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Abstract: In this study, we examine Timoshenko systems with boundary conditions featuring two
types of fractional dissipations. By applying semigroup theory, we demonstrate the existence and
uniqueness of solutions. Our analysis shows that while the system exhibits strong stability, it does
not achieve uniform stability. Consequently, we derive a polynomial decay rate for the system.
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1. Introduction

In this study, we investigate the well-posedness and stabilization of a one-dimensional
Timoshenko system of the following form:{

ρ1 φtt − d1(φx + ψ)x = 0, (x, t) ∈ (0, L)× (0,+∞),
ρ2ψtt − d2ψxx + d1(φx + ψ) = 0, (x, t) ∈ (0, L)× (0,+∞).

(1)

The initial conditions are

φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), x ∈ (0, L),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), x ∈ (0, L),
(2)

and the following boundary conditions:

φ(0, t) = 0, ψ(0, t) = 0, in (0,+∞),

(φx + ψ)(L) = −γ1∂
α,η
t φ(L), (ψx + ψ)(L) = −γ2∂

α,η
t ψ(L), in (0,+∞),

(3)

where ρ1, ρ2, d1, d2, γ1, and γ2 are positive constants, η is a non-negative constant, and α is
in (0, 1).

The notation ∂
α,η
t represents the generalized Caputo fractional derivative of order α

(where 0 < α < 1) with respect to time t. It is defined as

∂
α,η
t f (t) =

1
Γ(1 − α)

∫ t

0
(t − s)−αe−η(t−s) d f

ds
(s) ds, η ≥ 0.

The Timoshenko system, traditionally used to model the behavior of beams in me-
chanical structures, is extended in this study to incorporate fractional derivatives on the
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boundary conditions. This extension is significant because fractional derivatives are known
to provide more accurate models for systems with memory effects and complex dissipa-
tion properties, which are often encountered in practical applications, such as material
microstructure analysis. The introduction of fractional derivatives into the boundary con-
ditions is novel in the context of the Timoshenko system. This allows us to model more
realistic dissipative effects that occur in various materials and structures. Our results
provide new insights into the stability characteristics of systems with fractional boundary
dissipation, contributing to both the theoretical understanding and practical applications
in engineering and materials science.

Fractional calculus has developed into a well-established theory with a solid mathe-
matical foundation, and its applications have gained significant interest in various research
fields, including electrical circuits, chemical processes, signal processing, bioengineer-
ing, viscoelasticity, and control systems (see [1]). Fractional-order control is not only
theoretically important but also has practical implications. It generalizes classical integer-
order control theory, enabling more accurate modeling and enhanced control performance.
Experimental observations reveal that many phenomena cannot be fully described us-
ing traditional Newtonian terms. For example, in viscoelastic materials, the material’s
microstructure leads to a combined response involving both elastic solid and viscous
fluid characteristics.

The literature (see [2]) establishes that the fractional derivative ∂α
t enforces dissipation

in the system and ensures that the solution converges to an equilibrium state. Consequently,
when applied at the boundaries, fractional derivatives can act as controllers to suppress or
attenuate undesirable vibrations.

In [3], B. Mbodje explored the asymptotic behavior of solutions with the following
system: 

∂2
t u(x, t)− u2

x(x, t) = 0, (x, t) ∈ (0, 1)× (0,+∞),
u(0, t) = 0,
∂xu(1, t) = −k∂

α,η
t u(1, t), α ∈ (0, 1), η ≥ 0, k > 0,

u(x, 0) = u0(x),
∂tu(x, 0) = v0(x).

He demonstrated strong asymptotic stability of the solutions when η = 0 and a
polynomial decay rate of t−1 as time approaches infinity when η ̸= 0. The polynomial
decay rate was established using the energy method.

Kim and Renardy [4] investigated (1) with two boundary controls of the
following form:

K(φx + ψ)(L) = −γ1∂αtφ(L), bψx(L) = −γ2∂α
t ψ(L), for, , t ∈ (0,+∞),

and employed multiplier techniques to prove an exponential decay result for the natural
energy of (1). Additionally, Yan [5] established a polynomial decay result when examining
two boundary frictional damping terms with polynomial growth near the origin.

Benaissa and Benazzouz [6] investigated the stabilization of the following Timoshenko
system with two dynamic boundary control conditions involving fractional derivatives:{

ρ1ϕtt − K(ϕx + ψ)x = 0, (x, t) ∈ (0, L)× (0,+∞),
ρ2ψtt − bψxx + K(ϕx + ψ) = 0, (x, t) ∈ (0, L)× (0,+∞).

The system is subject to the following boundary conditions:
m1ϕtt(L, t) + K(ϕx + ψ)(L, t) = −γ1∂

α,η
t ϕ(L, t) for t ∈ (0,+∞),

m2ψtt(L, t) + bψx(L, t) = −γ2∂
α,η
t ψ(L, t) for t ∈ (0,+∞),

ϕ(0, t) = 0, ψ(0, t) = 0 for t ∈ (0,+∞),
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where m1 and m2 are positive constants. They demonstrated that the system (1) is not
uniformly stable using the spectrum method. Polynomial stability was established through
semigroup theory and by applying a result from Borichev and Tomilov.

M. Akil et al. [7] studied the Timoshenko system with a single fractional derivative
described by {

autt − (ux + y)x = 0, (x, t) ∈ (0, 1)× (0,+∞),
bytt − yxx + c(ux + y) = 0, (x, t) ∈ (0, 1)× (0,+∞),

(4)

where a, b, and c are positive constants. The system is subject to the following boundary
conditions: {

ux(1, t) + y(1, t) + γ∂
α,η
t u(1, t) = 0, t ∈ R+,

u(0, t) = yx(0, t) = yx(1, t) = 0.
(5)

They demonstrated that the energy of the system (4) and (5) decays polynomially over
time. References such as [8–14] present a comprehensive collection of published works
that support the mathematical formulation of problems related to fractional differential
equations and the decay rate of the associated energy.

This paper is organized as follows: in Section 2, we demonstrate the well-posedness
of system (1) with the boundary conditions (3) using semigroup theory. In Section 3, we
prove that the Timoshenko system (1) with the boundary conditions (2) is not exponentially
stable, whether the wave propagation speeds are equal ( ρ1

d1
= ρ2

d2
) or not ( ρ1

d1
̸= ρ2

d2
). In

Section 5, we show that the solution decays polynomially to zero when η > 0, employing a
frequency domain approach and a theorem by Borichev and Tomilov.

2. Augmented Model and Well-Posedness of the System

In this section, we focus on reformulating the model (1) into an augmented system. To
proceed, we first require the following theorem:

Theorem 1 ([3]). Let µ be the following function:

µ(ξ) = |ξ|(2α−n)/2, ξ ∈ Rn, 0 < α < 1.

Consider the system governed by the equation:

∂t φ(ξ, t) +
(
|ξ|2 + η

)
φ(ξ, t)− U(t)µ(ξ) = 0, ξ ∈ Rn, η ≥ 0, t > 0,

with the initial condition
φ(ξ, 0) = 0,

and the output defined as

O(t) =
2 sin(απ)Γ

( n
2 + 1

)
nπ

n
2 +1

∫
Rn

µ(ξ)φ(ξ, t)dξ.

The relationship between the ‘input’ U and the ‘output’ O is then given by

O(t) = I1−α,ηU(t) = Dα,ηU(t),

where

[Iα,η f ](t) =
1

Γ(α)

∫ t

0
(t − τ)α−1e−η(t−τ) f (τ)dτ.

Lemma 1 ([15]). If λ ∈ D = {λ ∈ C | ℜ(λ) + η > 0} ∪ {ℑ(λ) ̸= 0}, then

τ(α)
∫
Rn

µ2(ξ)

λ + η + ξ2 dξ = (λ + η)α−1,
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where τ(α) = π−1 sin(απ).

Using the previous theorem, the system (1) can be rewritten as the following aug-
mented model:

ρ1 φtt − d1(φx + ψ)x = 0, (x, t) ∈ (0, L)× (0,+∞),
ρ2ψtt − d2ψxx + d1(φx + ψ) = 0, (x, t) ∈ (0, L)× (0,+∞),
∂tϕ1(ξ, t) +

(
ξ2 + η

)
ϕ1(ξ, t)− µ(ξ)∂t φ(L, t) = 0, t ∈ (0,+∞), ξ ∈ R,

∂tϕ2(ξ, t) +
(
ξ2 + η

)
ϕ2(ξ, t)− µ(ξ)∂tψ(L, t) = 0, t ∈ (0,+∞), ξ ∈ R,

(φx + ψ)(L) = −γ1
sin(απ)

π

∫
R

µ(ξ)ϕ1(ξ, t)dξ, t ∈ (0,+∞),

ψx(L) = −γ2
sin(απ)

π

∫
R

µ(ξ)ϕ2(ξ, t)dξ, t ∈ (0,+∞),

(6)

with the following initial conditions:

φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), x ∈ (0, L),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), x ∈ (0, L).

For a solution U = (φ, φt, ψ, ψt, ϕ1, ϕ2) of (6), we define the energy by

E(t) =
1
2
∥U∥2

H, (7)

where

∥U∥2
H =

1
2

∫ L

0

(
ρ1|φt|2 + ρ2|ψt|2 + d1|φx + ψ|2 + d2|ψx|2

)
dx

+
ξ1

2

∫
R
|ϕ1|2dξ +

ξ2

2

∫
R
|ϕ2|2dξ,

with constants ξi =
γi
di

sin(απ)
π .

Lemma 2. Let U = (φ, φt, ψ, ψt, ϕ1, ϕ2) be a regular solution of the problem (6). Then, the energy
functional defined in (7) satisfies the following relation:

d
dt

E(t) = −ξ1

∫
R

(
|ξ|2 + η

)
|ϕ1(ξ, t)|2 dξ − ξ2

∫
R

(
|ξ|2 + η

)
|ϕ2(ξ, t)|2 dξ.

Proof. Multiplying Equations (6)1 and (6)3 by φt and ψt, respectively, integrating by parts
over (0, L), and then summing the resulting equations, we obtain

1
2

d
dt

(∫ L

0

(
ρ1|φt|2 + ρ2|ψt|2 + d1|φx + ψ|2 + d2|ψx|2

)
dx

)
− (φx + ψ)(L)φt(L) = 0. (8)

Multiplying Equations (6)2 and (6)4 by ξ1ϕ1 and ξ2ϕ2, respectively, integrating over R,
and adding the resulting equations gives us

1
2

d
dt

(
ξ1

∫
R
|ϕ1|2dξ + ξ2

∫
R
|ϕ2|2dξ

)
+ ξ1

∫
R
(ξ2 + η)|ϕ1(ξ, t)|2 dξ

+ ξ2

∫
R
(ξ2 + η)|ϕ2(ξ, t)|2 dξ − ξ1 φt(L)

∫
R

µ(ξ)ϕ1(ξ, t) dξ

− ξ2ψt(L)
∫
R

µ(ξ)ϕ2(ξ, t) dξ = 0.

(9)

Combining Equations (8) and (9), we obtain

d
dt

E(t) = −ξ1

∫
R

(
ξ2 + η

)
|ϕ1(ξ, t)|2 dξ − ξ2

∫
R

(
ξ2 + η

)
|ϕ2(ξ, t)|2 dξ.
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This concludes the proof of the lemma.

We now address the well-posedness of (6). To this end, we introduce the following
Hilbert space, referred to as the energy space:

H =
(

H1
L(0, L)× L2(0, L)

)2
× L2(R),

where H1
L(0, L) is defined as

H1
L(0, L) = {φ ∈ H1(0, L) | φ(0) = 0}.

For U = (u1, u2, u3, u4, ϕ1, ϕ2)
T and Ũ = (ũ1, ũ2, ũ3, ũ4, ϕ̃1, ϕ̃2)

T , we define the inner
product in H as follows:

⟨U, Ũ⟩H =
∫ L

0

(
ρ1u2ũ2 + ρ2u4ũ4

)
dx +

∫ L

0
d1(u1x + u3)(ũ1x + ũ3)dx

+
∫ L

0
d2u3xũ3xdx + d2

1ξ1

∫
R

ϕ1ϕ̃1 dξ + d2
2ξ2

∫
R

ϕ2ϕ̃2 dξ.

We transform the system described by (6) into a semigroup framework. By defin-
ing the vector function U = (u1, u2, u3, u4, ϕ1, ϕ2)

T , we express the system (6) in the
equivalent form {

U′ = AU, t > 0,

U(0) = U0,

where U0 = (φ0, φ1, ψ0, ψ1, ϕ0
1, ϕ0

2)
T .

The operator A is linear and defined by

A



u1
u2
u3
u4
ϕ1
ϕ2

 =



u2
d1
ρ1
(u1x + u3)x

u4
d2
ρ2

u3xx − d1
ρ2
(u1x + u3)

−(ξ2 + η)ϕ1 + u2(L)µ(ξ)
−(ξ2 + η)ϕ2 + u4(L)µ(ξ)


.

The domain of A is then

D(A) =



(u1, u2, u3, u4, ϕ1, ϕ2)
T ∈ H : u1, u3 ∈ H2 ∩ H1

L,
ξϕ1, ξϕ2 ∈ L2(R),−

(
|ξ|2 + η

)
ϕ1 + u2(L)µ(ξ) ∈ L2(Rn),

(u1x + u3)(L) = −γ1
sin(απ)

π

∫
R

µ(ξ)ϕ1(ξ, t)dξ,

−
(
|ξ|2 + η

)
ϕ2 + u4(L)µ(ξ) ∈ L2(R),

u3x(L) = −γ2
sin(απ)

π

∫
R

µ(ξ)ϕ2(ξ, t)dξ.


. (10)

We state the following theorem on existence and uniqueness:

Theorem 2.

1. If U0 ∈ D(A), then the system (6) has a unique strong solution

U ∈ C0(R+, D(A)) ∩ C1(R+,H).

2. If U0 ∈ H, then the system (6) has a unique weak solution

U ∈ C0(R+,H).
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Remark 1. Note that, while strong solutions satisfy the differential equation pointwise and require
higher regularity, weak solutions are defined in an integral sense with lower regularity requirements.

Proof. First, we demonstrate that the operator A is dissipative.
For any U = (u1, u2, u3, u4, ϕ1, ϕ2) ∈ D(A), we have

Re⟨AU, U⟩H = −d2
1ξ1

∫
R

(
ξ2 + η

)
|ϕ1(ξ, t)|2dξ − d2

2ξ2

∫
R

(
ξ2 + η

)
|ϕ2(ξ, t)|2dξ

≤ 0.

Hence, A is dissipative.
We will show that the operator I −A is surjective.
Given F = ( f1, f2, f3, f4, f5, f6) ∈ H, we prove that there exists
U = (u1, u2, u3, u4, ϕ1, ϕ2) ∈ D(A) satisfying

(I −A)U = F.

That is, 

u1 − u2 = f1,
u2 − d1

ρ1
(u1x + u3)x = f2

u3 − u4 = f3,
u4 − d2

ρ2
u3xx +

d1
ρ2
(u1x + u3) = f4

ϕ1(1 + ξ2 + η)− µ(ξ)u2(L, t) = f5,
ϕ2(1 + ξ2 + η)− µ(ξ)u4(L, t) = f6.

(11)

Then, (11)1, (11)2, (11)5, and (11)6 yield
u2 = u1 − f1,
u4 = u3 − f3,
ϕ1 = f5

1+ξ2+η
+ µ(ξ)u2(L,t)

1+ξ2+η
,

ϕ2 = f6
1+ξ2+η

+ µ(ξ)u4(L,t)
1+ξ2+η

.

(12)

Inserting Equations (11)1 in (11)2 and (11)3 in (11)4, we obtain{
ρ1u1 − d1(u1x + u3)x = ρ1( f1 + f2),

ρ2u3 − d2u3xx + d1(u1x + u3) = ρ2( f3 + f4).
(13)

Solving system (13) is equivalent to finding u1, u3 ∈ H2(0, L) ∩ H1
L(0, L) such that

∫ L

0
[ρ1u1 − d1(u1x + u3)x]χdx =

∫ L

0
ρ1[ f1 + f2]χdx,∫ L

0
[ρ2u3 − d2u3xx + d1(u1x + u3)]ζdx =

∫ L

0
ρ2( f3 + f4)ζdx,

(14)

for all χ, ζ ∈ H1
L(0, L).

Inserting Equations (12)3 in (14)1 and (12)4 in (14)2, we obtain

∫ L

0
[ρ1u1χ + d1(u1x + u3)χx]dx + k1u2(L)χ(L)

=
∫ L

0
ρ1[ f1 + f2]χdx − d2

1ξ1χ(L)
∫
R

f5µ(ξ)

1 + ξ2 + η
dξ,∫ L

0
[ρ2u3ζ + d2u3xζx + d1(u1x + u3)ζ]dx + k2u4(L)ζ(L)

=
∫ L

0
ρ2( f3 + f4)ζdx − d2

2ξ2ζ(L)
∫
R

f6µ(ξ)

1 + ξ2 + η
dξ,

(15)
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where ki = d2
i ξi

∫
R

µ2(ξ)

1 + ξ2 + η
dξ and with the following boundary conditions:

u2(L) = u1(L)− f1(L), u4(L) = u3(L)− f3(L). (16)

Inserting (16) into (15), we obtain

∫ L

0
[ρ1u1χ + d1(u1x + u3)χx]dx + k1u1(L)χ(L)

=
∫ L

0
ρ1[ f1 + f2]χdx − d2

1ξ1χ(L)
∫
R

f5µ(ξ)

1 + ξ2 + η
dξ + k1 f1(L)χ(L),∫ L

0
[ρ2u3ζ + d2u3xζx + d1(u1x + u3)ζ]dx + k2u3(L)ζ(L)

=
∫ L

0
ρ2( f3 + f4)ζdx − d2

2ξ2ζ(L)
∫
R

f6µ(ξ)

1 + ξ2 + η
dξ + k2 f3(L)ζ(L).

(17)

Thus, the problem (17) can be reformulated as the following problem:

a((u1, u3), (χ, ζ)) = L(χ, ζ), (18)

where

a((u, v), (χ, ζ)) =
∫ L

0
[ρ1uχ + d1(ux + v)(χx + ζ) + ρ2vζ + d2vxζx]dx

+ k1u(L)χ(L) + +k2v(L)ζ(L),

and

L(χ, ζ) =
∫ L

0
ρ1[ f1 + f2]χdx − d2

1ξ1χ(L)
∫
R

f5µ(ξ)

1 + ξ2 + η
dξ + k1 f1(L)χ(L)

+
∫ L

0
ρ2( f3 + f4)ζdx − d2

2ξ1ζ(L)
∫
R

f6µ(ξ)

1 + ξ2 + η
dξ + k2 f3(L)ζ(L).

It is straightforward to verify that a is continuous and coercive and that L is continuous. By
applying the Lax–Milgram Theorem A1, we conclude that, for all (χ, ζ) ∈ H1

L(0, L)× H1
L(0, L),

the problem (18) has a unique solution (u1, u3) ∈ H1
L(0, L)× H1

L(0, L).
Using classical elliptic regularity results, it follows from (17) that (u1, u3) ∈ H2(0, L)×

H2(0, L). Consequently, the operator I −A is surjective. Finally, Theorem 2 follows from
the Lumer–Phillips Theorem A2.

3. Asymptotic Stability

In this section, we analyze the asymptotic stability of the system described by (1)–(3),
which requires

lim
t→+∞

E(t) = 0, ∀U0 ∈ H.

We will examine the spectrum and investigate the strong stability of the C0 semigroup
associated with the system (1)–(3) using the criteria of Arendt–Batty [16].

The main results of this paper are summarized as follows:

Theorem 3. The semigroup of contractions (S(t))t≥0 is strongly stable on the energy space H,
meaning that

lim
t→∞

∥∥∥eAtU0

∥∥∥
H
= 0 ∀U0 ∈ H.

First, we need to prove the following lemmas:
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Lemma 3. The point spectrum of the operator A does not intersect with the imaginary axis, i.e.,

σp(A) ∩ iR = ∅,

where
σp(A) = {λ ∈ C | ker(λI −A) ̸= {0}}.

Proof. For clarity, we divide the proof into two steps.

Step 1. By direct computation, the equation

AU = 0

with U ∈ D(A) admits only the trivial solution, i.e., U = 0. Hence, 0 /∈ σp(A).

Step 2. Suppose that there exists β ∈ R∗ such that

ker(iβI −A) ̸= {0}.

Thus, λ = iβ is an eigenvalue of A. Let U be an eigenvector in D(A) associated with
λ, satisfying

(iβI −A)U = 0.

Equivalently, we have

u2 = iβu1,
d1
ρ1
(u1x + u3)x = iβu2

u4 = iβu3,
d2
ρ2

u3xx − d1
ρ2
(u1x + u3) = iβu4

−ϕ1(ξ
2 + η) + µ(ξ)u2(L, t) = iβϕ1,

−ϕ2(ξ
2 + η) + µ(ξ)u4(L, t) = iβϕ1.

(19)

First, a straightforward computation shows that

0 = ℜ < (iβI −A)U, U >H

= d2
1ξ1

∫
R

(
ξ2 + η

)
|ϕ1(ξ, t)|2dξ + d2

2ξ2

∫
R

(
ξ2 + η

)
|ϕ2(ξ, t)|2dξ.

We deduce that ϕ1 = ϕ2 = 0 a.e. in R.
On the other hand, by (19)5 and (19)6, we obtain,

ϕj =
µ(ξ)u2j(L, t)
ξ2 + η + iβ

, j = 1, 2,

which yields u2(L, t) = u4(L, t) = 0. Hence, from (19)1 and (19)3, we obtain

u1(L, t) = u3(L, t) = 0, and from (10), (u1x + u3)(L, t) = u3x(L, t) = 0. (20)

Otherwise, replacing (19)1 into (19)2 and (19)3 into (19)4 and setting v = u1x + u3,
we obtain {

β2u1 +
d1
ρ1

vx = 0,

β2u3 +
d2
ρ2

u3xx − d1
ρ2

v = 0.
(21)

We can rewrite (21) and (20) as{ d
dx X = BX, t > 0,
X(L) = 0,
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where X := (u1, v, u3, u3x)
T . The operator B is linear and defined by

B


u1
v
u3
u3x

 =


v − u3

− ρ1β2

d1
u1

u3x
d1
d2

v − ρ2β2

d2
u3

.

According to Picard’s theorem for ordinary differential equations, the system (3) has a
unique solution, which is X = 0. Thus, u1 = u3 = 0. It follows from (19) that u2 = u4 = 0.
Consequently, we obtain U = 0 over the interval (0, L), which contradicts the assumption
that U ̸= 0.

Lemma 4. The operator
(

iβI −A
)

is surjective.

Proof. Let F = ( f1, f2, f3, f4, f5, f6) ∈ H be looking for
U = (u1, u2, u3, u4, ϕ1, ϕ2) ∈ D(A) such that

iβU −AU = F.

That is, 

iβu1 − u2 = f1,
iβu2 − d1

ρ1
(u1x + u3)x = f2

iβu3 − u4 = f3,
iβu4 − d2

ρ2
u3xx +

d1
ρ2
(u1x + u3) = f4

ϕ1(iβ + ξ2 + η)− µ(ξ)u2(L, t) = f5,
ϕ2(iβ + ξ2 + η)− µ(ξ)u4(L, t) = f6,

which is equivalent to

u2 = iβu1 − f1,
−β2u1 − d1

ρ1
(u1x + u3)x = f2 + iβ f1,

u4 = iβu3 − f3,
−β2u3 − d2

ρ2
u3xx +

d1
ρ2
(u1x + u3) = f4 + iβ f3

ϕ1 = f5+µ(ξ)u2(L,t)
iβ+ξ2+η

,

ϕ2 = f6+µ(ξ)u4(L,t)
iβ+ξ2+η

.

(22)

To solve the last system (22), it is enough to study the following: β2ρ1u1 + d1(u1x + u3)x = −ρ1

(
f2 + iβ f1

)
,

β2ρ2u3 + d2u3xx − d1(u1x + u3) = −ρ2

(
f4 + iβ f3

)
,

(23)

with the conditions
u1(0) = 0,
u3(0) = 0,(

u1x + u3
)
(L) = −d1ξ1

(
( f5 + iβu1(L))I1(β, η)− f1(L)I2(β, η)

)
,

u3x(L) = −d2ξ2

(
( f6 + iβu3(L))I1(β, η)− f3(L)I2(β, η)

)
,

where I1(β, η) =
∫
R

µ(ξ)

iβ + ξ2 + η
dξ and I2(β, η) =

∫
R

µ2(ξ)

iβ + ξ2 + η
dξ.

We now distinguish two cases.
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Step 1. β = 0 and η > 0: System (23) is equivalent to finding u1, u3 ∈ H2(0, L) ∩
H1

L(0, L) such that
−

∫ L

0
d1(u1x + u3)xχdx =

∫ L

0
ρ1 f2χdx,∫ L

0
[−d2u3xx + d1(u1x + u3)]ζdx =

∫ L

0
ρ2 f4ζdx,

(24)

for all χ, ζ ∈ H1
L(0, L).

Using integration by parts in (24), we deduce that (22) is equivalent to

b((u1, u3), (χ, ζ)) = M(χ, ζ), (25)

where

b((u, v), (χ, ζ)) =
∫ L

0
[d1(ux + v)(χx + ζ) + d2vxζx]dx,

and

M(χ, ζ) =
∫ L

0

(
ρ1 f2χ + ρ2 f4ζ

)
dx − d2

1ξ1[ f5 − f1(L)I2(0, η)]χ(L)

− d2
2ξ2[ f6 − f3(L)I2(0, η)]ζ(L).

It is straightforward to verify that the bilinear form b is continuous and coercive
and that the operator M is continuous. By applying the Lax–Milgram theorem, we con-
clude that, for all (χ, ζ) ∈ H1

L(0, L) × H1
L(0, L), the problem (25) has a unique solution

(u1, u3) ∈ H1
L(0, L)× H1

L(0, L). Utilizing classical elliptic regularity, it follows from (24)
that (u1, u3) ∈ H2(0, L)× H2(0, L). Consequently, the operator −A is surjective.

Step 2. β ̸= 0 and η ≥ 0:
Now, we consider the following system:{

−d1(u1x + u3)x = g1,
−d2u3xx + d1(u1x + u3) = g2,

(26)

with the conditions 
u1(0) = 0,
u3(0) = 0,(

u1x + u3
)
(L) = −iβd1ξ1u1(L)I1(β, η),

u3x(L) = −iβd2ξ2u3(L)I1(β, η),

where (g1, g2) ∈
(

L2(0, L)
)2

.

Let us note that L : (u1, u2) −→ (−d1(u1x + u3)x,−d2u3xx + d1(u1x + u3)) with domain

D(L) = {(u1, u3) ∈
(

H1
L(0, L)

)2
, u1(0) = 0, u3(0) = 0, (u1x +u3)(L) = −iβd1ξ1u1(L)I1(β, η),

u3x(L) = −iβd2ξ2u3(L)I1(β, η)}.
Multiplying (26)1 by χ and (26)2 by ζ, one obtains:∫ L

0
[d1(ux + v)(χx + ζ) + d2vxζx]dx + iβd2

1ξ1 I1(β, η)u1(L)χ(L)

+ iβd2
2ξ2 I2(β, η)u3(L)ζ(L) =

∫ L

0

(
g1χ + g2ζ

)
dx,

(27)

for all (χ, ζ) ∈
(

H1
L(0, L)

)2
.

By applying the Lax–Milgram theorem once more, we deduce that there exists a
unique strong solution (u1, u3) ∈

(
H1

L(0, L)
)2 ∩ D(L) for the variational problem (27).
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Consequently, it follows that L−1 is compact in
(

L2(0, L)
)2

and therefore (23) is
equivalent to (

β2L−1 − I
)

U = Φ,

where U = (u1, u3) and Φ =
(
− ρ1( f2 + iβ f1),−ρ2( f4 + iβ f3)

)
and, by Fredholm’s

alternative, it suffices to prove that Ker
(

β2L−1 − I
)
= {0}.

For this purpose, let (y1, y2) ∈ Ker
(

β2L−1 − I
)

; then, we have

{
β2ρ1y1 + d1(y1x + y3)x = 0,

β2ρ2y3 + d2y3xx − d1(y1x + y3) = 0,
(28)

with the conditions 
y1(0) = 0,
y3(0) = 0,(

y1x + y3
)
(L) = −iβd1ξ1y1(L)I1(β, η),

y3x(L) = −iβd2ξ2y3(L)I1(β, η).

Multiplying (28)1 by y1 and (28)2 by y3, integrating over (0, L), one obtains∫ L

0

(
β2ρ1|y1|2 + β2ρ2|y3|2 − d2|y3x|2 − d1|y1x + y3|2

)
dx

= −iβI1(β, η)
(

d2
1ξ1|y1(L)|2 + d2

2ξ2|y3(L)|2
)

.

Taking the imaginary part, we deduce that

d2
1ξ1|y1(L)|2 + d2

2ξ2|y3(L)|2 = 0.

Hence, we deduce that (y1, y2) is the solution of
β2ρ1y1 + d1(y1x + y3)x = 0,

β2ρ2y3 + d2y3xx − d1(y1x + y3) = 0,
y1(0) = y3(0) =

(
y1x + y3

)
(L) = y3x(L).

Using the same argument used in Lemma 3, we infer that (y1, y2) = (0, 0).
This completes the proof of Lemma 4.

From Lemmas 3 and 4, we conclude the following result.

Proposition 1. σ(A) ∩ iR = {0}.

Proof of Theorem 3. Due to Proposition 1, the operator A lacks pure imaginary eigenval-
ues, and the intersection σ(A) ∩ iR is countable. By applying the general criterion from
Arendt and Batty in [17], the C0 semigroup (S(t))t≥0 of contractions is strongly stable.

4. Lack of Exponential Stability

The primary result of this section is encapsulated in the following theorem.

Theorem 4. The semigroup generated by the operator A fails to exhibit exponential stability in the
energy space H.

Proof. Our objective is to demonstrate that an infinite number of eigenvalues of the op-
erator A approach the imaginary axis, thereby preventing the Timoshenko system (1)–(3)
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from achieving exponential stability. To begin, we derive the characteristic equation that
determines the eigenvalues of A.

Given that A is dissipative, we choose a sufficiently small α0 > 0 and examine the
asymptotic behavior of the eigenvalues λ of A within the set S = λ ∈ C : α0 ≤ Re(λ) ≤ 0.

We first establish the characteristic equation that the eigenvalues of A must satisfy. Let
λ ∈ C∗ be an eigenvalue of A and let U = (u1, λu1, u3, λu3, ϕ1, ϕ2) ∈ D(A) be a corre-
sponding eigenvector such that |U| = 1.

The resulting eigenvalue problem is then given by

λ2u1 − d1
ρ1

u1xx − d1
ρ1

u3x = 0,

λ2u3 − d2
ρ2

u3xx +
d1
ρ2

u1x +
d1
ρ2

u3 = 0,

ϕ1 = µ(ξ)u1(L,t)
ξ2+η+λ

, ϕ2 = µ(ξ)u3(L,t)
ξ2+η+λ

,
u1(0) = u3(0) = 0,

(
u1x + u3

)
(L) = −d1ξ1u1(L)Iα(λ, η)

u3x(L) = −d2ξ2u3(L)Iα(λ, η).

where Iα(λ, η) =
∫
R

|ξ|2α−1

ξ2 + η + λ
dξ.

Equivalently, we have
u1xxxx − λ2( ρ1

d1
+ ρ2

d2

)
u1xx + λ2 ρ1ρ2

d1d2

(
λ2 + d1

ρ2

)
u1 = 0,

u1(0) = u3(0) = 0,(
ρ1
d1

λ2 − γ1γ2(λ + η)2α−2
)

u1(L)− γ2(λ + η)α−1u1x(L)− u1xx(L) = 0,
ρ2γ1

d2

(
λ2 + d1

ρ2

)
u1(L)(λ + η)α−1 +

( ρ1
d1

+ ρ2
d2

)
λ2u1x(L)− u1xxx(L) = 0,

(29)

where we used Iα(λ, η) =
γi

diξi
(λ + η)α−1, i = 1, 2 (see Lemma 2.1 in [6] for the proof).

The characteristic polynomial associated with System (29) is given by

P(r) := r4 − λ2(ρ1

d1
+

ρ2

d2

)
r2 + λ2 ρ1ρ2

d1d2

(
λ2 +

d1

ρ2

)
= 0.

Our goal is to analyze the asymptotic behavior of the large eigenvalues λ of A within
the set S. A detailed examination reveals that the polynomial P has four distinct roots when(

ρ1
d1

− ρ2
d2

)2
λ2 ̸= 4 ρ1

d2
.

Thus, the four distinct roots of P are given by r1(λ), r2(λ), r3(λ) = −r1(λ), and
r4(λ) = −r2(λ), where

r1(λ) =
λ√
2

√(
ρ1
d1

+ ρ2
d2

)
+

√(
ρ1
d1

− ρ2
d2

)2
− 4 ρ1

d2
λ−2,

r2(λ) =
λ√
2

√(
ρ1
d1

+ ρ2
d2

)
−

√(
ρ1
d1

− ρ2
d2

)2
− 4 ρ1

d2
λ−2.

The general solution to (29) can be expressed as

u1(x) = c1 sinh(r1(λ)x) + c2 sinh(r2(λ)x) + c3 cosh(r1(λ)x) + c4 cosh(r2(λ)x).

Applying the boundary conditions in (29) at x = 0 yields c3 = c4 = 0. Additionally,
the boundary conditions at x = L in (29) can be expressed as
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M(λ)C =(
f1(r1) sinh(r1L)− f2(r1) cosh(r1L) f1(r2) sinh(r2L)− f2(r2) cosh(r2L)
H1 sinh(r1L) + g(r1) cosh(r1L) H1 sinh(r2L) + g(r2) cosh(r2L)

)(
c1
c2

)
=

(
0
0

)
where

f1(r) =
ρ1
d1

λ2 − γ1γ2(λ + η)2α−2 − r2, f2(r) = γ2λ(λ + η)α−1r,

H1 = ρ2γ1
d2

(λ2 + d1
ρ2
)(λ + η)α−1, g(r) =

(
ρ1
d1

+ ρ2
d2

)
λ2r − r3 and C = (c1 c2)

T .
(30)

Let det(M) represent the determinant of the matrix M. Then, it follows that

detM(λ) = ( f1(r1)− f1(r2))H1 sinh(r1L) sinh(r2L)
− ( f2(r1)g(r2)− f2(r2)g(r1)) cosh(r1L) cosh(r2L)
+ ( f1(r1)g(r2) + f2(r2)H1) sinh(r1L) cosh(r2L)
− ( f2(r1)H1 + f1(r2)g(r1)) cosh(r1L) sinh(r2L).

The Equation (29) has a non-trivial solution if and only if det(M) = 0.
Case 1. Assuming that ρ1

d1
= ρ2

d2
, and applying the asymptotic expansion, we obtain

r1 = λ

√
ρ1

d1

√
1 + i

d1√
ρ1d2

1
λ
=

√
ρ1

d1
λ +

i
2

√
d1

d2
+

1
8

d3/2
1√
ρ1d2

1
λ
+ o(

1
λ
),

r2 = λ

√
ρ1

d1

√
1 − i

d1√
ρ1d2

1
λ
=

√
ρ1

d1
λ − i

2

√
d1

d2
+

1
8

d3/2
1√
ρ1d2

1
λ
+ o(

1
λ
).

(31)

Next, inserting (31) into (30), we obtain

( f1(r1)− f1(r2))H1 = −2iγ1

√
ρ1

d2
λ2+α + O(λ1+α),

f2(r1)g(r2)− f2(r2)g(r1) = 2iγ2

√
ρ1

d2
λ3+α + O(λ2+α),

f1(r1)g(r2) + f2(r2)H1 = −i
√

ρ1

d2
λ3 + O(λ2),

f2(r1)H1 + f1(r2)g(r1) = iγ1γ2
ρ1

d2

√
ρ1

d2
λ2+2α + O(λ1+2α).

(32)

where we used
(λ + η)α−1 = λα−1 + O

(
λα−2

)
.

From (31), we obtain sinh(r1L) = sinh
(√

ρ1
d1

λL
)
+ O( 1

λ ) cosh(r1L) = cosh
(√

ρ1
d1

λL
)
+ O( 1

λ ),

sinh(r2L) = sinh
(√

ρ1
d1

λL
)
+ O( 1

λ ) cosh(r2L) = cosh
(√

ρ1
d1

λL
)
+ O( 1

λ ).
(33)

Therefore, from (32) and (33), we obtain

det M
λ3+α = 2iγ2

√
ρ1

d2
cosh2

(√
ρ1

d1
λL

)
− i

√
ρ1

d2

1
λα

1
2

sinh
(

2
√

ρ1

d1
λL

)
− iγ1γ2

ρ1

d2

√
ρ1

d2

1
λ1−α

1
2

sinh
(

2
√

ρ2

d2
λL

)
+ O

(
λ−1

)
.

(34)
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Let λ be a large eigenvalue of A. Then, according to (34), λ is an approximate root of
the following asymptotic equation:

φ(λ) = φ0(λ) +
φ1(λ)

λmin(α,1−α)
+ O(λ−1),

where φ0(λ) = 2iγ2

√
ρ1

d2
cosh2

(√
ρ1

d1
λL

)
and φ1(λ) = c sinh

(
2
√

ρ1

d1
λL

)
.

It is important to note that φ0 and φ1 remain bounded within the strip α0 ≤ Re(λ) ≤ 0.

The roots of φ0 are given by i
(2n + 1)π

2L

√
d2

ρ1
, k ∈ Z, and we conclude using

Rouché’s theorem.
Case 2. ρ1

d1
̸= ρ2

d2
is treated in a similar way.

The proof of Theorem 4 is thus concluded.

5. The Rate of Decay of the C0 Semigroup

This section focuses on analyzing the asymptotic behavior of the solution to the
system (1)–(3). We demonstrate the polynomial stability of the system (1)–(3):

Theorem 5. Let (S(t))t≥0 be the bounded C0 semigroup on the Hilbert space H; with generator
A, we have

∥S(t)A(I −A)−1∥ = O(t−1), t → ∞.

The following corollary follows from Theorem 5 and Remark 8.5 in [16].

Corollary 1. Given (u0, u1) ∈ D(A) ∩ R(A). There exist constants C, t0 > 0 such that, for all
t ≥ t0,

∥S(t)(u0, u1)∥ ≤ C
t
∥(u0, u1)∥D(A)∩R(A).

To establish Theorem 5, we derive a specific resolvent estimate using a result from Batty,
Chill, and Tomilov as presented in [16]. More precisely, we have the following lemmas:

Lemma 5. The operator A defined by (2) and (10) satisfies

lim sup
β∈R,|β|→+∞

∥
(
iβI −A

)−1∥L(H) < ∞.

Proof. By contradiction, suppose that

lim sup
β∈R,|β|→∞

∥
(
iβI −A

)−1∥L(H) = ∞.

There exists a sequence of real numbers βn > 0 with βn → ∞ and a sequence of
vectors (Un)n ∈ D(A) such that

∥Un∥H = 1,

and
(iβn I −A)Un =: Fn = o(1) in H. (35)

Our objective is to show that Un converges to zero, leading to a contradiction.
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Note that (35) is equivalent to

iβnun
1 − un

2 = f n
1 −→ 0 in H1

L,

iβnun
2 −

d1
ρ1

(
un

1x + un
3

)
x

= f n
2 −→ 0 in L2,

iβnun
3 − un

4 = f n
3 −→ 0 in H1

L,

iβnun
4 −

d2
ρ2

un
3xx +

d1
ρ2

(
un

1x + un
3

)
= f n

4 −→ 0 in L2,

ϕn
1 (iβn + ξ2 + η)− µ(ξ)un

2 (L, t) = f n
5 −→ 0 in L2,

ϕn
2 (iβn + ξ2 + η)− µ(ξ)un

4 (L, t) = f n
6 −→ 0 in L2,

(un
1x + un

3 )(L) = −γ1
sin(απ)

π

∫
R

µ(ξ)ϕn
1 (ξ, t)dξ,

un
3x(L) = −γ2

sin(απ)

π

∫
R

µ(ξ)ϕn
2 (ξ, t)dξ.

(36)

First, taking the real part of the inner product of (35) with Un in H, we obtain

Re⟨iβn I −A)Un, Un⟩H
= d2

1ξ1

∫
R

(
ξ2 + η

)
|ϕn

1 (ξ, t)|2dξ + d2
2ξ2

∫
R

(
ξ2 + η

)
|ϕn

2 (ξ, t)|2dξ. (37)

Then, from (35) and (37), we obtain

∥ϕn
1∥L2 = ∥ϕn

2∥L2 = o(1),

and we deduce that

(un
1x + un

3 )(L) = o(1) and un
3x(L) = o(1).

Note also that we deduce from (36)1 and (36)3 that ∥un
1∥L2 = o(1) and ∥un

3∥L2 = o(1).
Now, inserting (36)1 into (36)2 and (36)3 into (36)4, we obtain

un
2 = iβun

1 − f n
1 ,

−β2un
1 −

d1
ρ1
(un

1x + un
3 )x = f n

2 + iβ f n
1 ,

un
4 = iβun

3 − f n
3 ,

−β2un
3 −

d2
ρ2

un
3xx +

d1
ρ2
(un

1x + un
3 ) = f n

4 + iβ f n
3

ϕn
1 =

f n
5 +µ(ξ)un

2 (L,t)
iβ+ξ2+η

,

ϕn
2 =

f n
6 +µ(ξ)un

4 (L,t)
iβ+ξ2+η

.

(38)

We will break the proof into several steps, and, for simplicity, we will omit the index n.

Step 1. Multiplying (38)2 by xu1x and integrating over (0, L), one obtains

β2
∫ L

0

|u1|2
2

dx − β2L
2

|u1(L)|2 + d1L
ρ1

∫ L

0

|u1x|2
2

dx − d1

ρ1
|u1x(L)|2

− d1

ρ1

∫ L

0
xℜ(u3xu1x)dx

= ℜ
[ ∫ L

0
x f2u1xdx − iβ

∫ L

0
( f1 + x f1x)u1dx + iβL f1(L)u1(L)

]
.

Using the fact that
∫ L

0
x f2u1xdx = o(1),

∫ L

0
( f1 + x f1x)βu1dx = o(1) and

| f1(L)| = |
∫ L

0
f1xdx| ≤

√
L∥ f1∥H1

L(0,L) = o(1).
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Therefore,

β2
∫ L

0

|u1|2
2

dx − β2L
2

|u1(L)|2 + d1

ρ1

∫ L

0

|u1x|2
2

dx − d1L
ρ1

|u1x(L)|2

− d1

ρ1

∫ L

0
xℜ(u3xu1x)dx = o(1)

(
1 +ℜ(βu1(L)

)
.

(39)

Analogously, by multiplying Equation (38)4 by xu3x, we obtain

(β2 − d1

ρ2
)
∫ L

0

|u3|2
2

dx + L(
d1

ρ2
− β2)

|u3(L)|2
2

+
d2

ρ2

∫ L

0

|u3x|2
2

dx − d2L|u3x|2
2ρ2

+
d1

ρ2

∫ L

0
xℜ(u1xu3x)dx = o(1)

(
1 +ℜ(βu3(L)

)
.

(40)

Consequently, estimates (39) and (40) give

β2ρ1

∫ L

0

|u1|2
2

dx − β2ρ1L
2

|u1(L)|2 + d1

∫ L

0

|u1x|2
2

dx − d1L|u1x(L)|2

+ (β2ρ2 − d1)
∫ L

0

|u3|2
2

dx + L(d1 − β2ρ2)
|u3(L)|2

2
+ d2

∫ L

0

|u3x|2
2

dx

= o(1)
(

1 +ℜ(βu1(L) +ℜ(βu3(L)
)

.

(41)

Step 2. From (38)5 and (38)6, we have
ϕ2

1 =
f 2
5

β2+(ξ2+η)
2 +

µ2(ξ)u2
2(L,t)

β2+(ξ2+η)
2 + 2Re f5µ(ξ)u2(L,t)

β2+(ξ2+η)
2 ,

ϕ2
2 =

f 2
6

β2+(ξ2+η)
2 +

µ2(ξ)u2
4(L,t)

β2+(ξ2+η)
2 + 2Re f6µ(ξ)u4(L,t)

β2+(ξ2+η)
2 .

Given that ∥ϕ1∥L2 = ∥ϕ2∥L2 = o(1) and
∫
R

µ(ξ)
β2+(ξ2+η)2 dξ > 0, we can deduce that

u2(L) −→ 0 and u4(L) −→ 0.

Consequently, using (38)1 (38)3, and the fact that | fi(L)| ≤
√

L∥ fi∥H1
L
= O(1), i = 1, 3,

we obtain
βu1(L) −→ 0 and βu3(L) −→ 0,

and, next, u1x(L) = o(1).
Combining this with (41), (38)1, and (38)3, we obtain that ∥u2∥L2 = o(1) and

∥u4∥L2 = o(1) and, next, ∥U∥H = o(1), which contradicts the hypothesis that ∥U∥H = 1.
Thus, the proof of the lemma is complete.

Lemma 6. The operator A defined by (2) and (10) satisfies

lim sup
β∈R, β→0

∥β
(
iβI −A

)−1∥L(H) < ∞.

Proof. By contradiction, suppose that

lim sup
β∈R, β→0

∥β
(
iβI −A

)−1∥L(H) = ∞. (42)

Put β =
1
γ

so (42) is equivalent to

lim sup
γ∈R, |γ|→+∞

∥γ−1(iγ−1 I −A)−1∥L(H) = ∞.
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Then, there exists a sequence of real numbers γn > 1 with γn → ∞ and a sequence of
functions (Un)n ∈ D(A) such that

∥Un∥H = 1, (43)

and
γn(iγ−1

n I −A)Un =: Fn = o(1), in H. (44)

We will demonstrate that ∥Un∥H = o(1), which contradicts the assumption regarding
Un. To simplify, we will drop the index n in the following and divide the remainder of the
proof into two steps for clarity.

Step 1. In fact, (44) can be written as

iu1 − γu2 = f1 −→ 0 in H1
L,

iu2 − γd1
ρ1

(u1x + u3)x = f2 −→ 0 in L2,
iu3 − γu4 = f3 −→ 0 in H1

L,
iu4 − γd2

ρ2
u3xx +

γd1
ρ2

(u1x + u3) = f4 −→ 0 in L2,
ϕ1(i + γξ2 + γη)− γµ(ξ)u2(L, t) = f5 −→ 0 in L2,
ϕ2(i + γξ2 + γη)− γµ(ξ)u4(L, t) = f6 −→ 0 in L2.

(45)

Since Un is bounded by 1 in H and Fn converges to 0 in H, (45)1 and (45)3 imply that

∥u2∥L2 = ∥u4∥L2 = o(1). (46)

By taking the real part of the inner product of (44) with U in H, we obtain

Re
〈

γ(iγ−1 I −A)U, U
〉
H

= γd2
1ξ1

∫
R

(
ξ2 + η

)
|ϕn

1 (ξ, t)|2dξ

+ γd2
2ξ2

∫
R

(
ξ2 + η

)
|ϕn

2 (ξ, t)|2dξ.

Then, from (43) and (44), we obtain

∥ϕ1∥L2 = ∥ϕ2∥L2 = o(1). (47)

Considering that U ∈ D(A), we deduce that

(u1x + u3)(L) = o(1) and u3x(L) = o(1). (48)

Next, we use the same steps used in the previous lemma to obtain

γu2(L) −→ 0 and γu4(L) −→ 0,

and we infer that
u1(L) −→ 0 and u3(L) −→ 0. (49)

Step 2. Now, from (45)2, (45)4, and (46), we obtain{
γ(u1x + u3)x = − ρ1

d1
( f2 − iu2) := g1 −→ 0 in L2,

γu3xx − γd1
d2

(u1x + u3) = − ρ2
d2
( f4 − iu4) := g2 −→ 0 in L2.

Consequently, V := (u1, u1x + u3, u3, u3x)
T is the solution of{

d
dx V = CV + G

V(L) = (u1(L), (u1x + u3)(L), u3(L), u3x(L))T .
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Here, C is defined as

C =


0 1 −1 0
0 0 0 0
0 0 0 1
0 d1

d2
0 0


and G := (0, 1

γ g1, 0, 1
γ g2)

T .
On one hand, by Duhamel’s formula, one obtains

V(x) = exp
(
C(x − L)

)
V(L) +

∫ x

L
exp

(
C(x − s)

)
G(s)ds.

Conversely, a straightforward calculation yields the characteristic polynomial of C:

P(λ) = λ4.

Hence, we obtain

exp(Cx) =


1 x − d1x3

6d2
−x − x2

2
0 1 0 0

0 d1x2

2d2
1 x

0 d1x
d2

0 0

, ∀x ∈ R.

Therefore,

u1 = u1(L) +
(

x − L − d1(x − L)3

6d2

)
(u1x + u3)(L)− (x − L)u3(L)

− (x − L)2

2
u3x(L) +

1
γ

∫ x

L

(
(x − s − d1(x − s)3

6d2
)g1 −

(x − s)2

2
g2

)
ds,

and, from (48) and (49), it is simple to show that u1 converges to 0 in L2. We also show that
u1x, u3 and u3x converge to 0 in L2.

Finally, combining the last result with (46) and (47), we find that ∥U∥H = o(1), which
contradicts the assumption that ∥U∥H = 1.

Proof of Theorem 5. It follows immediately from Lemma 5, Lemma 6, and Theorem 7.6
in [16] that

∥S(t)A(I −A)−1∥ = O(t−1), t → ∞.
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Appendix A

In this appendix, we present several key theorems from the literature that have been
utilized in various proofs throughout this article. We begin with the Lax–Milgram theorem,
which serves as a type of representation theorem for bounded linear functionals on a Hilbert
space H:

Theorem A1. Let B be a bounded, coercive bilinear form on a Hilbert space H. Then, for every
bounded linear functional ℓ on H, there exists a unique element xℓ ∈ H such that ℓ(x) = B(x, xℓ)
for all x in H.

We then proceed to the Lumer–Phillips theorem, which provides a necessary and
sufficient condition for a linear operator in a Banach space to generate a contraction
semigroup:

Theorem A2. Let A be a densely defined operator on X. Then, A generates a C0-semigroup of
contractions on X if and only if

1. A is dissipative;
2. (I −A)D(A) = X, where D(A) is the domain of the operator A.
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