 7.4.2.1, DTR-BC 2.48

 $Amax = 6\% \ x (55x 55)$

 $Amax = 181.5 cm^{2}$

$$Amin(RPA) = 24.2 \text{ cm}^2$$

VI.3.5 Armatures longitudinales retenues pour les poteaux

A = max (A (Calcul); Amin (RPA); Amin (BAEL))

 $A = \max (0; 24,2;8,8) = 24,2 \text{ cm}^2$

 $A = 24.2 \text{ cm}^2$

 $A_{\text{adopt\'e}} = 12\text{HA}16$

 $A=24,23\,cm^2$

VI.3.6 Distances entre les barres et longueurs de recouvrement selon DTR-BC 2.48

Le DTR-BC 2.48 recommande de prendre des distances entre les barres verticales et les longueurs de recouvrement (Article 7.4.2.1, DTR-BC 2.48) suivantes :

25 cm Distance maximale entre les barres dans une face de poteau doit être

40 x φ Longueur minimale de recouvrement

La longueur de la zone nodale à prendre en compte (Article 7.4.2.1, DTR-BC 2.48) est prise égale à :

$$h' = max (\frac{he}{6}; b_1; h_1; 60 cm)$$

$$h' = \max \left(\frac{425}{6}; 55; 55; 60 cm \right)$$

 $h' = \max (71 \, cm; 55 \, cm; 55 \, cm; 60 \, cm)$

h'=71 cm

VI.3.7 Calcul des armatures transversales

Les armatures transversales des poteaux sont calculées à l'aide de la formule suivante (Article 7.4.2.2, DTR-BC 2.48) :

$$\tau_{u} = \frac{V_{u}}{b \times d}$$

$$V_{u} = 70,80 \text{ kN}$$

$$\tau_{u} = \frac{70,80 \times 10^{3}}{55 \times 55 \times 100}$$

$$\bar{\tau}_{u} = \min (0,2 \times \frac{f_{c}28}{\gamma_{b}}; 5 \text{ MPa})$$

$$\bar{\tau}_{u} = \min (0,2 \times \frac{30}{1,50}; 5 \text{MPa})$$

$$\bar{\tau}_{u} = \min (0,2 \times \frac{30}{1,50}; 5 \text{MPa})$$

$$\bar{\tau}_{u} = 4 \text{ MPa} > \tau_{u} = 2,34 \text{ MPa}$$

VI.3.7.1 Armatures transversales minimales selon DTR-2.41

$$\begin{split} A_t &\ge 0,4 \ x \, \frac{\text{bo x S}_t}{f_e} \\ A_t &\ge 0,4 \ x \, \frac{55 \times 15}{235} \qquad A_t \ge 1,4 \ cm^2 \\ \phi_t &\le \min \ (\frac{h}{35} \ ; \phi l_{\min} \ ; \frac{b}{10}) \\ \phi_t &\le \min \ (\frac{55}{35} \ ; 1,6 \ ; \frac{55}{10}) \qquad \phi_t &\le \min \ (1,6 \ cm; 1,6 \ cm; 5,5 \ cm \) \quad \phi_t &\le 1,6 \ cm \\ \phi_t &= 8 \ \text{mm} \end{split}$$

$$A_t \ \min = 0,3\% \ x \ S_t x \ b$$

$$A_t \ \min = 0,3\% \ x \ 15 \times 55 \qquad A_t \ \min = 2,48 \ cm^2 \end{split}$$

VI.3.7.2 Armatures transversales minimales selon DTR-BC 2.48

$$\frac{A_t}{t} = \frac{\rho \times V_u}{h_1 \times f_e}$$
 Article 7.4.2.2, DTR-BC 2.48

où:

(Vu) est l'effort tranchant de calcul, (h1) est la hauteur totale de la section brute, (fe) est la contrainte limite élastique de l'acier d'armature transversale, (ρ) est le coefficient correcteur qui tient compte du mode fragile de la rupture par effort tranchant, qui dépend de l'élancement géométrique et (t) est l'espacement des armatures transversales.

$$A_{t} = \frac{\rho \times V_{u}}{h \times f_{e}} \times t$$

$$A_{t} = \frac{70,80 \times 100 \times 2,5}{55 \times 235 \times 100} \times 15$$

$$A_{t} = 0,21 \text{cm}^{2}$$

$$A_{t} = 4 \text{ } \phi \text{ } 8$$

VI.3.7.3 Espacements des armatures transversales selon DTR-BC 2.48

$$\begin{array}{lll} \mathbf{S_t} \! \leq \! \min \left(10 \ \mathbf{x} \ \varphi l \ \min ; 15 \ \mathbf{cm} \right) & \text{zone nodale} & \text{Article 7.4.2.2, DTR-BC 2.48} \\ \mathbf{S_t} \! \leq \! \min \! \left(\! 10 \ \mathbf{x} \ 1,\! 6 \ ; 15 \ \mathbf{cm} \right) & \mathbf{S_t} \! \leq \! \min \! \left(\! 16 \ \mathbf{cm} \ ; 15 \ \mathbf{cm} \right) & \mathbf{S_t} \! = \! 15 \ \mathbf{cm} \\ \mathbf{S_t} \! \leq \! 15 \ \mathbf{x} \ \varphi l \ \min & \text{zone courante Article 7.4.2.2, DTR-BC 2.48} \\ \mathbf{S_t} \! \leq \! 15 \ \mathbf{x} \ 1,\! 6 & \mathbf{S_t} \! \leq \! 24 \ \mathbf{cm} & \mathbf{S_t} \! = \! 15 \ \mathbf{cm} \\ \end{array}$$

Tableau VI.4: Sections d'armatures des poteaux

Poteaux	Dimensions	Aadoptée
Poteaux	(cm²)	(cm²)
Type I	55 × 55	12T16
Type II	50 x 50	10T16
Type III	45 x 45	10T14
Type IV	40 x 40	8T14
Type V	35 x 35	8T12

12T16 10T16 10T14

VI.3.8 Schémas de ferraillage des poteaux

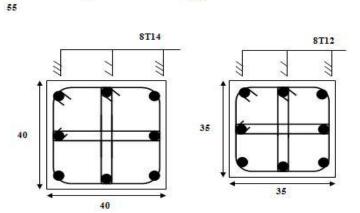


Figure VI.1 : Schémas de ferraillages des poteaux

VI.4 Calcul de ferraillage des poutres

Les poutres principales et les poutres secondaires sont calculées en flexion simple. Elles sont sollicitées à des moments fléchissants (M) et des efforts tranchants (V). Nous considérons que les fissurations sont peu préjudiciables.

VI.5 Combinaisons d'actions

Les combinaisons d'actions considérées dans les calculs des armatures longitudinales et transversales des poutres sont :

$1,35 \times G + 1,5 \times Q$	Article A.3.3.2, DTR-BC 2.41
G + Q	Article A.3.3.2, DTR-BC 2.41
$G + Q \pm E$	Article 5.2, DTR-BC 2.48

Types de Mmax en travée Mmax en appui **Tmax** (kNm) poutres (kNm) (kN)**ELU ELS** $G+Q\pm E$ **ELU ELS** G+Q±E 43,73 P. Principales 54,55 40,18 -93 -67,52 -89,26 133,30 P. Secondaires 48,04 43,75 80,88 -57,76 -42,98 -90,70 155,30

Tableau VI.5: Résultats des moments et des efforts tranchants ETABS

VI.6 Calcul des armatures longitudinales des poutres principales

Dans la suite, nous présenterons un exemple de calcul des armatures d'une poutre principales (30 cm x 40 cm). Les valeurs des sollicitations maximales et minimales des moments fléchissants ainsi que les valeurs maximales des efforts tranchants sont rapportées dans le tableau ci-dessus. Les calculs sont effectués pour la combinaison d'actions la plus défavorable (ELU).

VI.6.1 Armatures longitudinales en travées sous combinaison ELU

$$\begin{split} & Mt = 54.55 \, kNm \\ & \sigma_{bc} = 0.85 \, x \, \frac{fcj}{\theta.\gamma_b} \qquad \qquad \sigma_{bc} = 0.85 \, x \, \frac{30}{1 \, x \, 1,15} \qquad \qquad \sigma_{bc} = 17 \, MPa \\ & d = 0.9 \, x \, h \qquad \qquad d = 0.9 \, x \, 40 \qquad \qquad d = 36 \, cm \\ & \mu = \frac{Mu}{b \, x \, d^2 \, x \, \sigma_{bc}} \qquad \qquad \mu = \frac{54.55 \, x \, 10^3}{30 \, x \, 36^2 \, x \, 17} \qquad \qquad \mu = 0.083 \\ & \mu \leq \mu_{ab} = 0.186 \qquad \qquad \text{Pivot A} \qquad \qquad A_u' = 0 \\ & \sigma_S = \frac{fe}{\gamma_S} \qquad \qquad \sigma_S = \frac{500}{1.15} \qquad \sigma_S = 435 \, MPa \\ & \alpha = 1.25 \, x \, (1 - \sqrt{1 - 2\mu} \qquad \qquad \alpha = 1.25 \, x \, (1 - \sqrt{1 - 2 \, x \, 0.083} \qquad \alpha = 0.108 \\ & \beta = 1 - 0.4 \, x \, \alpha \qquad \qquad \beta = 1 - (0.4 \, x \, 0.108) \qquad \qquad \beta = 0.96 \\ & A_u^t = \frac{Mu}{\sigma_S \, x \, \beta \, x \, d} \qquad \qquad A_u^t = \frac{46.04 \, x \, 10^3}{435 \, x \, 0.96 \, x \, 36} \qquad A_u' = 3.63 \, cm^2 \end{split}$$

VI.6.2 Armatures longitudinales en appuis sous combinaison $G + Q \pm E$

$$Ma = -93 \text{ kNm}$$

$$\sigma_{bc} = 0.85 \, x \, \frac{fcj}{\theta.\gamma_b}$$

$$\sigma_{bc} = 0.85 \, x \, \frac{30}{1 \, x \, 1.15}$$

$$\sigma_{bc} = 17 \text{ MPa}$$

$$d = 0.9 x h$$

$$d = 0.9 \times 40$$

$$d = 36 \,\mathrm{cm}$$

$$\mu = \frac{Mu}{b \; x \; d^2 \; x \; \sigma_{bc}}$$

$$\mu = \frac{93 \times 10^3}{30 \times 36^2 \times 17}$$

$$\mu = 0,141$$

$$\mu \leq \mu_{ab} = 0.186$$

$$A_{\mathbf{u}}' = 0$$

$$\sigma s = \frac{fe}{\gamma s}$$

$$\sigma s = \frac{500}{1.15}$$

$$\sigma s = 435 \, MPa$$

$$\alpha = 1.25 \text{ x } (1 - \sqrt{1 - 2\mu})$$

$$\alpha = 1.25 \text{ x} (1 - \sqrt{1 - 2 \text{ x} 0.141})$$

$$\alpha = 0.19$$

$$\beta = 1 - 0.4 \times \alpha$$

$$\beta = 1 - (0.4 \times 0.19)$$

$$\beta = 0.92$$

$$A_{u}^{a} = \frac{Mu}{\sigma s \times \beta \times d}$$

$$A_u^a = \frac{93 \times 10^3}{435 \times 0.92 \times 36}$$

$$A_u^t = 6,46 \, \text{cm}^2$$

VI.6.3 Armatures longitudinales minimales et maximales selon DTR-BC 2.41

$$A_{min} (BAEL) = 0.23 x b x d x \frac{ftj}{fe}$$

$$A_{min}$$
 (BAEL) = 0,23 x 30 x 36 x $\frac{2,50}{500}$

$$A_{min}$$
 (BAEL) = 1,24 cm²

VI.6.4 Armatures longitudinales minimales et maximales selon DTR-BC 2.48

$$A_{min}$$
 (RPA) = 0,5% x b x h

$$A_{min}$$
 (RPA) = 0,5% x 30 x 40

$$A_{\min} (RPA) = 6 \text{ cm}^2$$

$$A_{\text{max}}$$
 (RPA) = 4% x b x h

$$A_{\text{max}}$$
 (RPA) = 4% x 30 x 40

$$A_{\text{max}}(RPA) = 4.8 \text{ cm}^2$$

$$A_{max}(RPA) = 6\% \times b \times h$$

$$A_{\text{max}}$$
 (RPA) = 6% x 30 x 40

$$A_{max}(RPA) = 7.2 \text{ cm}^2$$

Armatures longitudinales retenues pour les poutres principales

$$\mathbf{A}_{finale}^{t} = \max \left(\, \mathbf{Au} \, ; \mathbf{A}_{min} \, (\text{RPA}) \, ; \mathbf{A}_{min} \, (\text{BAEL}) \right)$$

$$A_{\text{finale}}^{t} = \max (3,63;1,24;7,2)$$
 $A_{\text{finale}}^{t} = 7,2 \text{ cm}^{2}$

$$A_{\text{finale}}^{\text{t}} = 7,2 \,\text{cm}^2$$

At
$$(adopt\acute{e}e) = 9,24 \text{ cm}^2$$

$$A_{finale}^{a} = \max (Au; A_{min}(RPA); A_{min}(BAEL))$$

$$A_{\text{finale}}^{a} = \max (6,46;1,24;7,2)$$
 $A_{\text{finale}}^{a} = 7,2 \text{ cm}^{2}$

$$A_{\text{finale}}^{a} = 7.2 \, \text{cm}^{2}$$

VI.6.6 Distances entre les barres et longueurs de recouvrement selon DTR-BC 2.48

$$Lr = 40 \times \varphi$$

$$Lr = 40 \times 1.4$$

$$Lr = 56 cm$$

VI.6.7 Calcul des armatures transversales

$$\bar{\tau}_u = \min(0.2 \text{ x} \frac{\text{fc28}}{\gamma b}; 5 \text{ MPa})$$

$$\bar{\tau}_{u} = \min(0.2 \text{ x} \frac{30}{1.5}; 5 \text{ MPa})$$
 $\bar{\tau}_{u} = \min(4 \text{MPa}; 5 \text{ MPa})$ $\bar{\tau}_{u} = 4 \text{ MPa}$

$$\bar{\tau}_{u} = \min (4MPa; 5MPa)$$

$$\overline{\tau}_u = 4 \text{ MPa}$$

$$\tau_u = \frac{Tmax}{b.d}.$$

$$\tau_{\rm u} = \frac{133.3 \, \text{x} 10}{30 \, \text{x} \, 36 \, \text{x} \, 100}$$

$$\tau_{\rm u}=1,23\,{\rm MPa}.$$

$$\tau_u \, \leq \overline{\tau}_u$$

Le béton résiste à la contrainte tangentielle.

VI.6.8 Armatures transversales minimales selon DTR-2.41

$$\phi t \leq min \; (\frac{h}{35}; \; \phi_{\mbox{lmax}} \; ; \; \frac{b}{10}) \label{eq:phitau}$$

$$\phi t \le \min\left(\frac{40}{35}; 16; \frac{30}{10}\right) \qquad \phi t \le \min\left(1, 14; 16; 3\right) \qquad \phi t \le 1, 14 \text{ cm}$$

$$\phi t = 8 \text{ mm}$$
 At = 2,01 cm² (cadre $\phi 8 + \text{\'etrier}$)

VI.6.9 Armatures transversales minimales selon DTR-2.48

$$At = 0.3\% \times St \times b$$
 zone nodale

$$At = 0.3\% \times 10 \times 35$$
 $At = 1.05 \text{ cm}^2$

$$At = 0.3\% \times St \times b$$
 zone courante

$$At = 0.3\% \times 15 \times 35$$
 $At = 1.58 \text{ cm}^2$

VI.6.10 Espacements des armatures transversales selon DTR-BC 2.41

$$St_1 \le \min (0.9 \text{ x d}; 40 \text{ cm})$$

$$St_1 \le min (36; 40 cm)$$
 $St_1 \le 36 cm$

$$\operatorname{St}_2 \le \frac{\operatorname{At} x f_e}{0.4 x b}$$

$$St_2 \le \frac{2,01 \times 435}{0,4 \times 30}$$
 $St_2 \le 39,35 \text{ cm}$

$$St_3 \le \frac{0.9 \text{ x At x f}_e}{\gamma \text{s x b } (\tau_u - (0.3 \text{ x k x ftj)})}$$

$$St_3 \le \frac{0.9 \times 2.01 \times 235}{1.15 \times 30 (1.73 - (0.3 \times 1 \times 2.4))}$$
 $St_3 \le 12.2 \text{ cm}$

VI.6.11 Espacements des armatures transversales selon DTR-BC 2.48

$$\begin{array}{ll} \text{St} \leq & \min \left(\frac{h}{4}\,; 12 \text{ x \phi l}\right) & \text{zone nodale} \\ \\ \text{St} \leq & \min \left(10\,; 19\,; 2\right) & \text{St} \leq & 10\,\text{cm} \\ \\ \\ \text{St}' \leq & \frac{h}{2} & \text{zone courante} \\ \\ \text{St}' \leq & 20\,\text{cm} & \text{St}' = & 15\,\text{cm} \\ \end{array}$$

Tableau VI.6: Ferraillage des poutres principales et secondaires

Poutro	es	A (adoptée)		
Туре	Dimension (cm²)	At	Aa	
Poutre Principale	30x40	6T14	6T14	
Poutre Secondaire	30x35	6T14	6T14	

VI.6.12 Schémas de ferraillage des poutres principales et secondaires

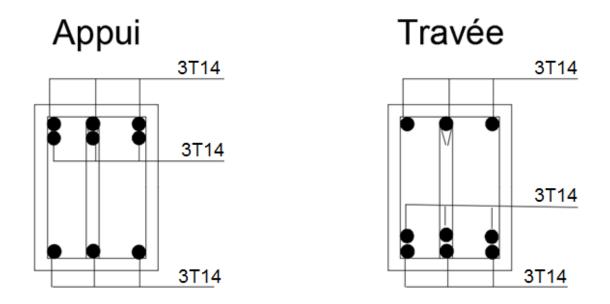
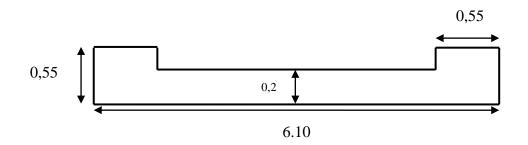


Figure VI.2 : Schémas de ferraillage des poutres principales et secondaires

VI.7 Calcul de ferraillage des murs voiles

Les murs voiles sont des murs en béton armé. Les murs voiles sont sollicités par un effort normal N, un effort tranchant V et un moment fléchissant, maximum dans la section d'encastrement. Les murs voiles seront calculés en flexion composée. Leur ferraillage est composé d'armatures verticales et d'armatures horizontales. Nous présenterons ici un exemple de calcul du mur voile le plus sollicité.

VI.7.1 Combinaisons d'actions


Le calcul du ferraillage des murs voiles consiste à déterminer les armatures en flexion composée sous l'action des sollicitations verticales dues aux charges permanentes (G), aux surcharges d'exploitation (Q) ainsi qu'aux actions horizontales dues aux séismes.

$1,35 \times G + 1,5 \times Q$	Article A.3.3.2, DTR-BC 2.41
G + Q	Article A.3.3.2, DTR-BC 2.41
$0.8 \times G \pm E$	Article 5.2, DTR-BC 2.48
$G + Q \pm E$	Article 5.2, DTR-BC 2.48

VI.7.2 Sollicitations ETABS

Tableau VI.7: Sollicitation du mur voile le plus défavorable RDC

	Nma	Nmax (Kn)		Mcor (Kn.m)		Mmax (Kn.m)		Ncor (Kn)	
	F11	F22	M11	M22	M11	M22	F11	F22	
ELU	209,88	1049,40	0,16	0,80	0,44	1,63	72,62	594,8	
ELS	152,78	763,92	0,12	0,11	0,32	1,18	53,07	434,74	0,423
ELA	286,67	1433,33	0,036	0,18	0,35	1,72	61,14	158,4	

$$S = 5 \times 0.2 + 2 \times (0.55 \times 0.55)$$

 $S = 1.605 \text{ m}^2$

$$\delta_{1,2} = \frac{N}{A} \pm \frac{M.V}{I}$$

$$y_G = \frac{\sum A_i y_i}{\sum A_i} = \frac{(0.3205 \times 0.275) + (1 \times 3.05) + (0.3205 \times 5.825)}{(0.3025 + 1 + 0.3205)} = 3.05 m$$

$$I = \frac{0.55^4}{12} \times 2 + \frac{0.2 \times 5^3}{12} + (3.05 - 0.275)^2 \times 0.3025 + (3.05 - 5.825)^2 \times 0.3025$$

$$I = 6,93 m^4$$

Mmax = 1,72 KN.m

Ncor = 158,4 KN

$$\sigma_1 = \frac{158,4 \times 10^{-3}}{1,605} + \frac{1,72 \times 10^{-3} \times 3,05}{6,93} = 0.099 \, MPa$$

$$\sigma_2 = \frac{158,4 \times 10^{-3}}{1,605} - \frac{1,72 \times 10^{-3} \times 3,05}{6,93} = 0.097 MPa$$

Nmax = 1433,33 KN

Mcor = 0.18 KN.m

$$\sigma_1 = \frac{1433,33 \times 10^{-3}}{1,605} + \frac{0,18 \times 10^{-3} \times 3,05}{6,93} = 0.893 \, MPa$$

$$\sigma_2 = \frac{1433,33 \times 10^{-3}}{1,605} - \frac{0,18 \times 10^{-3} \times 3,05}{9,18} = 0.892 \text{ MPa}$$

On a $\sigma 1$ et $\sigma 2 > 0 \rightarrow$ la section voile est entièrement comprimée pas de zone tendue alors la zone courante est armée par le minimum exigé par le RPA99 version 2003.

Selon RPA99/2003 on a:

Armatures minimales VI.7.3

$$A_{min} = max \quad \frac{0.2 \times e_{V} \times L}{100}; \frac{8 (ev + L)}{100}$$

BAEL91/99

$$A_{\min} = \max\left(\frac{0.2 \times 20 \times 610}{100}; \frac{8(20 + 610)}{100}\right)$$

$$A_{\min} = \max (24.4; 50.4)$$
 $A_{\min} = 50.4 \text{ cm}^2$

$$A_{\min} = 50.4 \, \text{cm}^2$$

deux nappes du mur voile

$$A_{min} = 0.15\% x e_{v} x h$$

zone d'about

DTR-BC 2.48

$$A_{min} = 0.15\% \times 20 \times 425$$
 $A_{min} = 12.75 \text{ cm}^2$

$$A_{min} = 12,75 \text{ cm}^2$$

$$A_{min} = 0.10\% x e_{v} x h$$

zone courante

$$A_{min} = 0.10\% \times 20 \times 425$$
 $A_{min} = 8.5 \text{ cm}^2$

$$A_{min} = 8.5 \text{ cm}^2$$

deux nappes du mur voile

VI.7.4 Armatures finales

$$A = max (A(BAEL); A(RPA))$$

$$A = max (50,4; 12,75)$$
 $A = 50,4 cm^2$

$$A = 50.4 \, \text{cm}^2$$

deux nappes du mur voile

VI.7.5 Espacement

$$St = min (1.5 \times e_V; 30)$$

$$St = min (1.5 \times 20; 30)$$

$$St = min (30; 30)$$

$$St = 30 \text{ cm}$$

$$St = 30 \text{ cm}$$

zone courante

$$St = 15 \text{ cm}$$

zone d'about

VI.7.6 Choix des armatures verticales

$$Av = 8T16$$

zone d'about

deux nappes du mur voile.

$$Av = 34T12$$

zone courante

deux nappes du mur voile.

Av (totale) =
$$8T16 + 34T12$$

Av (totale) =
$$54,53$$
cm²

deux nappes du mur voile

VI.7.7 Choix des armatures horizontales

$$A_h = \frac{A_{vtotale}}{4}$$

$$A_h = 13,63 \text{ cm}^2$$

$$A_h = 18T10$$

$$A_h = 14,14 \text{ cm}^2$$

VI.7.8 Choix des armatures transversales

$$A_t = \text{cadre } \phi 8$$

zone d'about

$$A_t = 4$$
épaingles /m²

zone courante

VI.7.9 Vérification à l'effort tranchant

$$\bar{\tau}_u = \min (0.2 \text{ x} \frac{\text{fc28}}{\text{yb}}; \text{5MPa})$$
 $\bar{\tau}_u = 4\text{MPa}$ fissuration peu nuisible

$$T_u \max = 218,03 \text{ kN}$$

$$\tau_u = \frac{T \max}{b \ x \ d}$$

$$\tau_{u} = \frac{218,03 \times 1000}{30 \times 352 \times 100}$$

$$\tau_{\rm u}=0.31\,{\rm MPa}$$

$$\tau_u = 0.31 \, \text{MPa} \leq \overline{\tau}_u = 4 \, \text{MPa}$$

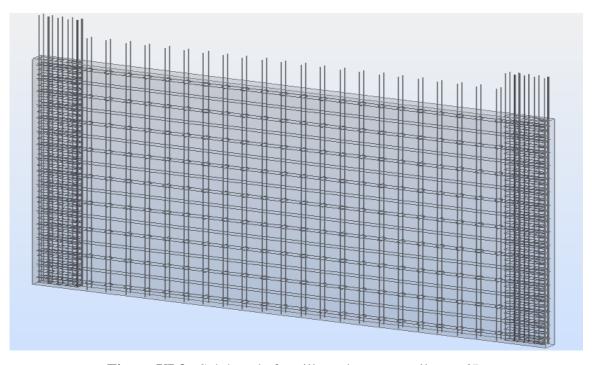
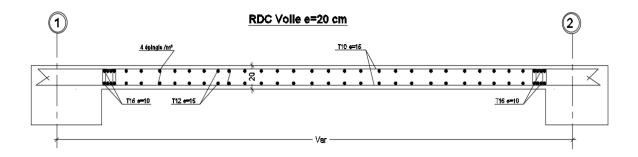



Figure VI.3 : Schéma de ferraillage des murs voiles en 3D

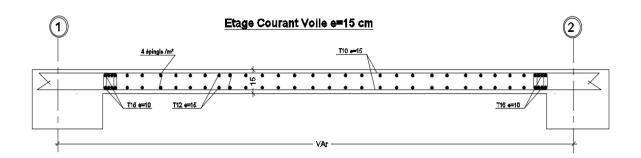


Figure VI.4 : Schéma de ferraillage des murs voiles

Chapitre VII

ETUDE ET FERRAILLAGE DE L'INFRASTRUCTURE

VII.1 Introduction

L'étude et le ferraillage concernent le mur voile périphérique et la fondation. Le mur voile périphérique est soumis à la poussée des terres et aux sollicitations ramenées de la superstructure. La fondation est radier général.

VII.2 Etude du voile périphérique

Le mur voile périphérique est un mur en béton armé encastré à sa base. Le mur voile de la structure porteuse du bâtiment a une hauteur de 4,65 m. l'épaisseur du mur voile est de 25 cm. Les armatures verticaless et horizontales sont constituées de deux nappes sont constituées de deux nappes. Le mur voile périphérique est soumis à la poussée des terres et aux sollicitations dues aux charges provoquées par les actions verticales et sismiques.

VII.3 Calcul de la poussée des terres

La contrainte engendrée par la poussée des terres est noté (q). Elle est due au poids volumique des terres. Elle est calculée par la relation suivante :

$$Q = \gamma d x h x K$$

où:

 (γd) est le poids spécifique du remblai ; (h) est la hauteur du mur voile et (K) le coefficient de poussée.

$$K = tg^2(\frac{\pi}{4} - \frac{\varphi}{2})$$

$$K = 0.27$$

$$Q = 17 \times 0.27 \times 4.65$$

$$Q = 21,34 \text{ kN/m}^2$$

La contrainte engendrée par la poussée due au remblai (P). Elle est due à la surcharge du remblai. Elle est calculée par la relation suivante :

$$P = p \times K$$

où:

$$p = 5 \text{ kN/m}^2$$

$$P = 5 \times 0.27$$

$$P = 1,35 \text{ kN/m}^2$$

VII.4 Combinaisons d'action et calcul de sollicitations

$$qu = 1,35 \times Q + 1,5 \times P$$

$$qu = 1,35 \times 21,34 + 1,5 \times 1,35$$

$$qu = 30.8 \, kN/m^2$$

$$qs = Q + P$$

$$qs = 21,34+1,35$$

$$qs = 22,7 \text{ kN/m}^2$$

VII.5 Calcul des rapports de dimensions

$$\rho = \frac{Lx}{Ly}$$

$$\rho = \frac{465}{610}$$

$$\rho = 0.76$$

$$\rho > 0.4$$

 $\rho > 0.4$ La dalle travaille dans deux sens

VII.6 Calcul des moments caractéristiques

$$\mu_{\rm X} = 0.0608$$

$$\mu_{y} = 0.5274$$

$$M_{OX} = \mu_X \times q_u \times 4,65^2$$

$$M_{OX} = 0.0608 \times 30.8 \times 1_{X}^{2}$$

$$M_{OX} = 40,54 \text{ kNm}$$

$$M_{Oy} = \mu_y \times M_{OX}$$

 $M_{Oy} = 0.5274 \times 40.54$
 $M_{Oy} = 21.38 \text{ kNm}$

VII.7 Calcul des moments en travée et en appui

$$M_t = 0.75 \text{ x Mo}$$

$$M_a = -0.5 \text{ x Mo}$$

VII.8 Calcul des armatures longitudinales

Tableau VII.1: Ferraillage du voile périphérique

	Sens (x)		Sens (y)				
	Travée	Appuis	Travée	Appuis			
	ELU						
Moment (kNm)	30,4	20,27	16,03	10,69			
Au	3,24	2,15	1,69	1,12			
(cm ² /ml)							
Armatures minimales							
A (BAEL)	1,5	1,5	1,5	1,5			
(cm ² /ml)							
A(RPA)	2,5	2,5	2,5	2,5			
(cm ² /ml)							
A (adoptée)	5T12=4,52	5T12=4,52	5T12=4,52	5T12=4,52			
(cm ² /ml)	St=15cm	St=15cm	St=15cm	St=15cm			

VII.9 Schémas de ferraillage du mur voile périphérique

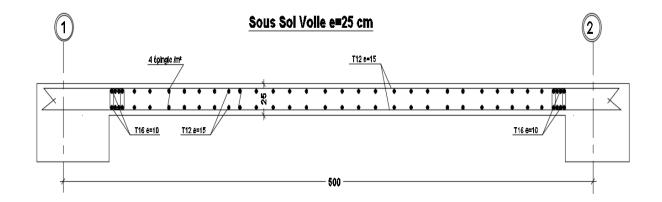


Figure VII.1 : Schéma de ferraillage du voile périphérique

VII.10 Dimensions de la fondation

Vu l'importance de l'effort normal agissant sur l'infrastructure, le type utilisé suivant l'ancrage du bâtiment, la contrainte du sol.

$$N = 78399,45 \text{ kN}$$

 $\sigma \text{sol} = 300 \text{ kN/m}^2$

$$S = \frac{N}{\sigma sol}$$
 S est la surface de la fondation

$$Sb = 278,92 \text{ m}^2$$
 Sb est la surface totale du bâtiment

$$S = \frac{78399,45}{300}$$
$$S = 261,33 \,\mathrm{m}^2$$

VII.10.1 Vérification au chevauchement

$$\frac{\text{Ss}}{\text{Sb}} = 93\% > 50\%$$

$$Ss > 50\% \times Sb$$

Donc, la surface totale des semelles dépasse 50% de la surface d'emprise du bâtiment ce qui engendre un chevauchement de la fondation et qui mène à envisager un radier général. Le radier offre plusieurs avantages, à savoir (1) l'augmentation de la surface de la fondation, minimisant la forte pression apportée par la structure ; (2) la réduction des tassements différentiels ; (3) la négligence des irrégularités ou l'hétérogénéité du sol et (4) la facilité d'exécution.

VII.11 Prédimensionnement du radier

Le radier est calculé comme une dalle pleine. Le radier est éventuellement nervuré et s'étend sur toute la surface de l'ouvrage (figure VI.1).

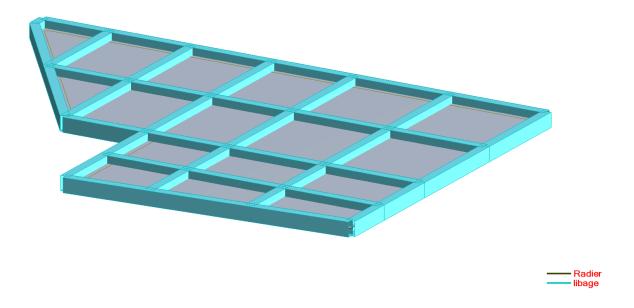


Figure VII.2: Radier général avec libage

VII.11.1 Condition de coffrage

• Nervure

$$h_T = \frac{L \max}{10}$$

$$h_T = \frac{520}{10}$$

 $h_T = 52 cm$

on prendra une hauteur h = 70 cm

• Dalle

$$h_r = \frac{L \max}{20}$$

$$h_r = \frac{520}{20}$$

$$h_r = 26 cm$$

on prendra une hauteur h = 30 cm

VII.11.2 Vérification de condition de rigidité

$$\begin{cases} L_{\text{max}} \leq \frac{\pi}{2} L_e....(1) \\ h_e = \sqrt[4]{\frac{4 \times E \times I}{K \times b}}...(2) \end{cases}$$

E : module d'élasticité du béton E = 34179,56 MPa.

I : inertie de la section du radier $I = \frac{b \times h^3}{12}$

K : module de résistance du sol. (On a un sol moyen donc $K\!\!=\!4\times\!10^4$ KN/m3).

b : largeur de radier, on prend une bande de 1m.

On a
$$\left\{ \begin{array}{l} h_T=70~cm \\ \\ I=0{,}029~m^4 \end{array} \right. \qquad \left\{ \begin{array}{l} L_e=3{,}15m \\ \\ \\ L_{\rm max}=5{,}2m\rangle\frac{\pi}{2}\times L_e=4{,}95m \quad {\rm C.N.V} \end{array} \right.$$

On redimensionne les nervures avec ht = 100cm

Tel que:

$$\begin{cases} h_T = 100 \ cm \\ I = 0.083 \ m^4 \end{cases} \begin{cases} L_e = 4.1m \\ L_{\text{max}} = 5.2m \langle \frac{\pi}{2} \times L_e = 6.44 \text{m} \end{cases} \text{C.V}$$

Donc on opte pour ht = 100 cm.

VII.11.3 La surface du radier

$$\frac{N'}{S_{rad}} \le \sigma_s \Rightarrow S_{rad} \ge \frac{N'}{\overline{\sigma}}_{sol} = \frac{80491,35}{300} \Rightarrow S_{rad} \ge 197,63m^2$$

$$N' = N+P$$

avec:

$$P = \gamma b \times h_r \times S_{rad} = 2091.9 \text{ KN}$$
 (p : le poids propre de radier).

N = 57197,18 KN: est charge totale transmise par la superstructure tirer à partir de logiciel etabs.

$$N'=57197,18 + 2091,9$$

 $\Rightarrow N' = 59289,08 \text{ KN}$

Avec La surface du bâtiment : $S_{bat} = Lx \times L_y \implies S_{bat} = 278,92 \text{ m}^2$

 $S_{rad} < S_{bat} \Rightarrow$ Le radier sans débord

On opte pour un radier de $S_{rad} = 278,92 \text{ m}^2$

VII.12 Vérification nécessaires

VII.12.1 Vérification au poinçonnement

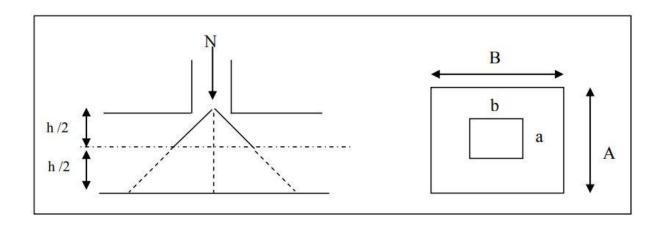


Figure VII.3 : Zone de contact poteau radier

Le calcul se fait pour le poteau le plus sollicité, on doit vérifier la condition suivante :

Nu
$$\leq$$
 0,045 \times μ_c \times ht $\times \frac{f_{c28}}{\gamma_b}$ CBA93 (article A.5.2.4.2)

Avec:

 μ_c : périmètre du contour cisaillé projeté sur le plan moyen du radier.

Nu : charge de calcul à l'ÉLU pour le poteau le plus sollicité.

ht : c'est l'épaisseur total de la dalle.

ht = 100cm.

$$\mu_c = (a + b + 2ht) \times 2 \implies \mu_c = 2 \times (0.55 + 0.55 + 2 \times 1) \implies \mu_c = 6.2 \text{ m}.$$

Nu =
$$3486,67$$
 KN $< 0.045 \times 6.2 \times 1 \times (30/1.5) = 5580$ KN C.V

VII.12.2Vérification au cisaillement

$$\tau_u = \frac{V_u}{h \times d} \le \bar{\tau} = \min(0.1 \times f_{c28}; 3MPa) = 3MPa$$

On considère une bande de largeur b =1m

$$V_u = \frac{N' \times L_{\text{max}} \times b}{2 \times S_{rad}} \Longrightarrow V_u = \frac{59289,08 \times 5,2 \times 1}{2 \times 278,92} = 552,67 \, KN$$

$$d = 0.9 \times hr = 0.9 \times 0.30 = 0.27 m$$

$$\tau_u = \frac{552,67 \times 10^{-3}}{1 \times 0.27} = 2,05 MPa < 3 \text{ Mpa}$$
 C.V

VII.12.3Vérification de la contrainte du sol

Cette vérification consiste à satisfaire la condition suivante dans le sens longitudinal et transversal.

$$\sigma_{m} = \frac{3\sigma_{\max} + \sigma_{\min}}{4} \langle \sigma_{sol}$$

$$\sigma_{x,y} = \frac{N}{S_{rad}} \pm \frac{M}{I}(x,y)$$

A partir de notre calcul on a trouver :

$$\sigma_{\text{max}} = 129,33 \text{ KPa}$$

$$\sigma_{\min}$$
 = 112,19 KPa

$$\sigma^{+} = \frac{3 \times \sigma_{\text{max}} + \sigma_{\text{min}}}{4}$$

$$\sigma^+ = \frac{3 \times 129,33 + 112,19}{4}$$

$$\sigma^+ = 125,045 \text{ kN/m}^2$$

$$\sigma^+ = 125,045 \text{ kN/m}^2 \le 300 \text{ kN/m}^2$$

VII.12.4Vérification de la stabilité au renversement

Selon le RPA99, on doit vérifier que : $e = \frac{M}{N'} \le \frac{B}{4}$

Dans le sens x-x :
$$e = \frac{288883.19}{59289.08} \Rightarrow e = 4.87m < \frac{23.5}{4} = 5.87m$$
 C.V

Dans le sens y-y :
$$e = \frac{-817835,60}{59289.08} \Rightarrow e < \frac{11,6}{4} = 2,9m$$
 C.V

Donc il n'y a pas risque de renversement.

VII.12.5 Vérification de la poussé hydrostatique

Il faut s'assurer que : $N \ge F_s \times H \times S_{rad} \times \gamma_w$

Avec:

N =57197,18 KN (poids propre du bâtiment ; uniquement la superstructure).

H = 4,65 m (la hauteur de la partie encrage du bâtiment).

 $F_s = 1,5$ (coefficient de sécurité).

 $S_{rad} = 278,92 \text{ m}^2 \text{ (surface du radier)}.$

 $\gamma_w = 10 \text{ KN/}m^3$ (poids volumique).

On trouve:

$$N = 57197, 18 \ge 1,5 \times 4,65 \times 278,92 \times 10 = 19454,67 \text{ KN}$$
 C.V

Le bâtiment est stable vis-à-vis de l'arrivé de l'eau

VII.13 Le ferraillage

VII.13.1La dalle de radier

La radier sera calculé comme un plancher renversé, appuyé sur les nervures en flexion simple, sachant que la fissuration est préjudiciable. Le calcul se fera pour le panneau le plus défavorable et on adoptera le même ferraillage pour tout le radier, le panneau est de dimension :

$$L_x = 4.5 \text{ m}$$
; $L_y = 5 \text{ m}$

VII.13.2 Calcul des sollicitations

• l'É.L.U:

$$q_u = \frac{N_u}{S_{rad}} \Rightarrow q_u = \frac{81223,51}{278,92} \Rightarrow \boxed{q_u = 291,21 \text{KN} / m^2}$$

 N_u : Effort normal a l'ELU (avec le poids du radier).

Avec:

$$N_u = 78399,45 + (1,35 \times 2091,9) = 81223,51 \text{KN}$$

$$\rho = \frac{L_x}{L_y} \Rightarrow \rho = 0.9 \Rightarrow \rho > 0.4 \Rightarrow$$
 La dalle travaille dans les deux sens:

$$\begin{cases} \boldsymbol{\mu_x} = 0.0456 \\ \boldsymbol{\mu_y} = 0.7834 \end{cases}$$

Sens x-x':
$$M_0^x = \mu_x \times q_u \times L_x^2 => M_0^x = 268,90$$
KN.m

Sens y-y':
$$M_0^y = \mu_y \times M_0^x => M_0^y = 210,66$$
KN.m

En travée:

Sens x-x':
$$M_t^x = 0.85 \times M_0^x = M_t^x = 228.56$$
KN.m

Sens y-y':
$$M_t^y = 0.85 \times M_0^y = M_t^y = 179,06 \text{ KN.m}$$

En appui:

$$M_a^x = -0.5 \times M_0^x = 134,45$$
KN.m

$$M_a^y = -0.5 \times M_0^y = 105,33$$
KN.m

Le ferraillage se fera pour une section (b \times h_r) = (1 \times 0.3) m²

VII.13.3 Condition de non fragilité

On calcule A_{min} : On a des HA f_e E500

 $\rho_0 = 0.0008 \text{ cm}$; $h_r = 30 \text{ cm}$; b = 100 cm; $\rho = 0.9$

$$\begin{cases} h_r > 12 \text{ cm} \\ \rho > 0,4 \end{cases} = \begin{cases} A_{min}^x = \rho_0 \times \frac{3-\rho}{2} \times b \times h_r \\ A_{min}^y = \rho_0 \times b \times h_r \end{cases} = \begin{cases} A_{min}^x = 2,52 \text{ cm}^2 \\ A_{min}^y = 2,40 \text{ cm}^2 \end{cases}$$

• Calcul à l'É.L.U:

Le tableau suivant résume le ferraillage adopté pour le radier:

Tableau VII.2: Résumé des résultats de ferraillage de radier

		M	Acalc	Amin	Aadop	St
		(KN/m)	(cm²)	(cm²)	(cm²/ml)	(cm)
	Travée	228,56	21,7	2,52	7T20 = 21,98	15
Sens x-x	Appui	134,45	12;15	2,52	7T16 = 14,07	15
	Travée	179,06	16,54	2,40	6T20 = 18,84	15
Sens y-y	Appui	105,33	9,38	2,40	5T16 = 10,05	20

• Vérification à l'É.L.S :

On doit vérifier que :

$$\sigma_b = \frac{M_{ser}}{I} \times y \le \overline{\sigma}_{adm} = 0.6 \times f_{c28} = 18MPa$$

$$\sigma_{st} = 15 \frac{M_{ser}}{I} (d_x - y) \Rightarrow \overline{\sigma}_{st} = \min \left[\frac{2}{3} \times f_e; (110 \sqrt{\eta \times f_{tj}}) \right] = 215,55 MPa$$

$$q_s = \frac{N'_u}{S_{rad}} \Rightarrow q_s = \frac{59289;08}{278,92} \Rightarrow q_s = 212,56KN/m^2$$

$$\rho = 0.9 \Rightarrow \rho > 0.4 \Rightarrow$$

$$\begin{cases}
\mu_x = 0.0456 \\
\mu_y = 0.783
\end{cases}$$

Les résultats sont résumés dans le tableau suivant :

Tableau VII.3: Vérification des contraintes de radier

Sens	Moments	Valeurs	A_{adop}	σ_{bc}	Observation	σ_s	Observation
		(KN.m)	(cm²)	(MPa)		(MPa)	
x-x	M_t	166,82	21,98	13,58	Vérifier	322,67	Non Vérifier
	M_a	98,13	14,07	9,29	Vérifier	289,93	Non Vérifier
	M_t	130,69	18,84	11,18	Vérifier	292,58	Non Vérifier
у-у	M _a	76,88	10,05	8,25	Vérifier	312,66	Non Vérifier

On remarque que la condition $\sigma_s < \overline{\sigma_s}$ dans le sens $\mathbf{x} - \mathbf{x'}$ et dans le sens $\mathbf{y} - \mathbf{y'}$ n'est pas vérifier, donc on doit augmenter la section d'acier.

Les résultats sont résumés dans le tableau suivants:

Tableau VII.4 : Vérification des contraintes de radier

Sens	Moments	Valeurs (KN.m)	A _{adop} (cm²/ml)	Choix /ml	σ_{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	σ_s (MPa)	$\overline{\sigma}_s$ (MPa)
x-x	M_t	166,82	39,25	8T25	11,40	18	187,20	215,55
	Ma	98,13	28,26	9T20	9,93	18	201,82	215,55
	M_t	130,69	29,44	6T25	7,16	18	99,19	215,55
y -y	M _a	76,88	24,86	6T20+3T16	5,08	18	91,24	215,55

On remarque que toutes les conditions sont vérifiées

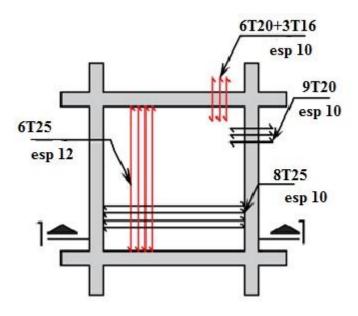


Figure VII.4 : Schéma de ferraillage du radier

VII.14 Calcul des nervures

VII.14.1 Les sollicitations sur les nervures

Les sollicitations sur les nervures sont déduites en utilisant la méthode de Caquot car on a des charges modérées et la fissuration est préjudiciable.

On à ρ = 0.9 \Rightarrow la transmission des charges sera subdivisée en deux charges (trapézoïdales et triangulaires).

• Charge triangulaire

 $P = \frac{q_u \times l_x}{3}$ Avec P charge équivalente produisant le même moment que la charge

triangulaire.

• Charge trapézoïdale

 $P = (1 - \frac{\rho^2}{3}) \times \frac{q_u \times l_x}{2}$ Avec P charge équivalente produisant le même moment que la charge

trapézoïdale.

$$q_u = 291,21 \ KN/m^2$$

$$q_s = 212,56 \, KN / m^2$$

VII.14.1.1 Moments aux appuis

$$M_{a} = \frac{P_{g} \times l^{'3}_{g} + P_{d} \times l^{'3}_{d}}{8.5 \times (l'_{g} + l'_{d})}$$

Avec: Les longueurs fictives:

Pour l'appui de rive, on a : $M_a = 0.15 \times M_0$ avec : $M_0 = \frac{q_u \times l^2}{8}$

VII.14.1.2 Moment en travée

$$M_t(x) = M_0(x) + M_g\left(1 - \frac{x}{l}\right) + M_d\left(\frac{x}{l}\right); M_0(x) = \frac{q_u \times x}{2}(1 + x); x = \frac{l}{2} - \frac{M_g - M_d}{q_u \times l};$$

 ${\cal M}_g$ et ${\cal M}_d$: moments sur appuis de gauche et droite respectivement.

Sens transversal (x-x)

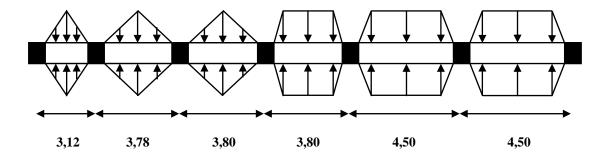


Figure VII.5 : Charges transmises aux nervures principales de radier

Les résultats des calcules sont récapitulés dans le tableau suivant :

Tableau VII.5 : Sollicitations de la nervure de radier dans le sens(x-x)

	L	L'	P	M_a (K	(Nm)	X	\mathbf{M}_{t}
Travée	(m)	(m)	(KN/m)	M_g	M_d	(m)	(KNm)
A-B	3,12	3,12	605,72	110,56	740,84	2,25	286,70
В-С	3,78	3,02	733,85	740,84	795,81	1,94	99,93
C-D	3,8	3,04	737,73	795,84	840,19	1,94	145,8
D-E	3,8	3,04	807,81	840,19	1192,89	2,22	47,69
E-F	4,5	3,6	956,62	1192,89	1914,36	2,8	768,87
F-G	4,5	4,5	956,62	1914,36	726,88	1,34	843,21

Sens longitudinal (y-y)

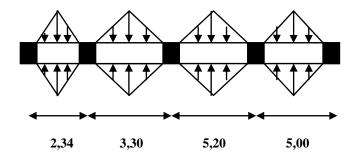


Figure VII.6 : Charges transmises aux nervures secondaires de radier

Les résultats des calcules sont récapitulés dans le tableau suivant :

Tableau VII.6 : Sollicitations de la nervure de radier dans le sens (y-y)

	L	L'	P	$\mathbf{M_a}$ (F	KNm)	X	\mathbf{M}_{t}
Travée	(m)	(m)	(KN/m)	M_g	M_d	(m)	(KNm)
A-B	2,34	2,34	454,28	46,64	415,98	1,71	40,77
В-С	3,3	2,64	640,66	415,98	1461,3	2,74	243,29
С-D	5,2	4,16	1009,52	1461,3	1491,83	3,28	466,47
F-G	5	5	970,7	1491,83	455,01	1,1	227,71

VII.14.2 Ferraillage

Le ferraillage se fera pour une section en Té en flexion simple.

h = 100cm; $h_0 = 30$ cm; $b_0 = 60$ cm; d = 90cm

$$b_1 \le \min(\frac{l_y}{10}; \frac{lx}{2}) => b_1 \le \min(\frac{342}{10}; \frac{264}{2})$$

 $b_1 \le \min(34,2;132)$

Soit : $b_1 = 30$ cm

donc: $b = b_1 \times 2 + b_0 = 120$ cm

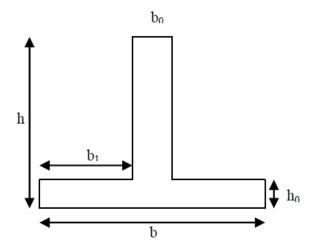


Figure VII.7 : Section à ferrailler

Tableau VII.7 : Résumé des résultats de ferraillage

Sens	Localisation	M_u	A_{cal}	A_{min}	A _{adopt} é	Choix
		(KN/m)	(cm²)	(cm²)	(cm²)	
х-х	Travée	843,21	22,11	11,92	25,12	8T20
	Appui	1914,36	31,44	11,92	39,25	8T25
y-y	Travée	466,47	12,08	11,92	16,08	8T16
	Appui	1491,83	40,02	11,92	45,52	6T25 + 2T32

Remarque : le ferraillage adopté est supérieur à la section d'acier calculée, et cela pour satisfaire à la condition $\sigma_s < \overline{\sigma}_s$

VII.14.3 Schéma de ferraillage des nervures

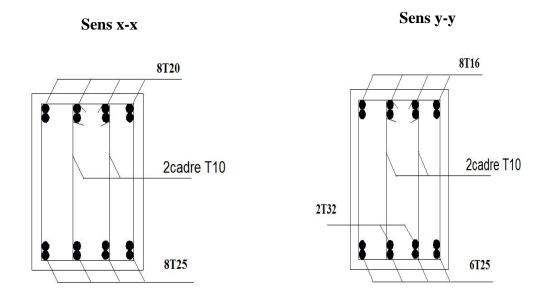


Figure VII.8: Ferraillage des nervures de fondation

Conclusion Générale

En conclusion nous sommes choisis le projet dénommé « **Etude d'un Bâtiment R+12 avec Sous-sol à usage multiple** » comme projet de fin d'études dans le but d'améliorer et développer nos connaissances dans le domaine de technique d'ingénieur de génie civil.

Le projet de fin d'étude est une occasion à l'étudiant d'appliquer les connaissances acquises durant sa formation, Cette expérience nous a permis aussi d'acquérir des connaissances sur les méthodes de calcul et d'études des structures.

L'étude sera basée sur les règles de calcul et de conception comme le règlement parasismique algérienne (RPA (99/version 2003); BAEL 91 (béton armé aux états limite); Règle de conception et calcul des structures CBA93, Et aussi la pratique des logiciels informatique comme: (ETABS pour modéliser la structure et voir leur comportement sous l'effet des sollicitations courant et accidentel avec l'interprétation des résultats, L'AUTOCAD pour dessiné les plans architecturales et de génie civil. ...etc.).

L'ingénieur en génie civil n'est pas un calculateur seulement, mais il faut proposer des solutions raisonnables et efficaces sur le terrain, d'une manière générale une conception justifier doit prendre en compte premièrement la sécurité pour éviter carrément les dégâts humain et matériel, sans oublier l'économie et le temps d'exécution.

Finalement nous espérons que ce mémoire soit le premier pas vers la vie professionnelle et un guide pour ce qui s'intéresse de près ou loin au métier de l'ingénieur en génie civil.

Références Bibliographiques

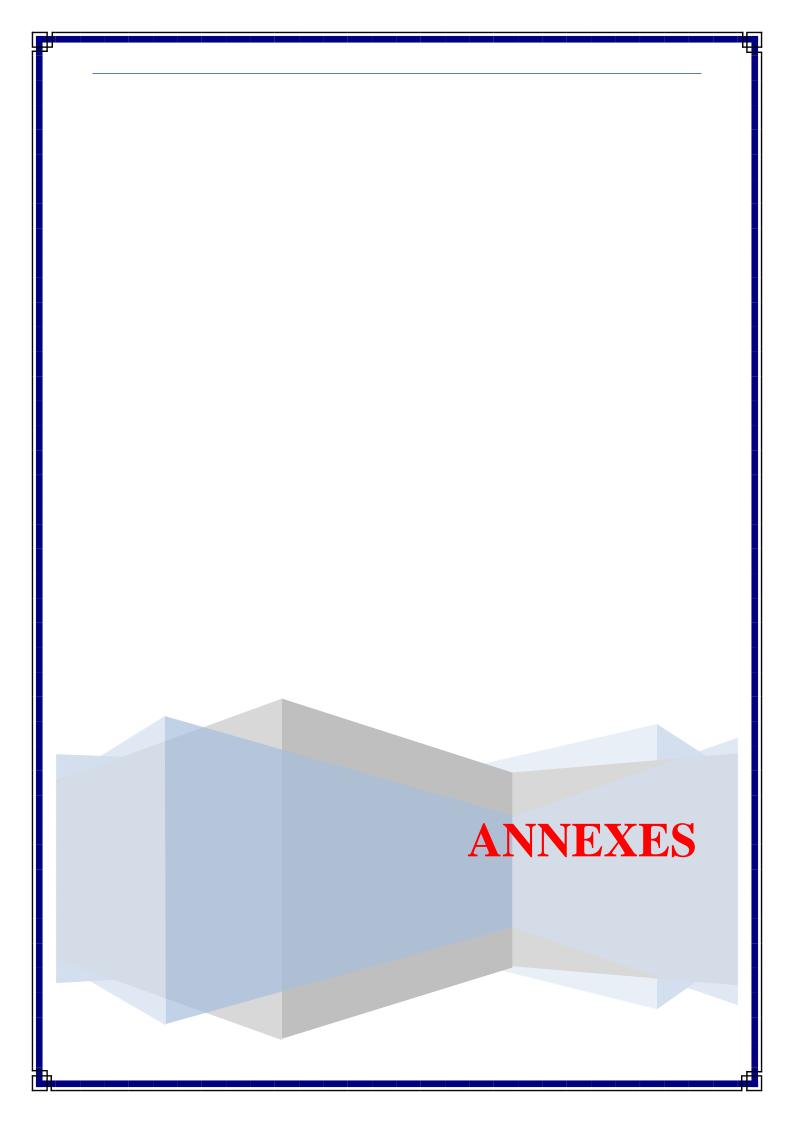
Règlements:

- **DTR**: Document technique réglementaire
- **RPA99**: Règles parasismiques algériennes version 2003
- **CBA93**: Règle de conception et de calcul des ouvrages en béton armé
- **BAEL91**: Béton armé aux états limite

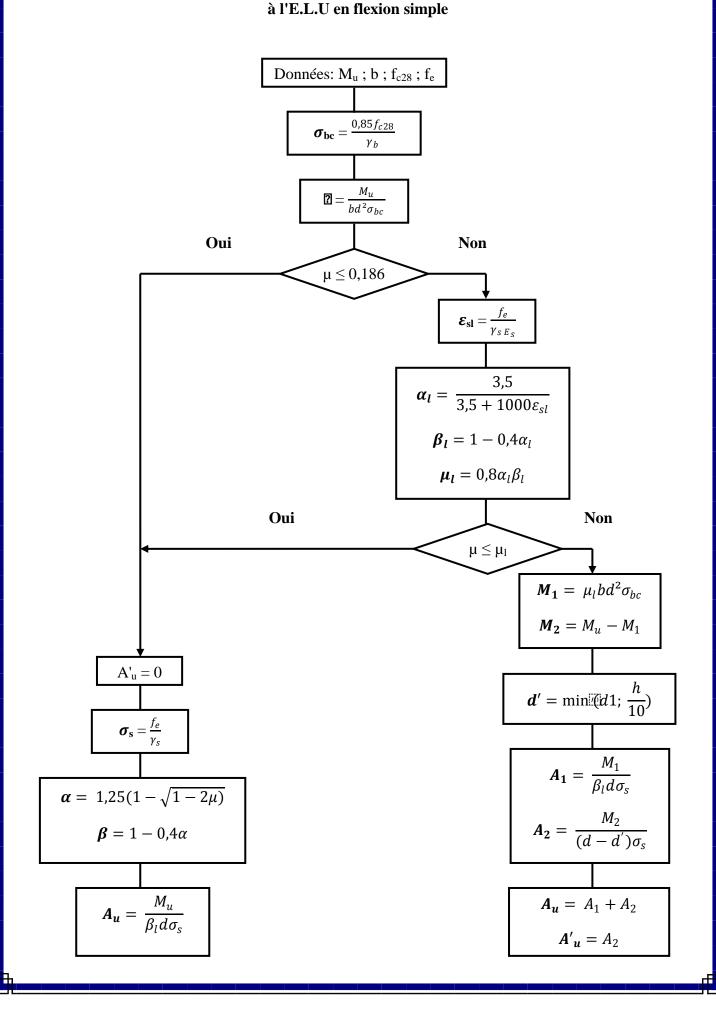
Livres:

- ♣ Calcul des ouvrages en béton armé [Mr: Yacine Cherait]
- ♣ Cours de béton armé [Mr: Soltani Mohamed Rèdha]
- Le béton armé états limites [Mr: Mohamed Belazoughi]

Cours:

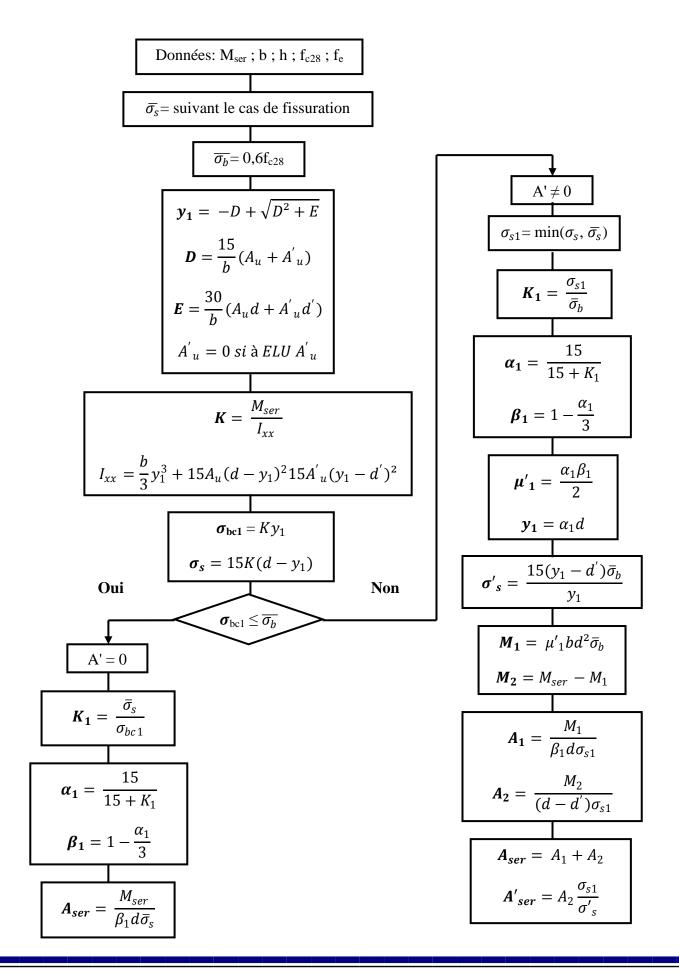

- ♣ Cours structure en béton armé (3ème année licence + 1er et 2ème année master)
- **↓** Cours résistance de matériaux RDM (3ème année licence)
- Cours en béton armé BAEL91 (Mr: Jean Pierre Mougin)

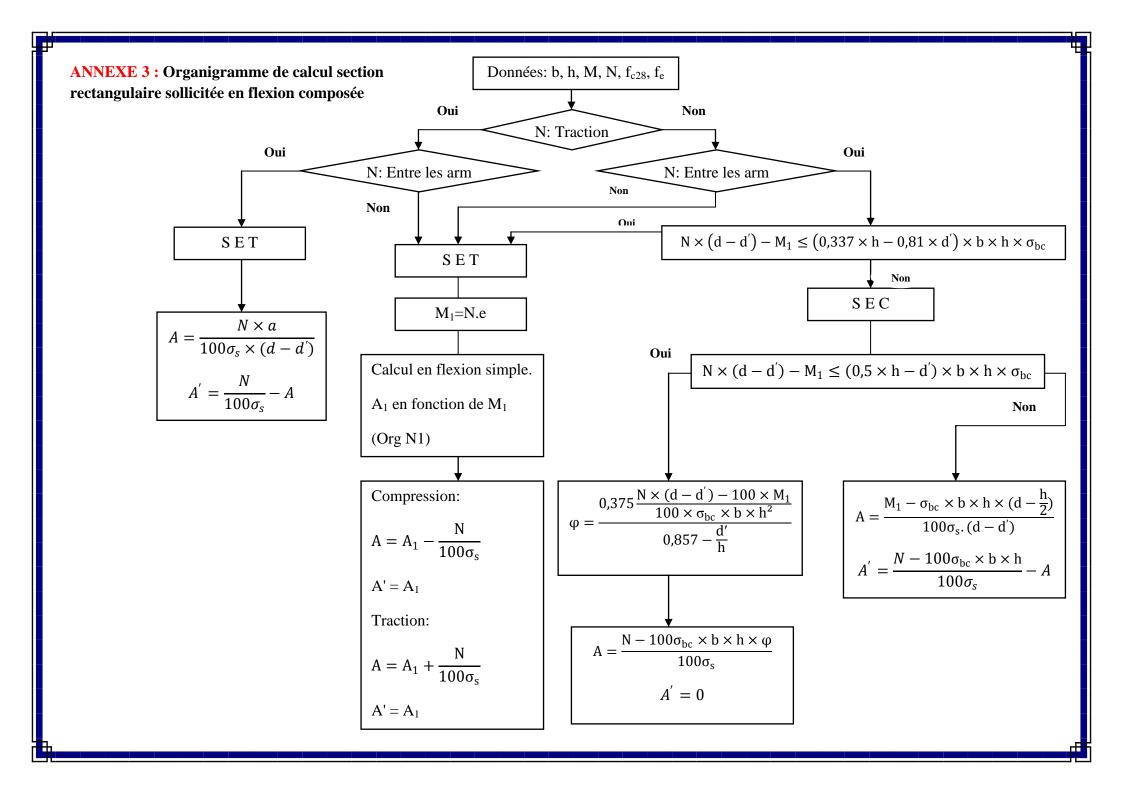
Sites:


- https://www.opu-dz.com/portal/fr [Office des Publications Universitaires]
- https://fr.scribd.com/ [Scribd]
- https://espace-etudiant.net/forum/ [Espace Etudiant]
- https://btp-cours.com/ [BTP Cours]

Documents:

- **↓** [1] Aidoun.F, Bouhali.A et Dahmane.O « Etude d'un bâtiment R+9+SS à usage d'habitation et commercial » Université A.Mira de Bejaia, 2013
- **↓** [2] Hachmaoui.N et Amirat.Z « Etude d'un batiment R+11+SS à usage d'habitation et bureau contreventé par un système mixte » Université A.Mira de Bejaia, 2016
- **↓** [3] Mouaziz.H « Conception parasismique d'un bâtiment dissymétrique irrégulière, cas d'un bâtiment R+9 à usage multiple » Centre universitaire Belhadj Bouchaib AT, 2016
- **↓** [4] Seddik.O et Abou ali.H « Etude d'une tour en béton armé R+12+SS à usage multiple » Université Dr.M.Tahar de Saida, 2017




ANNEXE 1 : Organigramme de calcul section rectangulaire

ANNEXE 2 : Organigramme de calcul section rectangulaire

à l'E.L.S en flexion simple

ANNEXE 4 : TABLEAU μx ET μy

$\rho = l_x$	ELU	$J\upsilon = 0$	ELS v	0 = 0.2
l_y	$\mu_{\scriptscriptstyle \! x}$	μ_{y}	$\mu_{\scriptscriptstyle \! x}$	μ_{y}
0.40	0.1101	0.2500	0.0121	0.2054
0.40 0.41	0.1101 0.1088	0.2500 0.2500	0.0121 0.1110	0.2854 0.2924
0.41	0.1088	0.2500	0.1110	0.3000
0.43	0.1073	0.2500	0.1098	0.3000
0.44	0.1049	0.2500	0.1087	0.3077
0.45	0.1036	0.2500	0.1073	0.3133
0.46	0.1022	0.2500	0.1003	0.3234
0.47	0.1022	0.2500	0.1031	0.3402
0.48	0.0994	0.2500	0.1036	0.3491
0.49	0.0980	0.2500	0.1023	0.3580
0.50	0.0966	0.2500	0.1000	0.3671
0.51	0.0951	0.2500	0.0987	0.3758
0.52	0.0937	0.2500	0.0974	0.3853
0.53	0.0922	0.2500	0.0961	0.3949
0.54	0.0908	0.2500	0.0948	0.4050
0.55	0.0894	0.2500	0.0936	0.4150
0.56	0.0880	0.2500	0.0923	0.4254
0.57	0.0865	0.2582	0.0910	0.4357
0.58	0.0851	0.2703	0.0897	0.4456
0.59	0.0836	0.2822	0.0884	0.4565
0.60	0.0822	0.2948	0.0870	0.4672
0.61	0.0808	0.3075	0.0857	0.4781
0.62	0.0794	0.3205	0.0844	0.4892
0.63	0.0779	0.3338	0.0831	0.5004
0.64	0.0765	0.3472	0.0819	0.5117
0.65	0.0751	0.3613	0.0805	0.5235
0.66	0.0737	0.3753	0.0792	0.5351
0.67	0.0723	0.3895	0.0780	0.5469
0.68	0.0710	0.4034	0.0767	0.5584
0.69	0.0697	0.4181	0.0755	0.5704
0.70	0.0684	0.4320	0.0743	0.5817
0.71	0.0671	0.4471	0.0731	0.5940
0.72	0.0658	0.4624	0.0719	0.6063
0.73	0.0646	0.4780	0.0708	0.6188
0.74	0.0633	0.4938	0.0696	0.6315
0.75	0.0621	0.5105	0.0684	0.6447
0.76	0.0608	0.5274	0.0672	0.6580
0.77	0.0596	0.5440	0.0661	0.6710
0.78	0.0584	0.5608	0.0650	0.6841
0.79	0.0573	0.5786	0.0639	0.6978
0.80	0.0561	0.5959	0.0628	0.7111
0.81	0.0550	0.6135	0.0617	0.7246

0.82	0.0539	0.6313	0.0607	0.7381
0.83	0.0528	0.6494	0.0956	0.7518
0.84	0.0517	0.6678	0.0586	0.7655
0.85	0.0506	0.6864	0.0576	0.7794
0.86	0.0496	0.7052	0.0566	0.7932
0.87	0.0486	0.7244	0.0556	0.8074
0.88	0.0476	0.7438	0.0546	0.8216
0.89	0.0466	0.7635	0.0537	0.8358
0.90	0.0456	0.7834	0.0528	0.8502
0.91	0.0447	0.8036	0.0518	0.8646
0.92	0.0437	0.8251	0.0509	0.8799
0.93	0.0428	0.8450	0.0500	0.8939
0.94	0.0419	0.8661	0.0491	0.9087
0.95	0.0410	0.8875	0.0483	0.9236
0.96	0.0401	0.9092	0.0474	0.9385
0.97	0.0392	0.9322	0.4065	0.9543
0.98	0.0384	0.9545	0.0457	0.9694
0.99	0.0376	0.9771	0.0449	0.9847
1.00	0.0368	1.0000	0.0441	0.1000

ANNEXE 5: TABLEUA DE PIGEAUD

 M_1 et M_2 pour une charge concentrique s'exerçant sur une surface réduite $u \times v$ au centre d'une plaque ou dalle rectangulaire appuyée sur son pourtour et de dimensions :

 $L_x \times L_y$ avec $L_x < L_y$

,	u/L_x v/L_y	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
	0.0	/	0.254	0.187	0.154	0.131	0.115	0.102	0.090	0.081	0.073	0.067
	0.1	0.302	0.235	0.183	0.152	0.130	0.114	0.101	0.089	0.080	0.073	0.067
	0.2	0.260	0.214	0.175	0.148	0.128	0.112	0.099	0.088	0.079	0.072	0.066
M_1	0.3	0.227	0.196	0.164	0.142	0.124	0.109	0.097	0.086	0.078	0.070	0.065
de	0.4	0.202	0.178	0.153	0.134	0.118	0.105	0.093	0.083	0.075	0.068	0.063
	0.5	0.181	0.160	0.141	0.126	0.113	0.100	0.089	0.080	0.073	0.066	0.060
Valeur	0.6	0.161	0.146	0.130	0.118	0.106	0.095	0.085	0.077	0.069	0.063	0.057
>	0.7	0.144	0.133	0.121	0.110	0.098	0.088	0.079	0.072	0.065	0.058	0.054
	0.8	0.132	0.123	0.113	0.102	0.092	0.083	0.074	0.067	0.061	0.055	0.049
	0.9	0.122	0.114	0.103	0.093	0.084	0.076	0.068	0.062	0.057	0.051	0.046
	1.0	0.112	0.102	0.093	0.084	0.075	0.068	0.062	0.057	0.051	0.046	0.042
	0.0	/	0.310	0.200	0.167	0.149	0.134	0.122	0.110	0.098	0.088	0.081
	0.1	0.253	0.208	0.173	0.151	0.136	0.123	0.110	0.099	0.089	0.081	0.074
	0.2	0.202	0.175	0.152	0.137	0.123	0.110	0.100	0.089	0.082	0.074	0.067
\mathbf{M}_2	0.3	0.167	0.150	0.135	0.123	0.110	0.099	0.088	0.081	0.074	0.067	0.061
de	0.4	0.143	0.132	0.122	0.110	0.098	0.088	0.081	0.074	0.067	0.061	0.056
	0.5	0.128	0.118	0.108	0.097	0.088	0.080	0.073	0.067	0.062	0.056	0.051
Valeur	0.6	0.114	0.106	0.096	0.087	0.079	0.073	0.067	0.062	0.056	0.052	0.047
	0.7	0.102	0.094	0.086	0.078	0.073	0.067	0.062	0.057	0.052	0.047	0.043
	0.8	0.09	0.083	0.077	0.072	0.066	0.062	0.056	0.052	0.047	0.043	0.038
	0.9	0.081	0.076	0.071	0.066	0.061	0.056	0.052	0.047	0.043	0.038	0.035
	1.0	0.073	0.069	0.065	0.060	0.055	0.050	0.047	0.043	0.038	0.035	0.032

ANNEXE 6: LE TABLEAU DE SECTION DES ARMATURES

Diamètre	Poids						Sec	ction en c	cm ²				
(mm)	Kg/ml	1	2	3	4	5	6	7	8	9	10	11	12
5	0,154	0,20	0,39	0,59	0,79	0,98	1,18	1,37	1,57	1,77	1,96	2,16	2,36
6	0,222	0,28	0,57	0,85	1,13	1,41	1,70	1,98	2,26	2,54	2,83	3,11	3,39
8	0,392	0,50	1,01	1,51	2,02	2,51	3,01	3,52	4,02	4,52	5,02	5,53	6,03
10	0,613	0,79	1,57	2,36	3,14	3,93	4,71	5,50	6,28	7,07	7,85	8,64	9,42
12	0,882	1,13	2,26	3,39	4,52	5,65	6,78	7,91	9,04	10,17	11,30	12,43	13,56
14	1,201	1,54	3,08	4,62	6,16	7,70	9,28	10,77	12,31	13,85	15,39	16,92	18,46
16	1,568	2,01	4,02	6,03	8,04	10,05	12,06	14,07	16,08	18,09	20,10	22,11	24,12
20	2,450	3,14	6,28	9,42	12,57	15,70	18,84	21,98	25,12	28,26	31,40	34,54	37,68
25	3,826	4,91	9,82	14,73	19,64	24,53	29,44	34,34	39,25	44,16	49,06	53,97	58,98
32	6,273	8,04	16,08	24,13	32,17	40,19	48,23	56,27	64,31	72,35	80,38	88,42	96,46
40	9,802	12,57	25,13	37,71	50,25	62,85	75,42	87,99	100,56	113,13	125,70	138,27	150,84