
Citation: Beniani, A.; Bahri, N.;

Alharbi, R.; Bouhali, K.; Zennir, K.

Stability for Weakly Coupled Wave

Equations with a General Internal

Control of Diffusive Type. Axioms

2023, 12, 48. https://doi.org/

10.3390/axioms12010048

Academic Editor: Valery Y. Glizer

Received: 24 November 2022

Revised: 17 December 2022

Accepted: 23 December 2022

Published: 2 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Stability for Weakly Coupled Wave Equations with a General
Internal Control of Diffusive Type
Abderrahmane Beniani 1, Noureddine Bahri 2, Rabab Alharbi 3,* , Keltoum Bouhali 3,4 and Khaled Zennir 3,5

1 EDPs Analysis and Control Laboratory, Department of Mathematics, BP 284, University Ain Témouchent,
Belhadj Bouchaib 46000, Algeria

2 Laboratory of Mathematics and Applications, Hassiba Benbouali University, Chlef 02000, Algeria
3 Department of Mathematics, College of Sciences and Arts, Qassim University, Ar-Rass 51452, Saudi Arabia
4 Department of Mathematics, Faculty of Sciences, 20 Aout 1955 University, Skikda 21000, Algeria
5 Laboratoire de Mathématiques Appliquées et de Modélisation, Université 8 Mai 1945 Guelma,

Guelma 24000, Algeria
* Correspondence: ras.alharbi@qu.edu.sa

Abstract: The present paper deals with well-posedness and asymptotic stability for weakly coupled
wave equations with a more general internal control of diffusive type. Owing to the semigroup theory
of linear operator, the well-posedness of system is proved. Furthermore, we show a general decay rate
result. The method is based on the frequency domain approach combined with multiplier technique.
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1. Introduction

When describing the propagation of nonlinear waves with an internal control of
diffusive type, the theory of semigroup is often used. It is used in the case, which is quite
important for applications, when the internal diffusive mechanism is described by integer
derivatives. The large amount of currently available experimental data on the internal
structure of nonlinear waves in applications requires the complication and modification of
mathematical modeling methods. Here, the main attention is paid to the construction and
analysis of stability for nonlinear mathematical models that reflect the influence of internal
control of diffusive type.

To begin with, let Ω be a bounded open domain in Rn (n ≥ 1) with a smooth boundary
∂Ω, x ∈ Ω, t ∈ (0,+∞) and v ∈ (−∞,+∞). We consider the following system of coupled
wave equations with general internal control of diffusive type

∂ttu− ∆xu + ζ
∫ +∞
−∞ $(v)φ(x, v, t)dv + βv = 0,

∂ttv− ∆xv + ζ
∫ +∞
−∞ $(v)ϕ(x, v, t)dv + βu = 0,

u = v = 0 on ∂Ω
φt(x, v, t) + (v2 + η)φ(x, v, t)− ∂tu$(v) = 0,
ϕt(x, v, t) + (v2 + η)ϕ(x, v, t)− ∂tv$(v) = 0,
u(x, 0) = u0(x), ∂tu(x, 0) = u1(x),
v(x, 0) = v0(x), ∂tv(x, 0) = v1(x),
φ(x, v, 0) = φ0(x, v) and ϕ(x, v, 0) = ϕ0(x, v),

(1)

where ζ > 0, η ≥ 0 and $ are a general measure density, the initial data are taken in suitable
spaces, and the coefficient β satisfies the condition

0 < |β| < δC
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where δ ∈ (0, 1). When $(v) = |v| 2α−1
2 , ζ = γπ−1 sin(απ) and φ0 ≡ 0, problem (1)1,2

becomes 
∂ttu− ∆xu + γ∂

α,η
t u + βv = 0,

∂ttv− ∆xv + γ∂
α,η
t v + βu = 0,

where ∂
α,η
t denotes the generalized Caputo’s fractional derivative of order α, 0 < α < 1

with respect to the time variable. It is defined by

∂
α,η
t w(t) =

1
Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s) dw

ds
(s) ds, η ≥ 0.

In [1], Mbodje studied the energy decay of the wave equation with a boundary control
of fractional derivative type, that is, for x ∈ (0, L), t ∈ (0,+∞)

∂ttu(x, t)− uxx(x, t) = 0,
u(0, t) = 0,
ux(L, t) + ρ∂

α,η
t u(L, t) = 0,

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x).

A new approach named “diffusive representation” is used to solve the problem. The
first model is transformed into a related system which can be easily treated by the energy
method. If η = 0, the strong asymptotic stability of solutions is proved and, when η 6= 0,
an algebraic decay rate E(t) ≤ C/t for t > 0 is shown. In [2], Villagram et al. study the
stabilization for the following coupled wave equations with dynamic control of fractional
derivative type, for x ∈ (0, 1), t ∈ (0,+∞)


∂ttu− uxx + βv = 0,
∂ttv− vxx + βu = 0,
u(0, t) = v(0, t) = 0,
u(x, 0) = u0(x), ∂tu(x, 0) = u1(x) and v(x, 0) = v0(x), ∂tv(x, 0) = v1(x),
ux(1, t) = −∂

α,η
t u(1, t) and vx(1, t) = −∂

α,η
t v(1, t).

The authors proved that the decay of energy is not exponential, but it is polynomial.
Recently, in [3], Boudaoud and Benaissa extended the result of Mbodje to a higher-

space dimension and general internal control of diffusive type.
∂ttu− ∆xu + ζ

∫ +∞
−∞ $(v)φ(x, v, t)dv = 0,

u(x, t) = 0 on ∂Ω,
φt(x, v, t) + (v2 + η)φ(x, v, t)− ∂tu$(v) = 0,
u(x, 0) = u0(x), ∂tu(x, 0) = u1(x),
φ(x, v, 0) = φ0(x, v),

The authors proved a very general rate depending on the form of the function $.
Our paper extends all the previous works, and its plan is as follows. In Section 2, we

give preliminary results, and we establish the well-posedness of the system (1), owing to the
Hille–Yosida Theorem. We show, in Section 3, the lack of exponential stability. In Section 4,
an asymptotic stability of our model is studied, where the main results are Theorem 4 and
Theorem 7. In Theorem 7, we established a general rate of decay which depends on that of
the density function $.

Remark 1. For this topic, we can say that there are many related problems which still are open,
such as in the unbounded domain, where one can consider the same model in Rn with weighted
functions.
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2. Preliminary Results and Well-Posedness

We state hypotheses on the even non-negative measurable function $ as∫ ∞
−∞

$(v)2

1+v2 dv < ∞. (2)

Now, we recall some definitions which are needed in Section 4 for the application.

Definition 1. Let a ≥ 0, and let M : [a,+∞)→ (0,+∞) be a measurable function, then M has
a positive increase if there exist α > 0, c ∈ (0, 1] and s0 ≥ a, such that

M(κs)
M(s)

≥ cκα, κ ≥ 1, s ≥ s0.

The next Lemma will be useful (see [1]).

Lemma 1. Let
D = {κ ∈ C/<κ + η > 0} ∪ {=κ 6= 0},

if κ ∈ D, then ∫ +∞

−∞

$2(v)

κ + η + v2 dv =
π

sin απ
(κ + η)α−1,

and ∫ +∞

−∞

$2(v)

(κ + η + v2)
2 dv = (1− α)

π

sin απ
(κ + η)α−2.

We are now ready to give the existence and uniqueness result for the problem (1) by
using semigroup theory. The energy space is defined as

H = [H1
0(Ω)]2 × [L2(Ω)]2 × [L2(Ω× (−∞,+∞))]2,

equipped with the following inner product

〈U, Ũ〉H =
∫

Ω

(
ww̃ + zz̃ +∇xu∇xũ +∇xv∇x ṽ + βuṽ + βvũ

)
dx

+ ζ
∫

Ω

∫ +∞

−∞

(
φφ̃ + ϕϕ̃

)
dvdx, (3)

where
U = (u, v, w, z, φ, ϕ)T , Ũ = (ũ, ṽ, w̃, z̃, φ̃, ϕ̃)T .

Remark 2. Note that if 0 < |β| < δC, we have

2
∣∣∣βR〈u, v〉

∣∣∣ ≤ 2|β|‖u‖2.‖v‖2

≤ 2|β|. 1
C‖∇xu‖2.‖∇xv‖2

≤ δ(‖∇xu‖2 + ‖∇xv‖2),

(4)

which guarantees the positivity of the norm.

In order to transform the problem (1) to an abstract problem on the Hilbert spaceH,
we introduce the vector function U = (u, v, w, z, φ, ϕ)T , where w = ∂tu and z = ∂tv. Then,
problem (1) can be rewritten as

∂tU = AU, U(0) = U0, (5)

where U0 = (u0, v0, u1, v1, φ0, ϕ0)
T , and A : D(A) ⊂ H → H is defined as follows
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A



u
v
w
z
φ,
ϕ

 =



w
z

∆xu− ζ
∫ +∞
−∞ $(v)φ(v)dv− βv

∆xv− ζ
∫ +∞
−∞ $(v)ϕ(v)dv− βu

−(v2 + η)φ + w(x)$(v)
−(v2 + η)ϕ + z(x)$(v)


. (6)

and its domain is given by

D(A) =



(u, v, w, z, φ, ϕ)T inH : u, v ∈ H2(Ω) ∩ H1
0(Ω), w, z ∈ H1

0(Ω),
∆xu(x)− ζ

∫ +∞
−∞ $(v)φ(v)dv− βv ∈ L2(Ω) and

∆xv(x)− ζ
∫ +∞
−∞ $(v)ϕ(v)dv− βu ∈ L2(Ω)

−(v2 + η)φ + w(x)$(v) ∈ L2(Ω× (−∞,+∞)), |v|φ ∈ L2(Ω× (−∞,+∞))
−(v2 + η)ϕ + z(x)$(v) ∈ L2(Ω× (−∞,+∞)), |v|ϕ ∈ L2(Ω× (−∞,+∞))


.

The energy associated to the solution of the problem (1) is given by

E(t) =
1
2

[
‖∂tu‖2

2 + ‖∂tv‖2
2 + ‖∇xu‖2

2 + ‖∇xu‖2
2

]
+2β

∫
Ω

uvdx +
ζ

2

∫
Ω

∫ +∞

−∞

(
|φ(x, v, t)|2 + |ϕ(x, v, t)|2

)
dvdx. (7)

Differentiating E in a formal way, using (1) and integrating by parts, we obtain, after a
straightforward computation, the following Lemma.

Lemma 2. Let (u, v, w, z, φ, ϕ) be a regular solution of problem (1). Then, the energy functional
defined by (7) satisfies

∂tE(t) = −ζ
∫

Ω

∫ +∞

−∞
(v2 + η)

(
|φ(x, v, t)|2 + |ϕ(x, v, t)|2

)
dvdx

≤ 0. (8)

We have the following results.

Proposition 1. The operatorA is the infinitesimal generator of a contraction semigroup {S(t)}t≥0

Proof. First, we prove that the operator A is dissipative. We observe that U ∈ D(A) and
by (5), (8) and the fact that

E(t) = 1
2
‖U‖2

H, (9)

we obtain
R〈AU, U〉H = −ζ

∫
Ω

∫ +∞
−∞ (v2 + η)|φ(x, v)|2 dvdx. (10)
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In fact, using (3), and integrating by parts, we obtain

〈AU, U〉 =
∫

Ω

(
∇xw∇xu−∇xw∇xu +∇xz∇xv−∇xz∇xv

)
dx

− ζ
∫ +∞

−∞

(
v2 + η

)(
|φ|2 + |ϕ|2

)
dv

+ β
∫

Ω

(
wv− wv + zu− zu

)
dx + ζ

∫ +∞

−∞
$(v)

[(
φz− φz

)
+
(

φz− φz
)]

dv

= 2iIm
∫

Ω
∇xw∇xudx + 2iIm

∫
Ω
∇xz∇xvdx

+ 2iβIm
∫

Ω
w∇xvdx + 2iβIm

∫
Ω

z∇xudx

+ ζ2iIm
∫ +∞

−∞
$(v)φz− ζ

∫ +∞

−∞

(
v2 + η

)(
|φ|2 + |ϕ|2

)
dv.

Hence, taking the real part, then estimate (10) holds.
Next, we prove that the operator κ I −A is surjective for every κ > 0. We show that for

any F = ( f1, f2, f3, f4, f5, f6)
T ∈ H, there exists a (unique) solution U = (u, v, w, z, φ, ϕ)T ∈

D(A)m such that κU −AU = F.
Then, in terms of components, the above equation reads

κu− w = f1,
κv− z = f2,
κw− ∆xu + ζ

∫ +∞
−∞ $(v)φ(v)dv + βv = f3,

κz− ∆xv + ζ
∫ +∞
−∞ $(v)ϕ(v)dv + βu = f4,

κφ + (v2 + η)φ− w(x)$(v) = f5
κϕ + (v2 + η)ϕ− z(x)$(v) = f6.

(11)

Suppose (u, v) is found with the appropriate regularity. Then, from (11)1 and (11)2,
we find that 

w = κu− f1 ∈ H1
0(Ω)

z = κv− f2 ∈ H1
0(Ω),

(12)

and by (11)5,6, we obtain 
φ = f5(x,v)

v2+η+κ
+ κ$(v)u(x)

v2+η+κ
− $(v) f1(x)

v2+η+κ

ϕ = f6(x,v)
v2+η+κ

+ κ$(v)v(x)
v2+η+κ

− $(v) f2(x)
v2+η+κ

.
(13)

On the other hand, replacing (12)1,2 into (11)3,4, respectively, yields
κ2u− ∆xu + ζ

∫ +∞
−∞ $(v)φ(v)dv + βv = f3 + κ f1

κ2v− ∆xv + ζ
∫ +∞
−∞ $(v)ϕ(v)dv + βu = f4 + κ f2.

(14)

Solving system (14) is equivalent to finding u, v ∈ H2(Ω) ∩ H1
0(Ω), such that∫

Ω(κ2uũ +∇xu∇xũ)dx + κζ̃
∫

Ω uũdx + β
∫

Ω vũ

=
∫

Ω( f2 + κ f1)ũdx− ζ
∫ +∞
−∞

$(v)
v2+η+κ

∫
Ω f5(x, v)ũdxdv + ζ̃

∫
Ω f1ũdx,

(15)
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and ∫
Ω(κ2vṽ +∇xv∇x ṽ)dx + κζ̃

∫
Ω vṽdx + β

∫
Ω uṽdx

=
∫

Ω( f4 + κ f2)ṽdx− ζ
∫ +∞
−∞

$(v)
v2+η+κ

∫
Ω f6(x, v)ṽdxdv + ζ̃

∫
Ω f2ṽdx,

(16)

for all ũ, ṽ ∈ H1
0(Ω) and ζ̃ = ζ

∫ +∞
−∞

$2(v)
v2+η+κ

dv.
The system (15) and (16) is equivalent to the problem

B((u, v), (ũ, ṽ)) = L(ũ, ṽ), (17)

where the sesquilinear form

B : [H1
0(Ω)× H1

0(Ω)]2 −→ C,

and the antilinear form
L : [H1

0(Ω)]2 −→ C,

are defined by

B((u, v), (ũ, ṽ)) =
∫

Ω
(κ2uũ + κ2vṽ +∇xu∇xũ +∇xv∇x ṽ)dx + κζ̃

∫
Ω
(uũ + vṽ)dx,

and

L(ũ, ṽ) =
∫

Ω
( f2 + κ f1)ũdx +

∫
Ω
( f4 + κ f2)ṽdx + ζ̃

∫
Ω

f1ũdx

− ζ
∫ +∞

−∞

$(v)

v2 + η + κ

∫
Ω
( f5(x, v)ũ + f6(x, v)ṽ)dxdv.

It is not hard to verify that B is continuous and coercive, and L is continuous. By
Lax–Milgram’s Theorem, we deduce for all ũ, ṽ ∈ H1

0(Ω), the problem (17) admits a unique
solution u, v ∈ H1

0(Ω). Using classical elliptic regularity, it follows from (15) and (16) that
u, v ∈ H2(Ω) ∩ H1

0(Ω). In order to complete the existence of U ∈ D(A), we need to prove
φ, ϕ, |v|φ and |v|ϕ ∈ L2(Ω× (−∞, ∞)). From (13)1, we get∫

Ω

∫
R
|φ(v)|2 dv dx ≤ 3

∫
Ω

∫
R

| f5(x, v)|2
(v2 + η + κ)2 dv dx + 3(κ2‖u‖2

2 + ‖ f1‖2
2)
∫
R

$2(v)

(v2 + η + κ)2 dv.

Using (2), it easy to see that

∫
R

$2(v)

(v2 + η + κ)2 dv ≤ 1
κ

∫
R

$2(v)

(v2 + η + κ)
dv < +∞.

On the other hand, using the fact that f5 ∈ L2(Ω× (−∞, ∞)), we obtain

∫
Ω

∫
R

| f5(x, v)|2
(v2 + η + κ)2 dv dx ≤ 1

κ2

∫
R
| f5(x, v)|2 dv dx < +∞.

It follows that φ ∈ L2(Ω× (−∞, ∞)). Next, using (13)1, we obtain∫
Ω

∫
R
|vφ(v)|2 dv dx ≤ 3

∫
Ω

∫
R

|v|2| f3(x, v)|2
(v2 + η + κ)2 dv dx + 3(κ2‖u‖2 + ‖ f1‖2)

∫
R

|v|2$2(v)

(v2 + η + κ)2 dv.

Using (2) again, it easy to see that

∫
R

|v|2$2(v)

(v2 + η + κ)2 dv ≤
∫
R

$2(v)

(v2 + η + κ)
dv < +∞.
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Now, using the fact that f5 ∈ L2(Ω× (−∞, ∞)), we find

∫
Ω

∫
R

|v|2| f5(v)|2
(v2 + η + κ)2 dv dx ≤ 1

κ

∫
Ω

∫
R
| f5(x, v)|2 dv dx < +∞.

It follows that |v|φ ∈ L2(Ω× (−∞, ∞)) and φ ∈ L2(Ω× (−∞, ∞)). Finally, it is clear
that

− (v2 + η)φ(x, v) + w(x)$(v) = κφ(x, v)− f5(x, v) ∈ L2(Ω× (−∞, ∞)).

Using the same arguments, we can prove ϕ, |v|ϕ ∈ L2(Ω× (−∞, ∞)). Then, U ∈
D(A). Therefore, the operator κ I −A is surjective for any κ > 0.

Consequently, using the Lumer–Philips Theorem [4], we have the following result.

Theorem 1 (Existence and uniqueness). If U0 ∈ H, then system (5) has a unique weak solution

U ∈ C0(R+,H).

Moreover, if U0 ∈ D(A), then system (5) has a unique strong solution

U ∈ C0(R+, D(A)) ∩ C1(R+,H).

3. Lack of Exponential Stability

Theorem 2 ([5]). Let S(t) = eAt be a C0-semigroup of contractions on Hilbert space X. Then,
S(t) is exponentially stable if, and only if,

ρ(A) ⊇ {iβ : β ∈ R} ≡ iR, (18)

and
lim
|β|→∞

‖(iβI −A)−1‖L(X) < ∞. (19)

Our main result in this part is the following Theorem.

Theorem 3. The semigroup generated by the operator A cannot be exponentially stable.

Proof. Let −δ2
n = (iδn)2 be a sequence of eigenvalues corresponding to the sequence of

normalized eigenfunctions un of the operator ∆x, such that |δn| −→ ∞ as n −→ ∞ and{
∆xun = −δ2

nun in Ω,

un = 0 on ∂Ω.
(20)

Our aim is to prove, under some conditions, that if iδn satisfies (18), then (19) does not
hold. In other words, we want to prove that there exist an infinite number of eigenvalues of
A approaching the imaginary axis, which prevents the wave system (1) from being exponen-
tially stable. Indeed, we first compute the characteristic equation that gives the eigenvalues
of A. Let κ be an eigenvalue of A with associated eigenvector U = (u, v, w, z, φ, ϕ)T . Then,
AU = κU is equivalent to

κu− w = 0,
κv− z = 0,
κw− ∆xu + ζ

∫ +∞
−∞ $(v)φ(v)dv + βv = 0,

κz− ∆xv + ζ
∫ +∞
−∞ $(v)ϕ(v)dv + βu = 0,

κφ + (v2 + η)φ− w(x)$(v) = 0
κϕ + (v2 + η)ϕ− z(x)$(v) = 0.

(21)
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We note that assuming the decomposition given by Φ := u + v, Θ := w + z and
Λ := φ + ϕ, we have

κΦ−Θ = 0,
κΘ− ∆xΦ + ζ

∫ +∞
−∞ $(v)Λdv + βΦ = 0,

κΛ + (v2 + η)Λ−Θ$(v) = 0.
(22)

The problem (22) can be rewritten as

Vt = A1V, V(0) = V0, (23)

where V0 = (Φ0, Φ1, Λ0)
T , and A1 : D(A) ⊂ H→ H is defined as follows

A1(Φ, Θ, Λ) =

(
Θ, ∆xΦ− ζ

∫ +∞

−∞
$(v)Λ(v)dv,−(v2 + η)Λ + Θ(x)$(v)

)
. (24)

Taking Ψ := u− v, Υ := w− z and Ξ := φ− ϕ, we have
κΨ− Υ = 0,
κΥ− ∆xΨ + ζ

∫ +∞
−∞ $(v)Ξdv− βΨ = 0,

κΞ + (v2 + η)Ξ− Υ$(v) = 0.
(25)

Moreover, note that

u :=
1
2
(Φ + Ψ), v :=

1
2
(Φ−Ψ), w :=

1
2
(Θ + Υ), z :=

1
2
(Θ− Υ), ϕ :=

1
2
(Λ + Ξ),

and φ := 1
2 (Λ− Ξ). We define the Hilbert space

H = H1
0(Ω)× L2(Ω)× L2(Ω× (−∞,+∞)),

equipped with the following inner product 〈V1, V2〉H =
∫

Ω

(
Θ1Θ2 +∇xΦ1∇xΦ2 + βΦ1Φ2

)
dx + ζ

∫
Ω

∫ +∞
−∞ Λ1Λ2dvdx

〈W1, W2〉H =
∫

Ω

(
Υ1Υ2 +∇xΨ1∇xΨ2 − βΨ1Ψ2

)
dx + ζ

∫
Ω

∫ +∞
−∞ Ξ1Ξ2dvdx,

(26)

where V1 = (Φ1, Θ1, Λ1), V2 = (Φ2, Θ2, Λ2), W1 = (Ψ1, Υ1, Ξ1), and W2 = (Ψ2, Υ2, Ξ2)
Note that inner product 〈U1, U2〉H given in (3) satisfies equality

〈U1, U2〉H =
1
2

(
〈V1, V2〉H + 〈W1, W2〉H

)
.

Now, we need to solve problems (22)–(25). From (22) 1 , we have

Θ = κΦ. (27)

Inserting (27) in (22)2 , we obtain

κ2Φ− ∆xΦ + ζ
∫ +∞
−∞ $(v)Λ(v)dv + βΦ = 0. (28)

Then, from (27), (22)3, and (28), we obtain

κ2Φ− ∆xΦ + ζ
∫ +∞
−∞ κΦ(x) $2(v)

v2+η+κ
dv + βΦ = 0, (29)

it follows that
∆xΦ =

(
κ2 + β + ζ

∫ +∞
−∞ κ

$2(v)
v2+η+κ

dv
)

Φ. (30)
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From (20) and (30), we obtain the existence of a sequence of eigenvalues κn of A
corresponding to the sequence δn, such that

− δ2
nΦn = ∆xΦn =

(
κ2

n + β + ζ
∫ +∞

−∞
κn

$2(v)

v2 + η + κn
dv
)

Φn,

then, we obtain

δ2
n = −κ2

n − β− ζ
∫ +∞

−∞
κn

$2(v)

v2 + η + κn
dv.

By taking Λn = $(v)
v2+η+iδn

Φn and the vector Vn = (Φn
iδn

, Φn, Λn)T , we have Vn ∈ D(A1).
Then, a direct computation gives

A1

Φn
iδn
Φn
Λn

 =

 Φn

iδnΦn + βΦn − ζ
∫ +∞
−∞ $(v)Λn(v)dv

iδnΛn

.

It follows that

(iδn I −A1)Vn =

 0

−βΦn + ζΦn
∫ +∞
−∞

$2(v)
v2+η+iδn

dv

0

.

Proving∥∥∥(iδn I −A1)
−1
∥∥∥
L(H)

−→ ∞ as |δn| −→ ∞
(

i.e., as n −→ ∞
)

,

reduces to show that, as n −→ ∞,∥∥∥− βΦn + ζΦn

∫ +∞

−∞

$2(v)

v2 + η + iδn
dv
∥∥∥

L2(Ω)
≤
∥∥∥ζΦn

∫ +∞

−∞

$2(v)

v2 + η + iδn
dv
∥∥∥

L2(Ω)
−→ 0.

Indeed, using the fact that∣∣∣ ∫ +∞

−∞

$2(v)

v2 + η + iβn
dv
∣∣∣ ≤−→ 0 as n −→ ∞,

(see Lemma 4.3 in [6]) and the fact that Φn is a normalized eigenfunction of the operator ∆x
for each n ∈ N, we obtain the desired limit. Therefore, taking U = (u, v, w, z, φ, ϕ) ∈ D(A),
we conclude that

‖U‖2
H =

1
2

(
‖V‖2

H + ‖W‖2
H

)
≥ 1

2
‖V‖2

H −→ +∞.

This completes the proof.

4. Stability
4.1. Strong Stability of the System

Here, we use the general Theorem of Arendt–Batty in [7] to show the strong stability of
the C0-semigroup etA associated to the system (1). Our main result is stated in the following

Theorem 4. The C0-semigroup etA is strongly stable inH; i.e, for all U0 ∈ H, the solution of (5)
satisfies

lim
t→∞
‖etAU0‖H = 0.
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In order to prove Theorem 4, we need the following two Lemmas.

Lemma 3. A does not have eigenvalues in iR.

Proof. Step 1: By contraction, we suppose that there exists κ ∈ R, κ 6= 0 and U 6= 0, such
that

AU = iκU. (31)

Then, we obtain

iκu− w = 0,
iκv− z = 0,
iκw− ∆xu + ζ

∫ +∞
−∞ $(v)φ(v)dv + βv = 0,

iκz− ∆xv + ζ
∫ +∞
−∞ $(v)ϕ(v)dv + βu = 0,

iκφ + (v2 + η)φ− w(x)$(v) = 0
iκφ + (v2 + η)ϕ− z(x)$(v) = 0.

(32)

Now, using (31) and (10), we deduce that

φ = 0 and ϕ = 0 in Ω× (−∞,+∞). (33)

From (32)5 and (32)1, we have

w = 0 and u = 0 in Ω. (34)

It follows from (32)6 and (32)2 that we obtain

v = 0 and z = 0 in Ω. (35)

Therefore, U = (u, v, w, z, φ, ϕ)T = 0.
Step 2: κ = 0. The system (32) becomes

w = 0,
z = 0,
∆xu− ζ

∫ +∞
−∞ $(v)φ(v)dv− βv = 0,

∆xv− ζ
∫ +∞
−∞ $(v)ϕ(v)dv− βu = 0,

(v2 + η)φ− w(x)$(v) = 0
(v2 + η)ϕ− z(x)$(v) = 0.

(36)

Hence, From (36)1,2 and (36)5,6, we obtain

w = 0, z = 0, φ = 0 and ϕ = 0 in Ω. (37)

Multiplying (36)3 by u, (36)4 by v, and using integration by parts over Ω , we obtain{ ∫
Ω |∇xu|2dx− β

∫
Ω vudx = 0,∫

Ω |∇xv|2dx− β
∫

Ω uvdx = 0.
(38)

Adding (38)1 and (38)2, and using (5.20), we have∫
Ω

(
|∇xu|2 + |∇xv|2

)
dx ≤ 2β

∣∣∣ ∫Ω v.udx
∣∣∣,

≤ δ
∫

Ω

(
|∇xu|2 + |∇xv|2

)
dx.

(39)

Consequently,

(1− δ)
∫

Ω

(
|∇xu|2 + |∇xv|2

)
dx ≤ 0. (40)
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Hence, u, v are constant in the whole domain Ω, and u = v = 0 on ∂Ω, then we have
u = 0, and v = 0 in the whole domain Ω. Therefore, U = (u, v, w, z, φ, ϕ)T = 0. We deduce
that, consequently, A has no eigenvalue on the imaginary axis.

Lemma 4. We have

iR ⊂ ρ(A) if η 6= 0, iR∗ ⊂ ρ(A) if η = 0.

Proof. We should prove that the operator iκ I −A is surjective for κ 6= 0. To this end, let
F = ( f1, f2, f3, f4, f5, f6)

T ∈ H; we seek the U = (u, v, , w, z, φ, ϕ)T ∈ D(A) solution of
(iκ I −A)U = F.

Equivalently, we have

iκu− w = f1,
iκv− z = f2,
iκw− ∆xu + ζ

∫ +∞
−∞ $(v)φ(v)dv + βv = f3,

iκz− ∆xv + ζ
∫ +∞
−∞ $(v)ϕ(v)dv + βu = f4,

iκφ + (v2 + η)φ− w(x)$(v) = f5
iκϕ + (v2 + η)ϕ− z(x)$(v) = f6.

(41)

Inserting (41)1,2 in (41)3,4, respectively, we have{
−κ2u− ∆xu + ζ

∫ +∞
−∞ $(v)φ(v)dv + βv = f3 + iκ f1,

−κ2v− ∆xv + ζ
∫ +∞
−∞ $(v)ϕ(v)dv + βu = f4 + iκ f2.

(42)

Solving system (42) is equivalent to finding u, v ∈ H2(Ω) ∩ H1
0(Ω), such that∫

Ω(−κ2uũ +∇xu∇xũ)dx + iκζ̃
∫

Ω uũdx + β
∫

Ω vũdx
=
∫

Ω( f3 + iκ f1)ũdx− ζ
∫ +∞
−∞

$(v)
v2+η+iκ

∫
Ω f5(x, v)ũdxdv + ζ̃

∫
Ω f1ũdx. (43)

and ∫
Ω(−κ2vṽ +∇xv∇x ṽ)dx + iκζ̃

∫
Ω vṽdx + β

∫
Ω uṽdx

=
∫

Ω( f3 + iκ f1)ũdx− ζ
∫ +∞
−∞

$(v)
v2+η+iκ

∫
Ω f6(x, v)ṽdxdv + ζ̃

∫
Ω f2ṽdx. (44)

for all ũ, ṽ ∈ H1
0(Ω).

The system (43) and (44) is equivalent to the problem

− 〈Lκ(u, v), (ũ, ṽ)〉+ a((u, v), (ũ, ṽ)) = L(ũ, ṽ), (45)

where

a((u, v), (ũ, ṽ)) =
∫

Ω

(
∇xu∇xũ +∇xv∇x ṽ

)
dx + iκζ̃

∫
Ω

(
uũ + vṽ

)
dx + β

∫
Ω(uṽ + vũ)dx,

and

〈Lκ(u, v), (ũ, ṽ)〉[H1
0 (Ω)]2 =

∫
Ω κ2(uũ + vṽ) dx.

Owing to the compactness of embedding L2(Ω) into H−1(Ω), and from H1
0(Ω) into

L2(Ω), it follows that the operator Lκ is compact from L2(Ω) into L2(Ω). This way, by the
Fredholm alternative, proving the existence of a solution (u, v) of (45) reduces to show that
1 is not an eigenvalue of Lκ for L ≡ 0. Indeed, if there exists u 6= 0 and v 6= 0, such that

〈Lκ(u, v), (ũ, ṽ)〉[H1
0 (Ω)]2 = a[H1

0 (Ω)]2((u, v), (ũ, ṽ)) ∀ũ, ṽ ∈ H1
0(Ω),

then iκ is an eigenvalue of A. Therefore, from Lemma 3, we deduce that u = 0.
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Now, if κ = 0 and η 6= 0, by using the Lax–Milgram Lemma, we obtain the result.

Proof. (Of Theorem 4.) Following a general Theorem of Arendt–Batty in [7], the C0-
semigroup of contractions can be taken as strongly stable if A does not have eigenvalues
on iR and σ(A) ∩ iR is at most a countable set. Owing to the Lemmas 3 and 4, we find the
result.

4.2. General Decay

Theorem 5 ([8]). Let A be the generator of a bounded C0-semigroup (S(t))t≥0 on X. Let X be a
Banach space, if

iR ⊂ ρ(A) and ‖(iβI −A)−1‖L(X) ≤ M(|β|),

where
M : R+ → (0, ∞)

is a continuous nondecreasing function, then

‖eAtU0‖ ≤ C
M−1

log(ct)
‖U0‖D(A), C, c > 0,

where
Mlog : R+ → (0, ∞),

is defined by
Mlog(s) = M(s)(log(1 + M(s)) + log(1 + s)), s ≥ 0.

We have the next important Theorem.

Theorem 6 ([9]). Let A be the generator of a bounded C0-semigroup (S(t))t≥0 on X. If

iR ⊂ ρ(A) and ‖(iβI −A)−1‖L(X) ≤ M(|β|),

where X is a Hilbert space and
M : R+ → (0, ∞)

is a continuous nondecreasing function of positive increase, then

‖eAtU0‖ ≤ C 1
M−1(t)‖U0‖D(A), t→ ∞,

for a positive constant C > 0.

Theorem 7. Let
M(κ) = cS−2

( ∫ +∞
−∞

dv
(|κ|+v2+η)2

)
for a suitable positive constant c, and where S =

∫ +∞
−∞

|v|$(v)
(|κ|+v2+η)2 dv. Then, SA(t)t≥0 satisfy

(1) IfM is a nondecreasing function of positive increase, then

‖eAtU0‖ ≤ C 1
M−1(t)‖U0‖D(A), t→ ∞,

whereM−1 is any asymptotic inverse ofM.
(2) Let l be a nondecreasing slowly varying function, if

M(κ) ∼ cl(|κ|), |κ| → ∞,

then
‖eAtU0‖ ≤ 1

l−1
log(ct)

‖U0‖D(A),
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where
llog(s) = l(s)(log(1 + l(s)) + log(1 + s)), 0 ≥ s.

Proof. We need to study the resolvent equation

(iκ I −A)U = F,

for κ ∈ R, namely 

iκu− w = f1,
iκv− z = f2,
iκw− ∆xu + ζ

∫ +∞
−∞ $(v)φ(v)dv + βv = f3,

iκz− ∆xv + ζ
∫ +∞
−∞ $(v)ϕ(v)dv + βu = f4,

iκφ + (v2 + η)φ− w(x)$(v) = f5
iκϕ + (v2 + η)ϕ− z(x)$(v) = f6.

(46)

where
F = ( f1, f2, f3, f4, f5, f6)

T .

Taking the inner product inH with

U = (u, v, w, z, φ, ϕ)T ,

and using (10), we obtain
|Re〈AU, U〉| ≤ ‖U‖H‖F‖H. (47)

This implies that

ζ
∫

Ω

∫ +∞
−∞ (v2 + η)

(
|φ(x, v)|2 + |ϕ(x, v)|2

)
dv dx ≤ ‖U‖H‖F‖H. (48)

From (46)5, we obtain

w(x)$(v) = (iκ + v2 + η)φ(x, v)− f5(x, v), ∀(x, v) ∈ Ω× (−∞,+∞). (49)

By multiplying (49) by (iκ + v2 + η)−2|v|, we obtain

(iκ + v2 + η)−2w(x)|v|$(v) = (iκ + v2 + η)−1|v|φ− (iκ + v2 + η)−2|v| f5(x, v), x ∈ Ω. (50)

Hence, by taking the absolute values of both sides of (50) and applying triangle
inequality, we obtain

|(iκ + v2 + η)−2| |w(x)| |v| $(v) ≤ |(iκ + v2 + η)−1| |v| |φ|+ |(iκ + v2 + η)−2| |v| | f5(x, v)|.

By integration over (−∞,+∞), we obtain

|w(x)|
∣∣∣ ∫ +∞
−∞

|v|$(v)
(iκ+v2+η)2 dv

∣∣∣ ≤ ∣∣∣ ∫ +∞
−∞

|v|φ
iκ+v2+η

dv
∣∣∣+ ∣∣∣ ∫ +∞

−∞
|v| f5(x,v)
(iκ+v2+η)2 dv

∣∣∣. (51)

On the other hand, by applying Cauchy–Schwartz inequality, we deduce that

∣∣∣ ∫ +∞
−∞

|v|φ
iκ+v2+η

dv
∣∣∣ ≤ ( ∫ +∞

−∞ |v|
2φ2 dv

) 1
2
( ∫ +∞
−∞

∣∣∣ 1
(iκ+v2+η)2

∣∣∣ dv
) 1

2

≤
( ∫ +∞
−∞ (|v|2 + η)φ2 dv

) 1
2
( ∫ +∞
−∞

dv
|iκ+v2+η|2

) 1
2

(52)

and ∣∣∣ ∫ +∞
−∞

|v| f5(x,v)
(iκ+v2+η)2 dv

∣∣∣ ≤ ( ∫ +∞
−∞ | f5(x, v)|2 dv

) 1
2
( ∫ +∞
−∞

|v|2
|iκ+v2+η|4 dv

) 1
2
. (53)
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By substituting (52) and (53) into (51), taking the square of inequality (51) and using
the inequality 2AB ≤ A2 + B2, we obtain

|w(x)|2
∣∣∣ ∫ +∞

−∞

|v|$(v)

(iκ + v2 + η)2 dv
∣∣∣2

≤ 2
( ∫ +∞

−∞
(|v|2 + η)|φ|2 dv

)( ∫ +∞

−∞

dv

|iκ + v2 + η|2
)

+2
( ∫ +∞

−∞
| f5(x, v)|2 dv

)( ∫ +∞

−∞

|v|2
|iκ + v2 + η|4 dv

)
. (54)

Integrating (54) over Ω, we obtain( ∫
Ω
|w(x)|2 dx

)∣∣∣ ∫ +∞

−∞

|v|$(v)

(iκ + v2 + η)2 dv
∣∣∣2

≤ 2
∫

Ω

∫ +∞

−∞
(|v|2 + η)|φ|2 dv dx

( ∫ +∞

−∞

dv

|iκ + v2 + η|2
)

+ 2
( ∫

Ω

∫ +∞

−∞
| f5(x, v)|2 dv dx

)( ∫ +∞

−∞

|v|2
|iκ + v2 + η|4 dv

)
. (55)

Now, from Proposition 2.4 in [2],

∣∣∣ ∫ +∞

−∞
(iκ + η + v2)−2|v|$(v) dv

∣∣∣
≥
√

1 + cos θ√
2

∫ +∞

−∞
(|iκ + η|+ v2)−2|v|$(v) dv

≥
√

1 + cos θ√
2

∫ +∞

−∞
(|κ|+ v2 + η)−2|v|$(v) dv,

where cos θ = η/
√

κ2 + η2. We obtain∣∣∣ ∫ +∞
−∞

|v|$(v)
(iκ+v2+η)2 dv

∣∣∣ ≥ 1√
2

∫ +∞
−∞

|v|$(v)
(|κ|+v2+η)2 dv. (56)

Denoting S =
∫ +∞
−∞

|v|$(v)
(|κ|+v2+η)2 dv, and by using (55), (56) and (48), we obtain

S2‖w‖2
L2(Ω) ≤ 4

( ∫ +∞

−∞

dv

|iκ + v2 + η|2
)
‖U‖ ‖F‖

+ 4‖ f5‖2
L2(Ω×(−∞,+∞))

( ∫ +∞

−∞

|v|2
|iκ + v2 + η|4 dv

)
≤ 8

( ∫ +∞

−∞

dv

(|κ|+ v2 + η)2

)
‖U‖ ‖F‖

+ 16‖ f5‖2
L2(Ω×(−∞,+∞))

( ∫ +∞

−∞

|v|2
(|κ|+ v2 + η)4 dv

)
. (57)

Using the same argument, we can prove

S2‖z‖2
L2(Ω) ≤ 8

( ∫ +∞

−∞

dv

(|κ|+ v2 + η)2

)
‖U‖ ‖F‖

+ 16‖ f6‖2
L2(Ω×(−∞,+∞))

( ∫ +∞

−∞

|v|2
(|κ|+ v2 + η)4 dv

)
. (58)
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We now state the following

Eu =
∫

Ω

(
|w(x)|2 + |z(x)|2 + |∇xu(x)|2 + |∇xv(x)|2

)
dx.

Multiplying (46)3 by ū and (46)4 by v̄ leads to∫
Ω iκwū dx−

∫
Ω ∆xuū dx +

∫
Ω ζū

∫ +∞
−∞ $(v)φ(x, v)dv dx + β

∫
Ω vudx =

∫
Ω f3ū dx,

and ∫
Ω(iκvv− ∆xvv̄)dx +

∫
Ω ζū

∫ +∞
−∞ $(v)ϕ(x, v)dv dx + β

∫
Ω uvdx =

∫
Ω f4vdx.

Then,{
−
∫

Ω w (iκu) dx +
∫

Ω |∇xu|2 dx + ζ
∫

Ω ū
∫ +∞
−∞ $(v)φ(x, v)dv dx + β

∫
Ω vudx =

∫
Ω f2ū dx

−
∫

Ω z (iκv) dx +
∫

Ω |∇xu|2 dx + ζ
∫

Ω ū
∫ +∞
−∞ $(v)ϕ(x, v)dv dx + β

∫
Ω uvdx =

∫
Ω f4vdx.

(59)

Replacing (46)1 into (59)1 and (46)2 into (59)2, we have{
−
∫

Ω w (w̄ + f̄1) dx +
∫

Ω |∇xu|2 dx + ζ
∫

Ω ū
∫ +∞
−∞ $(v)φ(x, v)dv dx + β

∫
Ω vudx =

∫
Ω f3ū dx

−
∫

Ω z (z̄ + f̄2) dx +
∫

Ω |∇xv|2 dx + ζ
∫

Ω ū
∫ +∞
−∞ $(v)ϕ(x, v)dv dx + β

∫
Ω uvdx =

∫
Ω f4vdx.

Then,

−
∫

Ω
(|w(x)|2 + |z(x)|2) dx +

∫
Ω
(|∇xu|2 + |∇xv|2) dx + β

∫
Ω
(uv + vu) dx

+ζ
∫

Ω
ū
∫ +∞

−∞
$(v)φ(x, v)dv dx + ζ

∫
Ω

ū
∫ +∞

−∞
$(v)ϕ(x, v)dv dx =

∫
Ω
( f3ū + w f̄1 + f4v̄ + f̄2z) dx.

It can be written as∫
Ω
(|w(x)|2 + |z(x)|2) dx +

∫
Ω
(|∇xu|2 + |∇xv|2) dx

= −ζ
∫

Ω
ū
∫ +∞

−∞
$(v)φ(x, v)dv dx− ζ

∫
Ω

v̄
∫ +∞

−∞
$(v)ϕ(x, v)dv dx

+
∫

Ω
( f3ū + w f̄1 + f4v̄ + f̄2z) dx− β

∫
Ω
(uv + vu) dx + 2

∫
Ω
(|w(x)|2 + |z(x)|2) dx.

Hence,

Eu ≤ ζ‖u‖2

( ∫
Ω

∣∣∣ ∫ +∞

−∞
$(v)φ(x, v)dv

∣∣∣2 dx
) 1

2
+ ζ‖v‖2

( ∫
Ω

∣∣∣ ∫ +∞

−∞
$(v)ϕ(x, v)dv

∣∣∣2 dx
) 1

2

+‖ f3‖2 ‖u‖2 + ‖w‖2 ‖ f1‖2 + ‖ f4‖2 ‖v‖2 + ‖ f2‖2 ‖z‖2 + 2‖w‖2
2 + 2‖z‖2

2

+δ(‖∇xu‖2
2 + ‖∇xu‖2

2),

and using∣∣∣ ∫ +∞

−∞
$(v)φ(x, v)dv

∣∣∣2 ≤ ( ∫ +∞

−∞

$2(v)

v2 + η
dv
)( ∫ +∞

−∞
(v2 + η)|φ|2dv

)
,

and ∣∣∣ ∫ +∞

−∞
$(v)ϕ(x, v)dv

∣∣∣2 ≤ ( ∫ +∞

−∞

$2(v)

v2 + η
dv
)( ∫ +∞

−∞
(v2 + η)|ϕ|2dv

)
,
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we deduce that

Eu ≤ ζ‖u‖2

( ∫ +∞

−∞

$2(v)

v2 + η
dv
) 1

2
( ∫

Ω

∫ +∞

−∞
(v2 + η)|φ|2dv dx

) 1
2

+ζ‖v‖2

( ∫ +∞

−∞

$2(v)

v2 + η
dv
) 1

2
( ∫

Ω

∫ +∞

−∞
(v2 + η)|ϕ|2dv dx

) 1
2

+‖ f3‖2 ‖u‖2 + ‖w‖2 ‖ f1‖2 + ‖ f4‖2 ‖v‖2 + ‖ f2‖2 ‖z‖2

+2‖w‖2
2 + 2‖z‖2

2 + δ(‖∇xu‖2
2 + ‖∇xv‖2

2).

Hence,

Eu ≤ ε‖u‖2
2 + c(ε)‖U‖‖F‖+ ε‖u‖2

2 + c(ε)‖ f3‖2
2 + ε‖v‖2

2 + c(ε)‖ f4‖2
2

+ ‖ f1‖2
2 + ‖ f2‖2

2 + c‖w‖2
2 + c‖z‖2

2 + δ(‖∇xu‖2
2 + ‖∇xv‖2

2).

Using the estimation

c(ε)‖ f2‖2
2 + ‖ f1‖2

2 + c(ε)‖ f4‖2
2 + ‖ f2‖2

2 ≤ c‖F‖2,

and the classical Poincaré’s inequality

‖u‖2
2 ≤ c‖∇xu‖2

2 and ‖v‖2
2 ≤ c‖∇xv‖2

2,

we obtain

Eu ≤ 2 ε c(‖∇xu‖2
2 + ‖∇xv‖2

2) + c(‖w‖2
2 + ‖z‖2

2) + c‖F‖2 + c‖U‖ ‖F‖.

Then, we obtain

Eu ≤ c‖w‖2
2 + ‖z‖2

2 + c′‖F‖2 + c′′‖U‖ ‖F‖,

and from (48), it follows that

‖φ‖2
L2 + ‖ϕ‖2

L2 =
∫

Ω

∫ +∞

−∞

(
|φ|2 + |ϕ|2

)
dv dx

≤ C
∫

Ω

∫ +∞

−∞
(v2 + η)

(
|φ|2 + |ϕ|2

)
dv dx ≤ C‖U‖ ‖F‖.

We conclude that

‖U‖2 ≤ c‖w‖2
2 + ‖z‖2

2 + c′‖F‖2 + c′′‖U‖ ‖F‖. (60)

Inserting (57) into (60), we obtain

‖U‖2
H ≤ cS−2

( ∫ +∞

−∞

dv

(|κ|+ v2 + η)2

)
‖U‖ ‖F‖

+ c′S−2‖F‖2
( ∫ +∞

−∞

|v|2
(|κ|+ v2 + η)4 dv

)
+ c′′‖F‖2 + c′′′‖U‖ ‖F‖.

Then, we obtain
‖U‖2

H ≤M2(κ)‖F‖2
H, (61)
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where

M(κ) = cS−2
( ∫ +∞

−∞

dv

(|κ|+ v2 + η|)2

)
.

It follows that

1
M(κ)

‖(iκ I −A)−1‖L(H) ≤ C, ∀κ ∈ Rbmc f m

for a positive constant C. By applying Theorems 5 and 6, following the form ofM, we find
the main result.
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