
I  

 ةــيبعشلا ةـياطرقميلدا ةيرئازجلا ةيروهمجلا

République algérienne démocratique et populaire 

 يــــملعلا ثــحبلاو يـلاعلا مــيلعـتلا ةرازو

Ministère de l’enseignement supérieur et de la recherche scientifique 

 بيعشوب جاحلب نتشومت نيع ةعماج

Université Ain Temouchent Belhadj Bouchaib 

Faculté des Sciences et de Technologie 

Département des Mathématiques et Informatique 

 
 

End of Cycle Project 
To obtain the Master's degree in: Computer Science 

Field: Mathematics and Computer Science 
Sector: Computer Science 

Specialty: Networks and data engineering 

Theme 
 

 
Presented by : 

 MLLE. SMAHI FAIROUZ  

MLLE.SAYAH ASMAA 

Defended on: 24/06/2024 

Before the jury composed of 

Supervisor Dr Benaribi Fethi 

Chairman Dr Berrakem .F 

Examiner Dr Bouchakour Errahmani .H  

 

Academic year: 2023/2024

 
Federated Learning in Distributed Networks: Leveraging Collaborative 

Machine Learning without Compromising Data Privacy 



II  

 
 
 
 
 
 
 
 
 
 
 
 

Remerciement 
 

We thank God for giving us the courage and passion to complete this work. We wish to express our  

sincere gratitude to our supervisors, Mr. Benaribi Imad. Our thanks also go to the jury members for 

the honor they have given us by agreeing to evaluate this work and participate in the defense. We are 

grateful to all the teachers at Belhadj Bouchaib University for their contribution to our education and 

their expertise in furthering our studies. We thank our parents, who have supported us greatly 

throughout our lives and will continue to help us in all our future projects. We also thank our brothers 

and sisters who have encouraged and helped us, whether directly or indirectly, in our lives. Finally, we 

thank everyone who has helped us complete this work, whether directly or indirectly. 



III  

 
 

 

Contents 

 

General Introduction .................................................................................. 1 

1 Background ........................................................................................... 3 

1.1 Introduction...........................................................................................................3 

1.2 Machine Learning .................................................................................................3 

1.3 Deep Learning ....................................................................................................... 4 

1.3.1 Single-layer neural network ................................................................... 4 

1.3.2 Multi Layer neural network .................................................................... 5 

1.3.3 Activation functions ................................................................................. 6 

1.3.4 Deep Learning Approaches .................................................................... 8 

1.3.5 Table of approch …………………………………………………………………………9 

1.3.6 Loss Functions .......................................................................................... 9 

1.3.7 Deep Learning Optimizers..................................................................... 10 

1.3.8 Deep Learning Types ............................................................................. 12 

1.4 Transfer Learning ............................................................................................... 17 

1.5 Federated Learning............................................................................................. 18 

1.5.1 Federated Learning Approaches ........................................................... 18 

1.5.2 The Life cycle of a Model in Federated Learning................................ 21 

1.5.3 Federated Optimization Algorithms ..................................................... 21 

1.5.4 Federated Learning Challenges ............................................................ 23 

1.6 ICPS ..................................................................................................................... 24 

1.7 IoT ....................................................................................................................... 24 

1.7.1 IoT Architecture ...................................................................................... 25 

1.8 Cloud ................................................................................................................... 26 

1.8.1 Characteristics ......................................................................................... 27 

1.8.2 Service Models ........................................................................................ 27 

1.8.3 Cloud Solutions ...................................................................................... 28 

1.9 Fog ....................................................................................................................... 29 

1.9.1 Characteristics ........................................................................................ 29 

1.9.2 Fog Node Attributes .............................................................................. 30 

1.9.3 Fog Node Architectural Service and Deployment Models .................. 31 

1.9.4 Architecture ............................................................................................. 31 

1.10 Edge ......................................................................................................................33 

1.10.1 Architecture .............................................................................................33 

1.10.2 Features .................................................................................................. 34 

1.11 Conclusion ........................................................................................................... 35 



IV  

2 State of the art .................................................................................. 37 

Contents 

2.1 Introduction......................................................................................................... 37 

2.2 Cloud-based FL ................................................................................................... 37 

2.3 Fog-based FL ...................................................................................................... 39 

2.4 Edge-based FL.................................................................................................... 40 

2.5 Discussion and Comparison ............................................................................. 42 

2.6 Conclusion .......................................................................................................... 45 

3 FedGA-ICPS Framework ..................................................................... 46 

3.1 Design Architecture ........................................................................................... 46 

3.1.1 IoT Layer ................................................................................................. 47 

3.1.2 Edge Layer .............................................................................................. 48 

3.1.3 Fog Layer ................................................................................................ 48 

3.1.4 Cloud Layer ............................................................................................ 48 

3.2 FedGA-ICPS Framework ................................................................................... 49 

3.2.1 Learning ...................................................................................................53 

3.2.2 Election ................................................................................................... 54 

3.2.3 Federation .............................................................................................. 56 

3.2.4 Broadcasting ............................................................................................ 57 

3.3 Conclusion ........................................................................................................... 57 

4 FedGA-ICPS Implementation and Experiments ................................. 59 

4.1.1 Dataset Fashion MNIST ....................................................................... 65 

4.1.2 Dataset EMNIST .................................................................................... 65 

4.1.3 Dataset MNIST ...................................................................................... 66 

4.1.4 Dataset Cifar-10 ..................................................................................... 66 

4.1.5 Neural Network Models ........................................................................ 66 

4.1.6 Transfer Learning ................................................................................... 67 

4.1.7 Election ................................................................................................... 68 

4.1.8 Federated With Genetic Algorithm (FedGA) ...................................... 69 

4.1.9 Optimization Algorithms ................................................... 70 
4.2.9.1 Particle Swarm Optimization ................................................... 70 

4.2.9.2 Ant Colony Optimization ......................................................... 72 

4.2 Experiments and Results ................................................................................... 73 

4.2.1 FL Evaluation .......................................................................................... 73 

4.3 Discussions and comparison ............................................................................. 77 

4.4 Conclusion .......................................................................................................... 78 

General Conclusion ................................................................................. 79 

Bibliography ............................................................................................ 80 



V  

 

List of Figures 

 
1.1 Deep Learning neural network [60]. ............................................................................. 4 

1.2 Single Layer Perceptron representation ....................................................................... 5 

1.3 Overview of a Multi-Layer Perceptron ................................................................. 6 

1.4 Sigmoid Activation Function ................................................................................. 7 

1.5 Hyperbolic Tangent Activation Function ............................................................. 7 

1.6 ReLU Activation Function .................................................................................... 8 

1.7 ANN Architecture ................................................................................................ 13 

1.8 CNNs Architecture .............................................................................................. 14 

1.9 RNN Architecture ................................................................................................ 14 

1.10 LSTM Architecture .............................................................................................. 15 

1.11 GRU Architecture ................................................................................................ 16 

1.12 DenseNet Architecture. ................................................................................................. 16 

1.13 Difference between Traditional ML and TL ....................................................... 17 

1.14 Structure of federated learning .................................................................................. 18 

1.15 Classification of federated learning ............................................................................ 19 

1.16 Centralized Federated Learning Architecture ........................................................... 20 

1.17 Peer to peer decentralized Federated Learning Architecture ................................. 20 

1.18 FedPer illustration ............................................................................................... 23 

1.19 Example of a proposed IoT-Edge-Fog-Cloud architecture [14]. ............................. 25 

1.20 IoT SOA Architecture [6]. ................................................................................... 25 

1.21 Cloud Computing Models [43]. .................................................................................. 28 

1.22 Fog Computing Architecture [62]. ............................................................................. 32 

1.23 Edge Computing Architecture. ........................................................................... 34 
 

3.1 The Proposed Architecture Design for FedGA-ICPS framework ................... 47 

3.2 The Interoperability and Integrity Validation and Evaluation [33] ...................... 49 

3.3 FedGA-ICPS Class Diagram. .............................................................................. 52 

3.4 TL Registry Structure ......................................................................................... 53 

3.5 Learning Sequence Diagram ........................................................................................ 54 

3.6 A Configuration of the Election Process at a slot of time ................................. 55 

3.7 Election Sequence Diagram .......................................................................................... 55 

3.8 FedGA Schema .................................................................................................... 56 

3.9 FL Sequence Diagram .................................................................................................. 58 

4.1 Taken from the Fashion MNIST dataset ............................................................ 65 

4.2 Taken from EMNIST dataset .............................................................................. 66 

4.3 Taken from MNIST dataset ................................................................................ 66 



VI  

List of Figures 

4.4 Taken from Cifar-10 dataset ............................................................................. 66 

4.5 CNN model .......................................................................................................... 67 

4.6 ANN model .......................................................................................................... 67 

4.7 RNN model ......................................................................................................... 68 

4.8 GRU model ......................................................................................................... 68 

4.9 densenet model .................................................................................................. 69 

4.10 Election attributes ............................................................................................. 69 

4.11 FedGA Configuration ........................................................................................ 70 

4.12 FedGA Fitness Function ................................................................................... 70 

4.14 FedAVG(1) ........................................................................................................... 71 

4.15 FedPer(1) ............................................................................................................. 72 

4.16 FedGA(1).............................................................................................................. 72 

4.17 FedAVG(2) ........................................................................................................... 73 

4.18 FedGA(2) ............................................................................................................. 73 

4.19 FedPer(2) ............................................................................................................. 74 

4.20 FedAVG(3) .......................................................................................................... 74 

4.21 FedGA(3) ............................................................................................................. 75 

4.22 FedPer(3) ............................................................................................................ 75 

4.23 FedAVG(4) .......................................................................................................... 76 

4.24 FedGA(4) ............................................................................................................. 76 

4.25 FedPer(4) ............................................................................................................ 77 



List of Tables 

V 

 

 

 
 

      1.1:  Deep Learning Approaches………………………………………………………………………11 

2.1 Comparison of the State of The Art ................................................................. 44 

4.1 Application Domains and Tasks ................................................................................ 68 
 

4.2 : Comparing graph representations between the Standard Genetic Algorithm and Particle 
Swarm 
Optimization ..................................................................................................................................... 71 

 
4.3 : Comparing graph representations between the Standard Genetic Algorithm and Ant 

Colony 
Optimization ..................................................................................................................................... 72 



List of Algorithms 

VI 

 

 

 
 
 

1 Federated Averaging (FedAVG) algorithm [58] ............................................. 22 

2 Federated Genetic Algorithm (FedGA) [32] .................................................... 57 



List of abbreviations and acronyms 

IX 

 

 

 
 
 
 

AI Artificial intelligence 

ML Machine Learning 

FL Federated Learning 

TL Transfer Learning 

SLP Single Layer Perceptron 

MLP Multi Layers Perceptron 

ReLU Rectified Linear Unit 

RNN Recurrent Neural Network 

CNN Convolutional Neural Network 

FFNN Feed Forward Neural Network 

LSTM Long Short Terme Memory 

BPTT Backpropagation Through Time 

CPS Cyber physical System 

ICPS Industrial Cyber physical System 

IoT Internet Of Things 

TCP Transmission Control Protocol 

UDP User Datagram Protocol 

WAN Wide Area Network 

LAN Local Area Network 

LPWAN Low-power WAN 

RFID Radio Frequency Identification 

NFC Near Field Communication 



1 

 

 

 

GSM Global System for Mobile Communications 

GPS Global Positioning System 

LTE Long Term Evolution 

QoS Quality of  Service 

HTTP Hypertext Transfer Protocol 

MQTT MQ Telemetry Transport 

DDS Data Distribution Service 

AMQP Advanced Message Queuing Protocol 

XMPP Extensible Messaging and Presence Protocol 

JMS Java Messaging Services 

REST Representational state transfer 

CoAP Constrained Application Protocol 

OPC UA Open Platform Communications United Architecture 

M2M Machine To Machine 



2 

 

 

 
 
 
 
 
 
 
 
 

 

        General introduction  

 
The Internet of Things (IoT) has developed rapidly in recent years, offering ubiquitous 

sensing and computing capabilities that enable a wide range of objects to be connected 

to the Internet [54]. There are multiple domains such as the Internet of Industrial Things  

(IoIT), referring the use of connected devices, sensors, intelligent systems , fast communi - 

cation protocols and effective cybersecurity mechanisms to enhance and optimize various 

industrial processes and applications [11]. Managing the profusion of data generated by 

intelligent devices within cyber-physical systems necessitates sophisticated and secure big 

data analysis approaches. The intricacy of decision-making continually intensifies, given the 

ever-growing volume of data. In this context, the effectiveness of artificial intelligence (AI), 

machine learning (ML) and deep learning (DL) techniques in particular has been 

demonstrated, due to their sophisticated learning and processing capabilities, particularly 

within network-based systems [29]. 

The conventional approach to implementing AI in cyber-physical systems (CPS) was 

centralized, with a central server driving the model using data from all connected end  

devices. However, transmitting such a large volume of data from these end devices to 

the cloud leads to bandwidth congestion, delays in data processing and a potential risk 

of privacy breach [44]. 

We conducted research to understand the deployment of FL across Cloud, Fog, 

and Edge computing environments, as well as its integration with other 

methodologies like deep learning and transfer learning. Furthermore, we evaluated 

the innovative solution, FedGA-ICPS, developed by Mademoiselle Guendouzi Badra 

Souhila. Following Guendouzi's work, we conducted tests on various datasets to 

assess its performance in heterogeneous environments. We conducted extensive tests 

on multiple benchmarks and topologies, including datasets such as Fashion MNIST, 

EMNIST, MNIST, and CIFAR-10, as well as models like Convolutional Neural 

Networks (CNNs), Recurrent Neural Networks (RNNs), Gated Recurrent Units 

(GRUs), Artificial Neural Networks (ANNs), and DenseNet. 

Additionally, we tested two optimization algorithms, Particle Swarm Optimization 

(PSO) and Ant Colony Optimization (ACO), with the EMNIST and MNIST datasets. These 

tests were conducted to evaluate the effectiveness of these optimization techniques in  

improving model performance. The results underscore the versatility and efficacy of PSO 

and ACO in various scenarios, demonstrating their potential to enhance the accuracy and 



3 

 

 

efficiency of our models within the FedGA-ICPS framework. 

In this context, our project report is structured into four chapters: In Chapter 1, we 

discuss the generalities of Machine Learning (ML) and Integrated Cyber -Physical Systems 

(ICPS). In Chapter 2, we evaluate existing architectures that utilize Federated Learning 

(FL), Deep Learning (DL), and Transfer Learning (TL) metho ds to facilitate decision- 

making in the cloud, fog, and edge layers, while also identifying their flaws. In Chapter 3, 

we detail the architecture of our FedGA-ICPS framework. Following that, in Chapter 4, we 

test it with a chosen use case. Finally, we conclude our work with a general conclusion. 



4 

 

 

 
 
 
 
 

Chapter 1 

Background 

1.1 Introduction 
 

In today’s world, data is predominantly stored in digital format, thanks to advancements  

in computer programs capable of handling large volumes of information. Data isn’t just  

about numbers; it’s more than just digits. It has evolved beyond being a tool solely 

for analyzing past events; it now serves as a crucial resource for informing decisions and 

predicting future outcomes. 

Quality data forms the cornerstone of any efficient operation. Without it, businesses 

cannot effectively forecast, plan, or monitor long-term performance, which directly im- 

pacts their success. In recent years, the volume of data has surged, leading to increasingly 

complex decision-making processes. This complexity has prompted the adoption of ma- 

chine learning (ML) techniques, which streamline decision-making and provide valuable 

insights into customer behavior and business operations. Furthermore, there exists a s ym - 

biotic relationship between AI techniques and ICPS (Integrated Cyber -Physical Systems), 

This chapter offers an overview of machine learning (ML), describing its methodologies  

including Deep Learning (DL), Transfer Learning (TL), and Federated Learning (FL), as  

well as an introduction to ICPS layers: IoT, Cloud, Fog, and Edge. 

 

 

1.2 Machine Learning 
 

Machine learning is an automated process that occurs through the analysis of typically  

large datasets. Past procedures, known as ”symbolic artificial intelligence,” relied on al- 

gorithms consisting of a logical sequence of instructions to encode a given output (often 

referred to as the target) for all possible inputs. In contrast, modern machine learning  

systems ”learn” directly from data, estimating mathematical functions that expose repre- 

sentations of some input, or learn to connect one or more inputs to one or more outputs 

to make predictions on new data [78]. 

According to Boris Katz, a principal research scientist and head of the InfoLab Group 

at CSAIL, the objective of AI is to develop computer models capable of demonstrating 

”intelligent behaviors” related to humans. This necessitates creating machines proficient 



Chapter 1. Background 

5 

 

 

 

 
in tasks such as visual scene recognition, comprehension of natural language text, and 

execution of actions in the physical realm. 

Machine learning serves as a methodology within AI, initially defined by AI pioneer  

Arthur Samuel in the 1950s as ”the field of study that empowers computers to learn  

autonomously without explicit programming.” 

Algorithms of Machine Learning (ML) are employed across various domains, encom - 

passing medicine, email filtering, speech recognition, and computer vision. This technol - 

ogy proves indispensable in scenarios where conventional algorithms struggle or fail to 

accomplish the designated tasks [39]. 

 
 

1.3 Deep Learning 
 

Deep learning, a subset of machine learning, utilizes algorithms to identify patterns within  

complex datasets and forecast outcomes. Unlike traditional machine learning methods, 

which rely on labeled datasets, deep learning networks can be trained using unsupervised  

learning, reducing the need for labeled data and human input. The term ”deep learning”  

originates from the incorporation of numerous hidden layers within its models. While a 

basic neural network consists of input, output, and hidden layers ,deep neural networks  

feature multiple hidden layers for more intricate processing as it is shown in Figure 1.1. 
 
 
 

 
Figure 1.1: Deep Learning neural network [60]. 

 

These additional layers enhance the accuracy of predictions made by deep learning 

systems. However, achieving this level of accuracy requires millions of data points and 

hundreds of hours of training, surpassing the requirements of simpler neural networks. 

 

1.3.1 Single-layer neural network 

A single-layer neural network, often referred to as a ”perceptron,” is the simplest form of  

an artificial neural network. It comprises just one layer of artificial neurons or perceptrons, 

known as the ”output layer,” which produces the final output of the network. It uses 



Chapter 1. Background 

6 

 

 

 

high-dimensional vector X = x1, x2, ..., xn as the feature input and performs binary 

classification on it by multiplying it with the weight vector  W = w1 , w2 , ..., wn 

adding a bias b: 

T and 

Y = WT × X + b (1.1) 

The final output is obtained by applying an activation function, given by: 
 

Output(Y ) = Sign(Y ) = 
1 if Y > 0

 
−1 otherwise 

 

(1.2) 

 

A representation of the single-layer neural network is shown in Figure 1.2. 
 
 

 

 
 

Figure 1.2: Single Layer Perceptron representation. 

 
single-layer neural networks are rarely used for real-world applications because of their 

limitations. Multi-layer neural networks, such as feedforward neural networks (FFNNs), 

are more capable of handling complex tasks and are commonly used in tasks like image 

recognition, natural language processing, and many other machine learning applications. 

 

1.3.2 Multi Layer neural network 

An MLP, or multilayer perceptron, is a modern type of feedforward artificial neural net - 

work, consisting of three layer types illustrated in Figure 1.3: the input layer, output 

layer, and hidden layer(s) [5]. The input layer receives the input data to be processed, 

while the output layer is responsible for tasks such as prediction and classification. The  

true computational center of the MLP lies within its hidden layers, which can vary in 

number and are situated between the input and output layers. 

In an MLP, data progresses from the input to the output layer in a forward direction, 

similar to a feedforward network. The training of MLP neurons is accomplished through 

the backpropagation learning algorithm. This approach enables MLPs to tackle problems 



Chapter 1. Background 

7 

 

 

 

 
that lack linear separability and are engineered to approximate any continuous function. 

Common applications of MLP include pattern categorization, recognition, prediction, and 

approximation. 

 

 
 

Figure 1.3: Overview of a Multi-Layer Perceptron. 

 
 
 

1.3.3 Activation functions 
 

In a neural network, each layer consists of nodes, and every node possesses a weight that  

influences the input processing from one layer to the next. Without an activation function, 

the output signal of a neural network remains a simple linear function, related to a 

straightforward one-degree polynomial.To effectively interpret complex, high-dimensional, 

and nonlinear datasets, especially when employing models with multiple hidden layers like  

deep learning (DL). These functions enable the network to capture complex patterns and 

relationships within the data, facilitating more robust and subtle analysis [79]. 

 
 

Sigmoid Activation Function. 

 
The sigmoid activation function, also known as the logistic function shown in Figure 1.4 

, is typically applied in the output layer of binary classification tasks, where the outcome 

is either 0 or 1. This function constrains its output between 0 and 1. Consequently, 

predictions are straightforward: if the sigmoid function’s value exceeds 0.5, the result is 

predicted as 1; otherwise, it is predicted as 0. The formula for the sigmoid function is as  

follows: 

 
 

Sig(x) = 
ex 

1 + ex 

 

(1.3) 



Chapter 1. Background 

8 

 

 

 
 

1 
 

0.y8 
 

0.6 
 

0.4 
 

 
 

−10 −5 

0.2  
 

x 

5 10 
 

Figure 1.4: Sigmoid Activation Function. 

 

Hyperbolic Tangent Activation Function TanH 

 
The activation that works almost always better than sigmoid function is Tanh function 

also known as Tangent Hyperbolic function that is shown in Figure 1.5 .Usually used in 

hidden layers of a neural network as it’s values lies between -1 to 1 hence the mean for 

the hidden layer comes out be 0 or very close to it, hence helps in centering the data by 

bringing mean close to 0. This makes learning for the next layer much easier.The formula 

is as follows: 
 

ex − e−x 

TanH(x) = 
ex + e−x

 

 
(1.4) 

 
 
 

 
 

Figure 1.5: Hyperbolic Tangent Activation Function. 

 
 
 
 

ReLU Activation Function 

 
ReLU is non-linear activation function that is shown in Figure 1.6. It is the most widely 

used activation function. Chiefly implemented in hidden layers of Neural network.ReLu 

is less computationally expensive than tanh and sigmoid [79] because it involves simpler 

mathematical operations. At a time only a few neurons are activated making the network 

sparse making it efficient and easy for computation. It can be defined mathematically as: 

1 

 
0.y5 

−10 −5 5x 10 

−0.5 

 
−1 



Chapter 1. Background 

9 

 

 

 
 

 

f (x) = max(x, 0) (1.5) 
 
 
 

−6 −4 −2 2 4 6 

Figure 1.6: ReLU Activation Function. 

 
 

Softmax Activation Function 

 
The Softmax activation function is ideally used in the output layer of the classifier where  

are actually trying to attain the probabilities to define the class of each input. It canbe 

expressed as: 
 
 

softmax 
 

(xi) = 
exi 

ΣK 

 

(1.6) 
x 

e i 
i=1 

5 
 

y4 

3 

2 

 
1 

x 



Chapter 1. Background 

10 

 

 

The number of neurons in the output layer is the same as the number of classes in the 

target. It is equal to K in the previous formula. 

 

1.3.4 Deep Learning Approaches 

1.3.5 Table of approch 
 
 
 

 
Approach 

 
Description 

 
Example 

 
Reference 

 
Deep 

Supervised 

Learning 

 
The intelligent agent 

makes a supposition that yi 

= f (xi) given the input xi, 

and then calculates a loss 

value ρ(ŷi, yi) 

. Subsequently, the agent 

iteratively updates the 

network parameters to 

improve the 

approximation of the 

desired outputs. 

 
Image 

classification 

 
[77] 

 
Deep 

Unsupervised 

Learning 

 
Aims to create models that 

can extract meaningful 

representations from vast 

amounts of unlabeled 

sensory input. This 

approach draws inspiration 

from the visual cortex, 

which demonstrates the 

ability to derive insights 

from minimal labeled data. 

 
Clustering, 

dimensionality 

reduction 

 
[15] 



Chapter 1. Background 

11 

 

 

 

 
Deep 

Reinforceme- 

nt Learning 

 
In reinforcement learning 

approaches, an artificial 

intelligence agent engages 

with an actual or simulated 

environment. This 

interaction prompts 

feedback between the 

learning system and the 

interaction session, aiding 

the machine in enhancing 

its performance on the 

task it is learning. 

 
Game 

learning, robot 

control 

 
[15] 

 

Table 1.1: Deep Learning Approaches 

. 
 

 
 

 

1.1.1 Loss Functions 

To move from the Input layer to the Output layer in a neural network for prediction, we use 

activation functions in a process called Forward Propagation. Conversely, Backward 

Propagation is employed to modify the weights of the neural network, moving from the 

output layer to the input layer, aiming to minimize the loss function, which represents the 

algorithm’s error. Different loss functions, such as mean squared error, cross-entropy loss, 

and hinge loss, exist for various tasks and models, including regression and classification. 

The selection of the appropriate loss function depends on the task at hand and the nature 

of the model being used. Especially in this section, we will talk about the most important  

loss functions used in neural networks. 

 

Mean Absolute Error (MAE) 
 

The mean absolute error (MAE) loss function is a function used for regression tasks. 

It computes the average of the absolute variances between predicted and true outputs.  

MAE loss is determined by averaging the absolute differences between the predicted and 

true values across all samples in the dataset. The MAE loss can be represented by the 

following equation: 

MAE 
Σn     |yi  − ŷi| (1.7) 

= i=1  

n 



Chapter 1. Background 

12 

 

 

 

Mean Squared Error (MSE) 
 

The Mean Squared Error (MSE) loss function is defined as the average of the squared 

differences between the actual and predicted values. It stands as the most frequently em - ployed regression 

loss function[76].It calculates the average of squared differences between actual  and predicted  values.  For 

a data  point yi   with  predicted  value  ŷi   and a total  of n data points in the dataset, the mean squared 
error can be represented by the following equation: 



Chapter 1. Background 

13 

 

 

— α 

∂w 

 
 

Σn     (yi  − ŷi)2 
MSE = i=1 

n 

 

(1.8) 

 

 
Cross Entropy Loss 

 
The Cross-Entropy loss, also known as log loss, evaluate the output of a classification 

model, represented as a probability value ranging between 0 and 1. This loss increases as 

the predicted probability deviates from the actual label, It is calculated by the following  

formula : 

J  =  
Σ1  

− 
n 

n 
 
 

i=1 

yi log(ŷi) (1.9) 

 

Where n is the number of examples, yi  is the actual vector label, and ŷi  is the classifier’s 

output for the i-th example in the dataset. 

 
 

1.1.2 Deep Learning Optimizers 
 

Deep learning deals with complex tasks such as speech recognition and text classification. 

It consists of components like activation functions, layers, and loss functions, aiming to 

generalize data and make predictions on unseen data. Optimizers are algorithms used 

to adjust model parameters during training to minimize a loss function, thus improving  

accuracy and speeding up the training process, crucial for enhancing the performance of 

deep learning models. 

 
 

Batch Gradient Descent (BGD) 

 
Batch gradient descent calculates the error for each example within the training dataset,  

but updates the model only after evaluating all training examples. This cycle is termed a 

training epoch. The gradient of a function, synonymous with its slope, determines the rate 

of learning. A steeper gradient accelerates learning, while a zero gradient halts learning.  

Mathematically, the gradient represents partial derivatives with respect to inputs[ 27].This 

process can be written as: 

 
 

W (t) 
(t−1) ∂J(W (t−1), T ) 

(1.10)
 

∂W 

where t ≥ 1 denotes the updating iteration. W (t) denotes the updated model variable 
vector in iteration t, ∂J denotes the derivative of the loss function J(W ; T ) with respect to 

i 

the  variable  W  based  on  the  complete  training  seTt  and  the  variable  vector  value  W  (t−1) 

achieved in iteration t−1. α denotes the learning rate in the gradient descent algorithm, 

usually a hyperparameter with a small value. Fine-tuning the parameter is necessary for 
fast convergence in practical applications of the batch gradient descent algorithm [94]. 

= W 



Chapter 1. Background 

14 

 

 

— α 

 

 
Stochastic Gradient Descent (SGD) 

 
Stocastic gradient descent calculates the gradient of the loss function using the entire 

training set, making it inefficient for large datasets. Stochastic gradient descent (SGD) 
addresses this inefficiency by updating model parameters using the gradient computed 

for individual instances. While SGD offers faster computation, it introduces fluctuations 

in  the  loss  function  during  updates  [94].  Formally,  Given  the  training  seTt  and  the 

initialized  model  variable  vector  W  (0),  for  each  instance  (xi,  y∈i) T,  the  SGD  algorithm 

updates the model variable with the following equation iteratively: 

∂J(W (t−1), (xi, vi)) 
W (t) = W (t−1)  — α 

∂W 
(1.11) 

 

Mini-batch Gradient Descent (MBGD) 

 
To strike a balance between the Batch Gradient Descent (BGD) and Stochastic Gradient 

Descent (SGD) learning algorithms, Mini-Batch Gradient Descent suggests updating the 

model parameters using a mini-batch of training instances. Formally, let β ⊂ T denote 

the mini-batch of training instances sampled from the training set T . We can represent 
the variable updating equation of the DL model with the mini-batch as follows: 

 

 
W (t) (t−1) ∂J(W (t−1), β) 

(1.12)
 

∂W 
 

Momentum 
 

To mitigate the fluctuations encountered during the learning process in gradient descent 

algorithms, such as mini-batch gradient descent, the concept of Momentum [69] is intro- 

duced to expedite the convergence of variable updates. This technique aims to smooth out 

the variations in parameter updates, facilitating a faster convergence towards the optimal 

solution. Formally, Momentum updates the variables with the following equation: 

 
 
 

where 

W (t) = W (t−1) − αV (t) (1.13) 

 
∂J(W (t−1)) 

V (t) = ρV (t−1) + (1 − ρ) 
∂W 

(1.14) 

In the above equation, V (t) denotes the momentum term for recording historical gradients 

till iteration t, and J(W (t−1)) denotes the loss function. Parameter ρ ∈[0, 1] denotes the 
weight of the momentum term. 

 

Root Mean Squared Propagation (RMSProp) 

 
When data passes through complex functions, such as neural networks, gradients tend 

to either vanish or explode. RMSprop is a stochastic mini-batch learning strategy that 

addresses these challenges by utilizing an adaptive learning rate, rather than treating the 

= W 



Chapter 1. Background 

15 

 

 

 

 
learning rate as a hyperparameter. Additionally, it normalizes the gradient by using a 

moving average of squared gradients. RMSprop’s update rule is as follows : 
 

α ∂J(W (t−1)) 

W (t) = W (t−1)  
—  √ 

 
 

 

(1.15) 

where 
V (t) + ϵ ∂W 

V (t) = ρV (t−1) + (1 − ρ) 
∂J(W (t−1)) 

2 
 

 

∂W 
(1.16) 

 

Adaptive Moment Estimation (ADAM) 
 

In recent years, a new learning algorithm called Adaptive Moment Estimation (Adam) has  

emerged[50]. Unlike traditional methods, Adam efficiently computes first-order gradients 

with minimal memory usage. Like RMSprop and Adadelta, Adam maintains a history 

of past squared first-order gradients, but it goes a step further by also retaining past 

first-order gradients. These stored gradients decay exponentially as the learning process 

progresses . Adam’s update rule is given by: 

 
m(t) = β1m(t−1) + (1 − β1) 

 
V (t) = β2V (t−1) + (1 − β2) 

m(t) 

m̂  =  
1 − β1 

∂J(W (t−1)) 
 

 

∂W 

∂J(W (t−1)) 
2 

 
 

∂W 

 
(1.17) 

 

 
(1.18) 

 

(1.19) 

ˆ V (t) 

V = 
1 − β2 

α 

 
(1.20) 

W (t)  = W (t−1)  
— √  m̂ 

V̂  + ϵ 
(1.21) 

According to Kingma and Ba, good default settings for ML problems are α = 0.001, 

β1 = 0.9, β2 = 0.999, and ϵ = 10−8. 

 
1.1.3 Deep Learning Types 

Various types of deep learning (DL) models exist, each adapted for specific functions. 

This section will delve into the distinct types and explain their mechanisms. 

 
Artificial Neural Network (ANN) 

 
ANNs consist of artificial neurons derived from biological neurons. Each artificial neuron 

has an input and produces a unique output that can be sent to many other neurons [ 3]. 

The inputs can be characteristic values of an external data sample, such as an image or 

document, or they can be the output of other neurons. The output of the neurons The 

final output of the neural network completes the task, such as recognizing an object in 



Chapter 1. Background 

16 

 

 

 

 
an image. To find the output of a neuron, we take the weighted sum of all the inputs, 

calculated as the weights of the connections from the input to the neuron. We add an 

bias term to this sum [25]. This weighted sum is sometimes called the activation. This 

weighted sum then goes through an activation function (usually non-linear) to produce the 

result. The initial input is external data, such as images and documents . The end result 

accomplishes the task, such as recognizing objects in images [4]. The ANN architecture 

is shown in Figure 1.7 
 

Figure 1.7: ANN Architecture. 

 

 
Convolutional Neural Networks CNNs 

 
A convolutional neural network (CNN), also known as ConvNet, belongs to the category 

of deep neural networks and has demonstrated success in numerous computer vision tasks,  

particularly in the analysis of visual images [40] . The CNN architecture, which is shown 

in Figure 1.8, comprises three main types of layers: (1) convolution, (2) pooling, and (3)  

fully connected. Convolutional layers utilize multiple filters to extract features (featur e 

maps) from the dataset, enabling the preservation of their spatial information. Pooling,  

also known as subsampling, is used to reduce the dimensionality of feature maps obtained 

from the convolutional process. Common pooling operations in CNN include max pooling 

and average pooling [99]. The Fully-Connected Layer is accountable for classifying inputs 

based on the features extracted by the preceding layers. While ReLu functions are com- 

monly employed by convolutional and pooling layers for input classification, FC layers 

usually employ a softmax activation function to generate probabilities ranging from 0 to 

1. 

Using the above figure, we know that there are: 
 

• Convolution layer, where convolution happens. 

• Subsampling layer, where the pooling process happens. 

• Fully Connected Layers. 



Chapter 1. Background 

17 

 

 

 
 
 

 
 

Figure 1.8: CNNs Architecture . 

 
Zhang and Sabuncu [97] mentioned that the typical approach to training CNNs for clas - 

sification involves using stochastic gradient descent along with Cross Entropy (CE) loss. 

 

 
Recurrent Neural Networks (RNNs) 

 
Recurrent Neural Networks (RNNs) are neural network structures mainly used for identi - 

fying patterns within sequential data. This data can include handwriting, genomes, text, 

or numerical time series often found in industrial environments such as stock markets or  

sensor readings [21] [65]. The main difference between Recurrent Neural Networks (RNNs) 

and Feedforward Neural Networks, also known as Multi-Layer Perceptrons (MLPs), lies 

in how information is passed through the network. While Feedforward Networks trans- 

mit information through the network without cycles, RNNs have cycles and transmit 

information back into themselves. This allows RNNs to expand the functionality of Feed - 

forward Networks to consider previous inputs as well, not just the current input. The 

RNN architecture is shown in Figure 1.9 . 

 

Figure 1.9: RNN Architecture. 

 
 
 

If you know how to train Feedforward Neural Networks using backpropagation, you might  

wonder how to do it with Recurrent Neural Networks (RNNs). One way is to use a tech- 



Chapter 1. Background 

18 

 

 

 

nique called Backpropagation Through Time (BPTT), which adapts the backpropagation  

algorithm for RNNs [92]. Essentially, it unfolds the RNN into a regular Feedforward Neu- 

ral Network, allowing us to use backpropagation. However, as the number of time steps  

increases, BPTT can become very computationally expensive. 

 

 
Long Short Terme Memory (LSTM) 

 
Long Short-Term Memory Units (LSTMs) were created to effectively handle the vanishing 

gradient problem [37]. By using a more consistent error, LSTMs enable Recurrent Neural 

Networks (RNNs) to learn from significantly more time steps, often exceeding 1000 [ 65]. 

To achieve this, LSTMs store additional information outside the co nventional flow of the 

neural network, within structures known as gated cells [16]. To ensure proper functioning 

of an LSTM, we employ three types of gates: an output gate (Ot) to regulate information 

flow out of the cell, an input gate (It) to control data input into the cell, and a forget 

gate (Ft) to manage the retention or removal of information within the cell. 

They are mentioned in Figure 1.10. 
 

Figure 1.10: LSTM Architecture. 

 

 
Gated recurrent unit (GRU) 

 
The Recurrent Control Unit (GRU) is a control mechanism in recurrent neural networks,  

introduced in 2014 by Cho et al. [19]. GRU is like a long short-term memory (LSTM) 

with an activation mechanism to input or forget certain features [ 30], but it lacks context 

vectors or output gates, resulting in fewer parameters than LSTM [73]. The performance 

of GRU on several polyphonic music models, speech signal models, and natural language  

processing tasks is found to be similar to LSTM [71] [80]. GRU found that controls in 

general were indeed useful, and Bengio’s team reached no specific conclusion about which 

of the two control units was better [20] [31]. 

A GRU cell keeps track of important information maintained throughout the network. 

The GRU network achieves this using the following two ports: Reset Port and Update 

Port. As shown in figure 1.11, a GRU cell has two inputs: The previous hidden state and 

the entry in the current timestamp. The cell combines them and passes them through 

the update and reset ports. To get the output at the current time step, we need to pass 



Chapter 1. Background 

19 

 

 

 

 
this hidden state through a dense layer with softmax activation to predict the output. In 

doing so, a new hidden state is obtained and then propagated to the next time step. 
 

Figure 1.11: GRU Architecture. 

 

 
DenseNet network 

 
DenseNet networks are convolutional neural networks that follow a specific architecture 

commonly referred to as densely connected convolutional networks (DenseNet).  A growing 

challenge with this type of network is performance optimization. A naive solution would 

be to simply stack more convolutional layers: an obvious problem that arises from this  

approach is the increase in network depth. When backpropagating gradients through the 

layers, one is essentially performing an operation on the partial derivatives of each hidden 

layer of the network, which can potentially complicate weight updates during the training  

phase. 

The key specificity of this architecture lies in the input to the layers, which concate- 

nates all inputs from the previous layers (see figure 4.10 ): thus creating a feature map 

while maintaining the same spatial resolution this is referred to as chan nel-wise concate- 

nation. 
 
 

 
Figure 1.12: DenseNet Architecture. 



Chapter 1. Background 

20 

 

 

 

1.2 Transfer Learning 
 

Transfer learning is a machine learning research problem that involves saving knowledge 

acquired while solving one problem and applying it to a different but related problem [86] 

. Humans naturally have the ability to use what they know from one thing to understand 

another. When we meet a new challenge, we don’t need to start over. Instead, we use 

what we’ve learned before to help us figure out the new task faster and better. Unlike 

regular machine learning, where we learn one thing at a time without looking at other  

areas, transfer learning takes what we know from other areas and uses it to help us learn 

something new, as shown in Figure 1.13 . 
 

Figure 1.13: Difference between Traditional ML and TL. 

 
Pan and Yang [66] introduce some notations and definitions such as domain, task, 

and marginal probabilities to understand TL. They are defined as follows: A domain 

D contains two elements, feature space, χ, and marginal probability,P (X), where X = 

{x1, x2, ..., xn} ∈ χ is a sample data point. Thus, they represent the domain mathemat- 

ically as D = {χ, P (X)}. A task T can be defined as a two-element tuple of the label 

space, Y, and objective function f : χ → Y. The function f is used to predict the corre- 

sponding label f (x) of a new instance x. This task, denoted by T = {Y, f (x)}, is learned 

from the training data consisting of pairs {xi, yi}, where xi ∈ X and yi ∈ Y. It can also 

be denoted as P (Y |X) from a probabilistic view point. 

Given a source domain DS a target domain DT and learning task TT , where DS /= DT , 
or TS /= TT , TL aims to help improve the learning of the target predictive function fT (·) 
in DT using the knowledge in DS and TS [55]. 

According to Pan and Yang [66], The following three crucial questions must be an- 

swered throughout the TL process: 

 
• What to transfer: This question involves determining which specific knowledge 

needs to be moved from the source to the target domain. 

• When to transfer: This means understanding when it’s appropriate to use trans- 

fer learning. Also, it’s important to know when it’s not a good idea to transfer 



Chapter 1. Background 

21 

 

 

 

 
Knowledge, like when the source and target areas are not similar. Trying to force a 

transfer in such cases might not work well and could actually make things worse, 

which is called negative transfer. 

• How to transfer:This refers to the method of moving knowledge and adjusting 

the target algorithm to enhance its performance 

 

1.3 Federated Learning 
 

Federated Learning (FL) [45] has emerged as a revolutionary paradigm for collaborative 

machine learning, enabling multiple entities to jointly train a global model without the 

need to share raw data. . It was first proposed by Google in 2016 [58], which improves 

scalability, reduces the costs associated with data transfer and storage, and allows real - 

time model updates by utilizing data directly at its source. Comprehensive surveys of the 

concepts and applications of FL are available in the literature [90] [51]. 

Compared to traditional machine learning, federated learning offers numerous benefits. 

It ensures data privacy and security by eliminating the requirement for data centraliza - 

tion, Thus facilitating adherence with data protection regulations such as the European 

Union’s General Data Protection Regulation (GDPR) [38] and the United States’ Cali- 

fornia Consumer Privacy Act (CCPA) [63]. Therefore, here is the Structure of federated 

learning as shown in Figure 1.14 
 
 

 
Figure 1.14: Structure of federated learning. 

 

 
1.3.1 Federated Learning Approaches 

As shown in Figure 1.15, FL approaches can be categorized into three types [28]: hor- 

izontal federated learning, vertical federated learning, and federated transfer learning. 



Chapter 1. Background 

22 

 

 

 
 
 
 

 
 
 

Figure 1.15: Classification of federated learning. 

 

• Horizontal FL 

Occurs when various datasets from different clients share the same features but  

differ in the samples they represent. For instance, datasets from different hospitals 

may share patient information (feature space) but differ in the specific patient data  

they contain (sample space). 

• Vertical FL 

Deals with clients that have data sharing the same sample space but differing in 

feature space. For example, this could involve the bank statements and shopping  

history of the same group of individuals 

• Federated transfer learning 

Applies to multiple datasets that differ both in the sample space and feature space. 

 

Degree of federated Learning 
 

In the participants’ context, Fl can be classified into ”Cross-Silo” and ”Cross device” that 

depend on the number and the power of the participants. 

 
• Cross-Silo Federated Learning 

Multiple organizations collaborate to train a machine learning model using their 

respective local datasets. It is suitable when a limited number of entities, such as  

companies or hospitals, join forces to collectively improve the model’s performance 

without directly sharing their raw data. 

• Cross device Federated Learning 

In this architecture, numerous devices are involved, and each device has a relatively  

small amount of data and a relatively low computing power. Computing power 

compared to the cross-silo FL. 



Chapter 1. Background 

23 

 

 

 

 
Network topology 

 
• Centralized FL 

In the centralized federated learning framework setting Figure 1.16, a central server 

plays a pivotal role in managing the various stages of the algorithms and coor- 

dinating the participating nodes throughout the learning procedure. The server’s 

responsibilities include selecting nodes at the onset of the training phase and aggre - 

gating the model updates received from these nodes. However, because all selected  

nodes must transmit updates to a solitary entity, the server can potentially become 

a bottleneck in the process 
 
 

 
Figure 1.16: Centralized Federated Learning Architecture. 

 
 

• Peer to Peer Decentralized Federated Learning Architecture 

In the decentralized, federated learning setting 1.17, nodes have the ability to self- 

coordinate in acquiring the global model. This setup prevents single point failures as 

the model updates are exchanged only between interconnected nodes without the  

central server’s orchestration. However, it’s worth noting that the particular 

networktopology could impact the efficiency of the learning process. 
 
 

 

 
Figure 1.17: Peer to peer decentralized Federated Learning Architecture. 



Chapter 1. Background 

24 

 

 

 

1.3.2 The Life cycle of a Model in Federated Learning 

The objective of the FL process is to create an optimal model for a specific application. 

A standard procedure involves: 

 
1. Problem identification:The first step involves identifying the problem to be ad- 

dressed using Federated Learning (FL) and selecting the most suitable machine 

learning model. 

2. Device selection: Depending on the available online devices, they are either ran- 

domly chosen or selected through another mechanism to participate in the learning 

process. 

3. Local training: Initially, each device initials the parameters of its model and 

trains it until it converges. 

4. Upload the local models: Following local training, all connected devices upload 

their model parameters to the central server using secure communication methods, 

which will be discussed later. 

5. Model aggregations Once the aggregator (central server) receives all local models, 

it aggregates the parameters to update the new, global, and optimal model. 

6. Broadcast the global model:The server redistributes the parameters of the global 

model, and the devices update their parameters accordingly. 

 
This process is repeated until the entire training process converges. 

 

1.3.3 Federated Optimization Algorithms 

The objective of FL is to optimize the weight parameters w of the global model that 

minimizes the loss function values for all local models: 

N  

|Di|fi(w) 
L(w) = i=1 

(1.22) 
ΣN  |Di| 
i=1 

 

Where fi denotes the loss function of the model trained by device i local dataset Di. 

 
The Federated Averaging Algorithm (FedAVG) 

 
McMahan et al.[58] introduced the FedAVG approach in 2017, which is shown in Algo - 

rithm below. The FedAvg algorithm [49] is currently the most commonly used federated 

learning optimization algorithm. Unlike the conventional optimization algorithm [41], it 

is essential idea is to use the local stochastic gradient descent method to optimize the local  

model on the data holder and perform aggregation operations on the central server -side 

[23]. 



Chapter 1. Background 

25 

 

 

t+1 

w =  
wt+1 

 
 

 

Algorithm 1 Federated Averaging (FedAVG) algorithm [58] 

C is the fraction of clients selected to participate in each communication round. The K 
clients  are indexed  by  k;  B  is  the local mini-batch  sizeP, k  is  the dataset  available  to 

client k, E is the number of local epochs, and η is the learning rate. 

1: Procedure FedAVG d run on the server 

2: Initialize w0 

3: for each round t = 1, 2, 3, ... do 

4: m ← max (C.K, 1) 
5: St ← (random set of m clients)  
6: for each client k ∈ St do 

7: wk 
8: end for 

← ClientUpdate (k,wt) d In Parallel 

9: 
ΣK nk k 

k=1   n t+1 

10: end for 
11: End procedure FedAVG 

12:  Procedure ClientUpdate (k, wt) d run on client k 
13: β ← ((Split Pǁ into mini-batches of size B)  

14: for  each local epoch i from 1 to E do 

15: for batch b ∈ β do 

16: w ← w − 
17: end for 

18: end for 

η∆ L(w, b) 

19: return t to the Server  

20: End procedure ClientUpdate (k, w) 

 
Federated Learning with Personalization Layers (FedPer) 

 
The FedPer algorithm works similarly to FedAvg in updating weights in combined mod - 

els. However, it differs significantly in which parts of the model are considered during 

combination. FedPer splits the model into basic and personalized layers [9]. While only 

the basic layers are sent to the server for aggregation, the personalized layers are kept 

local. In this approach, transfer learning techniques are used by the federated server. 

For instance, in a two-layered CNN, the last dense layer serves as the personalized layer, 

remaining on the client side and not sent to the server. The server only aggregates the 

basic layers, and the client trains the lower layers using the federated learning approach 

.The global approach is illustrated in figure 1.18. 
 

Figure 1.18: FedPer illustration. 



Chapter 1. Background 

26 

 

 

 

Federated Genetic Algorithms 

The FedGA algorithm, introduced by Guendouzi et al. [33], is an aggregation technique employing 
genetic algorithms to address the issue of data and model diversity. In FedGA, participants upload 
only the base layer weights to the central server. Subsequently, theserver calculates new weights 
using genetic algorithms, treating the weight vector as a chromosome. Assuming a central repository 
of public data on the aggregator server for building the global model, alongside private datasets 
from various collaborators as target domains, FedGA-ICPS and other federated learning 
aggregation methods may encounter challenges due to domain shifts. Additionally, refining only 
segments of neural network models isn’t optimal for decision-making. Furthermore, deploying FedGA- 
ICPS with numerous collaborators can escalate time complexity due to the growing number of 
collaborators, increasing the algorithm’s complexity. 



Chapter 1. Background 

27 

 

 

 
 

1.3.4 Federated Learning Challenges 
 

Li et al.[53], describe four fundamental challenges associated to addressing the 

distributed optimization problem. These challenges set apart the federated setting from  

other classical problems, like distributed learning in data center environments or 

traditional private data analyses. 

 

 
Expensive Communication 

 
Federated networks can consist of a vast number of devices, such as millions of smart 

devices. Consequently, communication between these devices and the central server is 

crucial in distributed networks. To further minimize communication in such a context, 

two key aspects must be considered: (i) reducing the total number of communication 

rounds, or (ii) reducing the size of transmitted messages in each round. 

 

 
Systems Heterogeneity 

 
Due to variations in device specifications such as processor and memory, as well as differ - 

ences in network connectivity and power, the storage, computational, and communication  

capabilities of each device in distributed networks may vary. Given that di stributed net- 

works are large in scale, each device may fail to participate due to connectivity issues or  

power constraints. Therefore, distributed learning methods developed and analyzed must 

: (i) anticipate limited participation, (ii) tolerate heterogeneity in device specifications,  

and (iii) be robust to devices dropping out of the network. 



Chapter 1. Background 

28 

 

 

 

 
Statistical Heterogeneity 

 
Distributed networks generate and collect data in a non-identically manner across de- 

vices, violating assumptions of uniform and identical distribution. There may be varying  

numbers of data points and an underlying structure connecting devices and their distri - 

butions, increasing modeling and analysis complexity. Although distributed learning aims 

to learn a single global model, alternatives such as learning local models simultaneously  

exist. Current approaches allow for personalized or device-specific modeling, aiding in 

handling data variance more naturally. 

 
 

Privacy Concerns 

 
Privacy is often a major concern in applications using federated learning. By sharing 

model updates, federated learning takes a step towards safeguarding data generated on 

each device. Modern methods aim to enhance privacy in federated learning using tools 

such as secure multiparty computation or differential privacy. Understanding these ex- 

changes and achieving a balance between them, both theoretically and empirically poses 

a significant challenge in realizing private federated learning systems. 

 

 
1.4 ICPS 

 
According to Alguliyev et al. [7], Cyber-Physical Systems (CPS) are capable of effec- 

tively integrating physical and digital components using modern technologies of sensors, 

computing, and networks. 

They consist in grouping several concepts such as, Automation, Connection, Cloud 

Computing, Internet of Things (IoT), Big data and System Integration. 

CPSs are the basis for the development of the following areas: smart manufacturing, 

smart medicine, smart buildings and infrastructures,smart city, smart vehicles, wearable 

devices, mobile systems, defense systems, meteorology, etc. 

To build an ICPS, it is necessary to define some network architectures as it’s  shown in 

Figure 1.19 that presents IoT, Cloud Computing, Fog Computing, and Edge Computing 

layers. 

 

 
1.5 IoT 

 
The Internet of Things (IoT), also known as the Internet of Objects, is a network of 

interconnected physical objects capable of collecting and exchanging data. Equipped 

with sensors, software, and other technologies, these objects connect to the Internet or  

other communication networks. The term ”Internet of Things” describes scenarios where 

Internet connectivity and computing capability extend to various objects, devices, sensors,  

and everyday items. [74]. 



Chapter 1. Background 

29 

 

 

 
 

 
 

Figure 1.19: Example of a proposed IoT-Edge-Fog-Cloud architecture [14]. 

 
1.5.1 IoT Architecture 

Concenrnig to IoT design architecture a study by Trappey et al. [83] established a logical 

framework based on layers to classify IoT technology and used it to describe and identify 

sensitive information systems. According to several researchers [52],[35]-[12] common layer 

designs in traditional IoT architecture networks consist of four main layers, as illustrated 

in Figure 1.20, which include the following layers: 
 

Figure 1.20: IoT SOA Architecture [6]. 

 
 
 

Sensing Layer 

 
Sensing Layer plays a crucial role in capturing data from the physical environ- ment 

and transferring it to the network layer through gateways.it is designed to sense the 

status of various ”things,” integrating actuators, sensors to serve as diverse types of 

objects. Sensors, which measure variables like temperature, pressure, movement, and 

more, are instrumental in this process. Actuators, on the other hand, initiate actions 



Chapter 1. Background 

30 

 

 

 

autonomously. In deploying the perception layer, certain considerations must be adhered 

to, including cost-effectiveness, size constraints, energy efficiency, deployment flexibility, 

handling heterogeneity, efficient communication, and network integration. 

 
Network Layer 

 
In the realm of the Internet of Things (IoT), the network layer stands as the foundat ional 

support infrastructure, orchestrating the seamless flow of information from the sensor  

layer to the application layer. It serves as the backbone of communication, enabling the  

exchange of data across wired or wireless networks.& 

 

Service Layer 
 

In the IoT systems, once the data traverses the network layer, servers within this layer 

receive the data through Application Programming Interfaces (APIs) and various pro- 

tocols and applications. Subsequently, they process, store, and execute actions based on 

this data. These actions can be physical, involving actuators, or logical, such as intelligent 

decisions, all with rapid response times. This layer is divided into 4 principal components 

[22]: 

 
• Service discovery: It identifies objects that can privide the necessary services and 

information promptly. 

• Service composition: It enhances service quality and reliability by establishing 

connections between multiple objects. 

• Trustworthiness management: Its objective is to establish trust systems 

capableof analyzing and integrating data from various services to build a dependable 

system. 

• APIs Services: They facilitate interactions among services within the IoT ecosys- 

tem. 

 

Interface Layer 

 
It is designed to simplify the interconnection and management of ”things” while  providing 

users with clear and comprehensible information to interact with the system seamlessly. 

 
 

1.6 Cloud 
 

Cloud computing aims to enable access to a shared computing resources with minimal  

management effort or interaction with the service provider [59]. 

Cloud computing involves a network of servers distributed across different geograph - 

ical locations. These servers are rented as needed to provide computer resources like 

storage, processing power, and networking capabilities. These resources are accessible 

from anywhere via the Internet. 



Chapter 1. Background 

31 

 

 

 

1.6.1 Characteristics 

According to Mell et al. [59], Cloud Computing consists of the following five characteris- 

tics: 

 
• Self-service on demand: This feature enables users to access cloud resources as re- 

quired, without the need for human interaction between users and service 

providers. 

• Broad network access: This feature enables users to remotely access the cloud 

using various platforms, such as mobile devices, laptops, tablets, and more, without 

encountering platform-specific restrictions. 

• Resource pooling: Within cloud computing, multiple clients have the ability 

to concurrently share both physical and virtual resources in a dynamic manner. 

This implies that clients can use resources based on their individual consumption 

requirements, such as storage bandwidth, processing power, memory, and network 

access. Security measures are implemented to safeguard data handled within shared 

resources, using standard tools deployed on multi-user servers. 

• Rapid elasticity: This characteristic enables the cloud to rapidly scale up or down,  

efficiently allocating and releasing resources in response to customer demands, re - 

gardless of quantity or timing. 

• Measured service: This service enables the use of resources under rigorous moni- 

toring and control, ensuring transparency between the provider and the customer. 

Payment is made based on the type of service, capacity, and usage quantity. 

 

1.6.2 Service Models 

National Institute of Standards and Technology (NIST) has categorized cloud services 

into three models (layers) according to the type of service they offer:  software, platform, 

or infrastructure [59] as it is shown in Figure 1.21. 

 
Software as a Service (SaaS) 

 
Software as a Service (SaaS) is a software distribution and delivery model in which a 

fully functional and comprehensive software product is provided to users over the internet 

on a subscription basis. SaaS finds applications in various domains including email ser - 

vices, customer relationship management (CRM)1, communication tools, virtual desktop 

solutions, and gaming platforms. 

 

Platform as a Service (PaaS) 
 

Platform as a Service (PaaS) provides users to deploy their own applications or acquired  

software into the cloud infrastructure. These applications use programming languages, 
 

1Customer Relationship Management. 



Chapter 1. Background 

32 

 

 

 

libraries, services, and tools provided by the platform. Unlike traditional setups, users do  

not oversee or govern the underlying cloud infrastructure, encompassing networks, servers, 

operating systems, or storage. Nonetheless, they maintain authority over the deployed  

applications and can adjust settings for the application-hosting environment as needed. 

 
Infrastructure as a Service (IaaS) 

 
This model revolves around the hardware aspect of the cloud. Customers lease and 

manage cloud infrastructure resources, including servers, computing power, network com- 

ponents, storage capacity, and memory, instead of specific services. 
 
 

 

Figure 1.21: Cloud Computing Models [43]. 

 

 
1.6.3 Cloud Solutions 

 
According to Mell et al. [59], Cloud computing can be deployed in four models: private, 

public, community, and hybrid clouds. These models correspond to various uses. 

 

 
Public Cloud 

 
The public cloud is typically available to the general public via the Internet and used 

by clients, universities, companies, or any organization to secure the data of each entity.  

Examples of public cloud providers include Google Cloud, Microsoft Azure, Amazon, and 

iCloud. 



Chapter 1. Background 

33 

 

 

 

 
Private Cloud 

 
The cloud infrastructure is designed for a single organization, serving multiple clients.  

Examples include Eucalyptus, OpenNebula, and OpenStack. This type of cloud solution 

can either be internal, with resources hosted and managed within the organization’s own 

infrastructure, or external, where resources are hosted and deployed by a service provider. 

 
Community cloud 

 
The community cloud infrastructure is tailored for use exclusively by a specified commu - 

nity of clients from organizations that share common concerns.  For instance, organizations 

like Amadeus 2, GSA (General Services Administration)3, and CMed 4 have implemented 

community cloud solutions for their respective needs. 

 
Hybrid Cloud 

 
It is the combination of two or more different cloud infrastructures (private, community 

or public). For instance, an organization might possess its private cloud while also using  

certain services from a public or community cloud. 

 

1.7 Fog 
 

Fog computing, an intermediary layer within CPS networks, bridges the gap between 

IoT devices and Cloud datacenters. It addresses security and privacy concerns, which 

remain significant from a business perspective compared to cloud computing. By handling 

data processing tasks, it alleviates the communication load between IoT devices and the  

cloud, thereby reducing latency and network congestion. Fog computing represents a 

more advanced approach compared to cloud computing, offering enhanced performance 

for managing user requests and adhering to emerging standards [93]. 

A fog architecture comprises multiple edge nodes, often referred to as fog nodes, which 

have limited processing capabilities. These fog nodes possess relatively lower processing 

power and storage capacity.In a fog network, there are instances where both edge nodes 

and multiple servers are referred to as cloudlets [87][17]. These cloudlets are integrated 

into the shared computing environment, operating within the network edge.Using fog  

devices enables clients to achieve real-time responses for  latency-sensitive applications. 

 

1.7.1 Characteristics 

According to Iorga et al. [42], The core attributes that delineate fog computing from other 

computing paradigms encompass six essential characteristics. Nonetheless, IoT devices 

are not obligated to employ all these features while using a fog computing service. 

2Amadeus is the world’s largest travel company with more than 150 airlines 
3GSA includes US government agencies 
4CMed is a startup that was launched in 2010 for pharmaceutical companies 



Chapter 1. Background 

34 

 

 

 

 
• Low latency: As fog nodes frequently reside in closer proximity to IoT devices, 

the processing and response to data originating from these devices occur notably 

faster compared to using cloud services. 

• Geographical distribution:The distribution and identification of fog computing 

nodes must be strategically planned to ensure effective control over mobile objects  

and maintain a high level of quality in service delivery. 

• Heterogeneity:Fog computing facilitates various forms of network communication 

to ensure efficient data processing. 

• Interoperability and federation: Components within fog computing systems 

need to seamlessly work together, while services should extend across different do - 

mains, enabling collaboration among various providers, particularly for real-time 

streaming services. services that require the cooperation of different providers. 

• Real-time interactions:Fog computing enables the processing of data and the 

delivery of responses to end users in real time. 

• Scalability and agility of federated, fog-node clusters: Fog computing dis- 

plays adaptability at both the cluster and cluster-of-clusters levels, accommodating 

elastic computing, resource pooling, fluctuations in data load, and changes in net - 

work conditions, among other adaptive functionalities it supports. 

 
The main distinction between fog and cloud computing lies in their network archi - 

tectures: the cloud operates within a centralized network, while fog uses a decentralized  

distributed infrastructure. Furthermore, various distinctions exist between these archi- 

tectures. For instance, fog computing offers more advanced advantages compared to 

cloud computing. For example, fog computing delivers quicker responses, whereas cloud 

responses tend to be slower. Additionally, parameters such as request types, data trans - 

mission, security measures, user and resource management, scheduling, interoperability, 

failure management, service pricing, and service types are superior in fog computing when  

compared to cloud computing [13],[1],[2],[34]. 

 

1.7.2 Fog Node Attributes 

To enable the good deployment of a fog computing, fog nodes should possess one or 

moreof the following attributes: 

 
• Autonomy:Fog nodes have the capability to function autonomously, allowing them 

to make local decisions at either the individual node level or within clusters of nodes. 

• Heterogeneity:Fog nodes are available in various physical configurations and can 

be installed in diverse environments 

• Hierarchical clustering:Fog nodes facilitate hierarchical architectures, where dis- 

tinct layers offer various subsets of service functions, collaborating seamlessly as a  

unified entity 



Chapter 1. Background 

35 

 

 

 

 
• Manageability:Fog nodes are overseen and coordinated by complex systems capa- 

ble of automating the majority of routine tasks. 

 
• Programmability:Fog nodes possess inherent programmability across multiple 

levels, allowing various stakeholders such as network operators, domain specialists, 

equipment suppliers, or end users to engage in programming activities. 

 
 

1.7.3 Fog Node Architectural Service and Deployment Models 

Similar to the traditional cloud computing model, fog computing offers architectural im- 

plementations across multiple layers of the network’s topology. Just as defined in NIST’s  

cloud computing service models, fog computing can implement Software as a Service 

(SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). Addition- 

ally, fog computing, being an extension of the traditional cloud-based model, supports 

various deployment models such as Private fog nodes, Community fog nodes, Public fog 

nodes, or Hybrid fog nodes. 

 
 

1.7.4 Architecture 

Based on our examination, it was discovered that researchers have suggested three [57], 

four [10], five [24], and six [2] layers within the architecture of Fog computing.In this 

section, we explore the diverse elements comprising the architecture of Fog computing 

as outlined by Naha et al. [62] and depicted in Figure 1.22. These components are 

categorized into multiple groups according to their respective functionalities, which are 

defined as layers. These functionalities facilitate communication between IoT devices,  

various Fog devices, servers, gateways, and the cloud. A comprehensive description of  

each layer follows below: 

 

Physical layer 

 
The physical layer is tasked with gathering data from various sensor types: Physical 

sensors include smart devices, temperature sensors, humidity sensors, etc., while virtual 

sensors are mathematical functions that merges data from multiple sensors to estimate a  

new quantity not directly measurable by a physical sensor. 

 

Fog device, server, and gateway layer 

 
The Fog device, server, and gateway layer consist of clusters of fog devices that connect to 

a group of sensors, fog servers that aggregate these fog device clusters, and gateways for  

communication purposes. Within this layer, a designated cluster of fog devices, connected 

to the same server, can communicate with each other to collaborate on processing and 

decision-making tasks. Additionally, this layer oversees hardware and storage configura- 

tions, device and server connectivity, and computation requirements requested by various  

applications. 



Chapter 1. Background 

36 

 

 

 
 
 

Monitoring layer 

 
It comprises three vital components: the monitoring system, which is tasked with closely  

monitoring system and resource performance, services, and responses, and selecting suit - 

able resources during operation. The resource demand component monitors current re- 

source usage and may forecast future resource requirements based on current consumption  

and user activities. Performance prediction monitors based on system load and resource 

availability are employed to predict Fog computing performance, ensuring that service 

level agreements meet appropriate Quality of Service (QoS) requirements. 

 
 

 
Pre and post-processing layer 

 
This layer is accountable for data cleansing and validation through various components  

that analyze, filter, segment, and reconstruct the data. 

 
Storage layer 

 
It comprises two components: the storage module, which stores data using storage virtu - 

alization, and the data backup component, which ensures data availability. 

 
Resource management layer 

 
The components within this layer oversee resource allocation and scheduling, in addition to  

addressing energy-saving concerns. The reliability component ensures the dependability of 

application scheduling and resource allocation. In periods of peak demand, when resource 

utilization is high, scalability ensures the expandability of Fog resources. 

 
Security layer 

 
This layer ensures data confidentiality by using encryption tools and authentication tech - 

niques. 

 
Application layer 

 
Fog computing has become indispensable in many recent application domains to facilitate 

rapid responses and real-time control. The protocols used in this layer are consistent with 

those discussed in section 1.7. 



Chapter 1. Background 

37 

 

 

 

 
 

Figure 1.22: Fog Computing Architecture [62]. 



Chapter 1. Background 

5https://www.ibm.com/cloud/architecture/architectures/edge-computing/ 

33 

 

 

 
 
 

1.8 Edge 
 

Edge computing is an evolved version of cloud computing, aiming to reducing latency by 

bringing services in close to end-users. Edge computing is defined by its high bandwidth, 

extremely low latency, and immediate access to network information, all of which are used 

by various applications [84] [72].It is described as a small-scale data center that stores 

and processes data collected directly from the device generating it, minimizing the 

transmis- sion of irrelevant or sensitive data over the network. It shares similar 

characteristics with Fog Computing but is positioned nearest to users. 

Edge computing is characterized by its rapid processing and swift application response  

time, which are critical criteria in surveillance, virtual reality, and real -time traffic moni- 

toring applications [48]. 

 

1.8.1 Architecture 

According to IBM 5, Edge Computing comprises two essential elements, outlined as fol- 

lows: 

 
 

Data source 
 

This represents the data collected ed by IoT devices and sensors, which is then transmitted 

to edge gateways via communication protocols. It is diverse and contingent on the device  

and its environment. 

 
Edge nodes 

 
These nodes are positioned between IoT sensors and the core network (cloud). There are 

three types of edge nodes, as depicted in Figure 1.23 6 and elaborated below: 

 
• Edge Devices: These encompass various devices such as smartphones, robots,  and 

intelligent machines, used for local processing. They store their data locally to en - 

sure confidentiality and conduct local computations based on predefined traditional 

or artificial rules set by the datacenter. 

• Edge server or gateway:Serving as leaders of multiple edge devices, these devices 

control and deploy applications on them. They function as communication point 

for numerous devices. 

• Edge network or microdata center:Also known as a micro-data center, the 

edge network can be likened to a local cloud to which devices connect. It offers 

data analytics and storage capabilities, reducing the distance for data transfer, thus 

addressing latency and bandwidth issues. 

http://www.ibm.com/cloud/architecture/architectures/edge-computing/


Chapter 1. Background 

6https://www.ibm.com/cloud/architecture/architectures/edge-computing/ 

34 

 

 

 
 
 
 

 
 

Figure 1.23: Edge Computing Architecture. 

 

 
1.8.2 Features 

The following features are the requirement that an edge solution have to consist: 

 

Connectivity 
 

To ensure connectivity among Edge devices, an Edge solution must support the most 

prevalent protocols. Examples of these protocols include Z-Wave, ZigBee, KNX, Blue- 

tooth LE, LoRa, and others. 

 
 

Local Data Processing 
 

An edge solution must ensure that all edge devices can execute applications deployed by  

Edge servers within a predefined domain, adhering to clear constraints. 

 
Remote monitoring 

 
An edge solution is required to monitor, control, and issue commands to gateways and the 

devices connected to them. To facilitate this functionality, an open API should enable 

remote applications to communicate with the gateway using REST, Web Sockets, or 

JSON-RPC 7 protocols. 

 
 

Portability 
 

The software deployed in edge computing must be adaptable, capable of running on any 

device regardless of physical and system limitations. 

http://www.ibm.com/cloud/architecture/architectures/edge-computing/


Chapter 1. Background 

6https://www.ibm.com/cloud/architecture/architectures/edge-computing/ 

34 

 

 

 
 

Security 
 

An edge solution must ensure the implementation of security measures on all edge nodes, 

including permission-based access control, secure encrypted communication, certificate 

management, and other relevant techniques. 
 

1.9 Conclusion 
 

In this chapter, we have introduced the fundamental concepts of Machine Learning, pro - 

viding a comprehensive overview of deep learning, including its various approaches and  

types such as CNNs, RNNs, and LSTMs. Subsequently, we delved into Transfer Learning,  

covering its definitions, categorizations, strategies, and real-world applications. Further- 

more, we explored Federated Learning techniques, discussing their approaches, optimiza - 

tion algorithms, and challenges. Lastly, we outlined and compared various tools for Deep 

Learning and Federated Learning that can be utilized for our research. Additionally, we 

defined Industrial Cyber-Physical Systems, detailing concepts such as IoT, Cloud Com- 

puting, Fog Computing, and Edge Computing. We also mentioned different network and 

IoT tools applicable to our research. In the next chapter, we will present an overview of 

Industrial Cyber -Physical Systems and their deployment tools. Following that, we will 

delve into the current state of the art of deploying Federated Learning on various 

network architectures within CPS FL on different network architecture in CPS. 

http://www.ibm.com/cloud/architecture/architectures/edge-computing/


8 

 

 

 

Chapter 2 

State of the art 

2.1 Introduction 
 

The use of ML techniques described in Chapter 1 has simplified CPS operations, increased 

efficiency and productivity, and most importantly, ensured data security and integrity. 

However, to meet specific needs or address specific problems, contributions to the state 

of the art are made differently in each of the three architectures. This chapter evaluates  

several existing architectures and their vulnerabilities that use federation, broadcast, and 

DL methods to make decisions in the cloud, fog, and edge layers. 

 

 
2.2 Cloud-based FL 

 
Połap et al.[67] introduced a new agent-based approach designed to assess and safeguard 

medical data derived from the Internet of Medical Things (IoMT). The decentralized na - 

ture of the data is ensured through encryption on a blockchain platform. Within this 

framework, three key actors - Learning, Indirect, and Data Management (DM) agents - 

play integral roles. The Learning agent (LA) is tasked with initiating six threads aimed 

at training CNN models tailored to specific sections of the database. Meanwhile, th e In- 

direct Agent (IA) is responsible for categorizing inputs from the DM agent and signaling 

LA when model retraining is necessary due to insufficient or ambiguous results. In cases  

where the training data prove inadequate, IA collaborates with the Data Management 

Agent (DMA) to acquire additional entries. However, it’s worth noting that DMA’s data 

collection process, particularly in gathering patient and doctor information, may intro - 

duce delays, thus compromising real-time functionality. Despite the implementation of  

Federated Learning (FL) techniques, the selection of an appropriate classification method 

remains challenging, especially given the noisy and heterogeneous nature of the data. 

Tian et al. [82] used techniques from deep learning to propose an asynchronous Fed - 

erated Learning (FL) based anomaly detection approach, termed Delay Compensated 

Adam, tailored for IoT devices with constrained resources. Their approach is struc- 

tured into sequential stages, commencing with an initial phase. Initially, parameter pre - 

initialization is conducted, where a subset of clients is randomly selected to transmit a 



Chapter 2. State of the art 

9 

 

 

 

 
small portion of their data to the server, facilitating the training of an initial global model. 

Subsequently, an asynchronous training methodology is implemented for the model.  How- 

ever, they did not assess the reliability of the participating nodes, despite the method be - 

ing specifically designed for anomaly detection. Following the initiation of the three -task 

server, challenges arise due to high bandwidth demands, and system failure occurs if the  

server crashes, leading to termination of the entire system. 

In the domain of wearable healthcare Chen et al.[18] introduced a concept of federated 

transfer learning fused with cloud computing. Their proposed framework manages the  

separation of Federated Learning (FL) data and customization of models. Initially, the  

cloud server constructs a global model utilizing public datasets, then disseminates it 

to clients employing homomorphic encryption. Subsequently, clients retrain their local  

models and upload the refined versions. The aggregator updates the global model using  

the fedAVG algorithm and incorporates transfer learning techniques. 

Hao et al. [36] introduced Privacy-enhanced Federated Learning (PEFL) for Industrial 

AI, aiming to enhance the security of model gradients and the accuracy of local models. 

The approach involves three main components: (1) Key Generation Center (KGC), which 

distributes private keys to each participant, (2) Cloud-based aggregator (CS), and (3) par- 

ticipants. Each participant trains a local model, generates local gradients, and applies 

Differential Privacy (DP) to perturb them. The perturbed gradients are then encrypted 

into BGV ciphertext using Homomorphic encryption. The CS decrypts the encrypted 

gradients for aggregation. This approach ensures model privacy and security while main - 

taining accuracy, even when a small fraction of participants are affected. 

Zhang et al.[96] proposed a method for preserving privacy in Federated Learning (FL) 

for disaster classification. They employed Paillier homomorphic encryption to safeguard 

the data of social computing nodes and Transfer Learning (TL) to mitigate computation  

and communication expenses. Initially, a dedicated server known as the Key Genera- 

tion Center (KGC) distributed encryption keys to each node. Subsequently, each node 

fine-tuned its local model using TL, where it utilized a pre-trained model with extensive 

datasets, extracting only the feature extraction layers and training the classification lay - 

ers. Following this, the node encrypted the weights of the higher layers and transmitted  

them to the global server (Cloud). Upon receiving the local weights of all nodes, the 

server aggregated them using the FedAVG algorithm. In their experiments, they utilized 

the Multimodal Damage Identification Dataset (MDI) [61], which was randomly divided 

among four social computing nodes. Results indicated that compared to training from  

scratch, the accuracy of various models improved by an average of 18.5% when employing TL 

with pretrained VGG-11, 13, 16, and 19 models from the ImageNet 1 dataset. After 

completing 300 aggregation rounds, the accuracy of different FedTL models improved by 

an average of 20% compared to FL from scratch. Moreover, transferring only the clas- 

sification layer parameters of the model can reduce resource costs and communication  

expenses for social computing nodes. 

Kevin et al.[46] introduced a new federated transfer learning framework named FTL - 

CDP, aimed at cross-domain prediction. This framework combines the principles of Fed- 

erated Learning (FL) and Transfer Learning (TL), leveraging the advantages of both to 

 
1https://www.image-net.org/ 

http://www.image-net.org/


Chapter 2. State of the art 

10 

 

 

 

 
tackle the challenges of data scarcity and privacy encountered by many machine learn- 

ing approaches, particularly in modern and heterogeneous smart manufacturing environ - 

ments with cross-domain applications. Their system comprises heterogeneous application 

groups, each of which aggregates a collection of smart devices (SDs) sharing the same 

application. When a new component joins the Federated Learning network, the central  

server (CS) searches for a suitable base model using similarity measures. The SD then  

performs Transfer Learning, retraining its model and sharing its parameters with the 

CS. Instead of aggregating into one global model, aggregation occurs for each sub -global 

model related to an application group. In their experiments, they deployed a base model 

trained with the COCO 2 dataset on the CS and conducted Transfer Learning on the 

SD. To demonstrate the efficacy of their system, they compared it with centralized learn - 

ing and Federated Learning without Transfer Learning. Results revealed that FTL-CDP 

achieves a learning time 50% faster than other approaches, albeit with higher communi - 

cation overheads due to the sharing of the base model. Furthermore, FTL-CDP exhibits 

faster convergence, particularly with small sample sizes. 

 

2.3 Fog-based FL 

Zhou et al. [98] proposed a fog computing approach for federated learning with data 

protection as a means to protect privacy. To complete the learning process, each fog 

node collects and analyzes data from IoT devices. Due to uneven distribution of data 

and gaps in computing resources, this strategy improves training efficiency, and uneven 

distribution of data improves model accuracy. Withstand data attacks on IoT devices 

by using blinding and homomorphic Perrier encryption to protect model parameters and 

using differential privacy to defend against data attacks on IoT devices.Their experiments 

are based on Fashion-MNIST 3 data and prove that their system is indeed very efficient. 

Saha et al.[75] introduced the FogFL framework to implement federated learning (FL) 

at the fog computing layer, which aims to reduce communication latency and energy con - 

sumption of resource-constrained edge devices while improving system reliability. Their 

system architecture consists of a cluster of edge devices, with each cluster associated with 

a nearby fog node. First, each edge device trains a local model with private data and then 

sends local weights to the fog node for aggregation. The frequency of local updates at the  

edge device depends on the data size and the physical characteristics of t he device. After 

local aggregation, each fog node sends its workload and communication latency parame - 

ters to the cloud server. Then, the cloud server calculates the logical variables for each 

Fog node and FL iteration, synthesizes the above parameters, and selects the Fog node 

with the minimum variables to act as a global aggregator. To evaluate the performance of 

the proposal, the authors deployed six of his Raspberry Pis and two computers with differ - 

ent physical characteristics as fog nodes, using Radio Access Network (RAN) technology. 

Each Fog node was equipped with his three Raspberry Pis as edge nodes, providing a 

single cloud system. The impact of his FogFL on the above challenges was evaluated by 

comparing with the results of other algorithms such as the FedAVG algorithm and the 

 
2https://cocodataset.org/home 
3https://www.kaggle.com/datasets/zalando-research/fashionmnist 

http://www.kaggle.com/datasets/zalando-research/fashionmnist


Chapter 2. State of the art 

11 

 

 

 

 
hierarchical FL framework. This evaluation was performed using his MATLAB software, 

and the MNIST dataset was split into non-IID data for the client. The results show that 

FogFL reduces the delay by 85% and 68% compared to FedAVG and HFL, respectively, 

and reduces the energy consumption by 92% compared to FedAVG. 

Wang et al. [85] proposed the use of fog computing for air quality monitoring by us - 

ing heterogeneous datasets from multiple sources and applying a federated learning (FL) 

approach. This approach involves collecting data from multiple sources and using dis - 

parate multisource data collection methods. The system architecture includes IoT, edge  

nodes, and fog gateway devices (FGD) to form a local multi-source heterogeneous data 

fusion system “LMFS”. ”CHTS” represents a centralized homogeneous training system  

consisting of IoT, edge nodes, and fog gateway devices. Within LMFS, five subclassifiers  

are deployed on fog nodes. Each subclassifier is associated with one or more heteroge- 

neous datasets that undergo preprocessing before performing a common task. Numerical 

features extracted from all five layers of edge nodes are used to obtain local evaluation  

results. 

Yao and Ansari [91] used fog computing to accelerate the Federated Learning (FL) 

process and reduce power consumption of IoT devices. They introduced a new FL im- 

provement technique that leverages CPU frequency control and radio trans mit power 

(WTP) control to streamline FL operation, shorten FL duration, and minimize energy 

consumption. The goal is to ensure that the FL completion time is less than the maximum  

allowed FL time. This includes both the computation time for local model training and 

wireless transmission time for uploading local model updates to fog nodes to meet quality 

of service (QoS) requirements. Similarly, energy consumption during FL operation must 

be minimized. Yao and Ansari implemented the Alternative Direction Algorithm (ALTD) 

at each local iteration to calculate optimal WTP and CPU frequency values for all IoT 

devices tested. 

 

 
2.4 Edge-based FL 

 
Qu et al. [70] proposed a novel system for Cognitive Computing in Industry 4.0 Net- 

works, pointing to upgrade the execution of Industry 4.0 fabricating through decentralized  

Blockchain-enabled Unified Learning (FL). This system addresses key challenges such as 

information security, productive handling, incentivizing support in learning, and avoiding 

harming assaults. Inside this system, each device within the arrange holds its private 

information, guaranteeing information security and proficient processing through show 

sharing instead of crude information transmission. Rather than a central server, they 

presented a blockchain design with open records to completely decentralize FL. This was  

accomplished utilizing the proof-of-work (PoW) agreement calculation, where a brief ag- 

gregator is chosen in each circular. Parameters of upgraded models from end-devices 

are sent to a cluster of mineworkers, who confirm their authenticity through a cross- 

verification instrument. The PoW agreement calculation allots a target nonce for each 

circular, with mineworkers compensated for distinguishing the target . This incentivizes 

support and guarantees an effective learning handle. The worldwide show parameters are 

amassed utilizing conveyed inexact Newton DANE [8], put away in a piece, and down- 



Chapter 2. State of the art 

12 

 

 

 

 
loaded by all machines. Evaluation of worldwide show precision uncovered a noteworthy 

enhancement with blockchain integration, accomplishing a extend of 0.74–0.82 compared 

to around 0.7 without blockchain. 

Khan et al. [47] proposed a combined learning (FL) approach at the organize edge 

utilizing the Stackelberg diversion to incentivize device interest. Their framework, planned 

with a Co-design approach, incorporates a Base Station (BS) speaking to the edge server 

and client devices with non-IID and heterogeneous information sizes. They utilized the 

CoCoA system to handle frameworks and measurable heterogeneity. In their approach,  

IoT gadgets yield reactions to the BS based on advertised remunerate rates, and the 

BS overhauls the worldwide show in like manner. Execution assessment employing a 

classification errand appeared that expanding the remunerate rate spurs clients to repeat 

more, moving forward exactness. In any case, the consider did not address security 

concerns between edge gadgets and the edge server, clearing out it as future work. 

Xu et al.[89] proposed ELFISH, a federated learning system outlined to address the  

heterogeneity in computation capacity among edge devices, which frequently leads to de - 

lays in sharing models due to physical resource limitations.  ELFISH utilizes a soft-training 

strategy to accelerate model preparing by powerfully veiling a select number of neurons 

at each preparing cycle, considering variables such as computational workload, preparing 

memory utilization, preparing time utilization, and worldwide merging contribution of  

each neuron. Moreover, they presented a parameter accumulation conspire to recuperate 

veiled weights during accumulation, subsequently upgrading accuracy and merging speed 

for training-on-edge scenarios. To evaluate their system, they utilized Nvidia Jetson 

Nano advancement sheets to simulate computation-capable and straggler devices with 

shifting resource limitations. They utilized two CNN models, AlexNet and LeNet, for 

system testing. Comes about illustrated that ELFISH reliably beats ordinary synchro- 

nized/asynchronized FL approaches, accomplishing way better exactness and speedier 

merging speed. Additionally, indeed with non-IID information, ELFISH shown predomi- 

nant execution compared to other plans. 

Liu et al. [56] proposed a vehicle interruption location framework based on dispersed 

combined learning (FL) and blockchain innovation to ensure security conservation for  

vehicles using Differential Security procedures. The framework points to reduce com- 

munication overhead and computation costs by dispensing with the global server and 

enabling secure demonstrate sharing among edge nodes (Roadside units - RSUs) that col- 

lect data from vehicles traveling within the same range. Each RSU acts as an aggregator  

inside its range, conducting FL, storing last models within the blockchain, and competing 

to confirm accumulation demonstrate preparing exchanges. The winner composes these 

exchanges into the blockchain employing a conveyed agreement instrument, with show  

precision utilized for believe assessment. Two sorts of cars are considered: conventional 

edge vehicles utilized for conveyed edge preparing based on interruption discovery infor - 

mation, and agent vehicles chosen by RSUs to total neighborhood models and send them  

to the fitting RSU. Communication is established utilizing homomorphic encryption to 

relieve against pernicious foes. To assess their system’s execution, they utilized PyTorch  

and Syft Python libraries for FL execution, the KDDCup99 4 dataset, and the Go lan- 

guade to construct the open blockchain. Comes about demonstrate that both exactness 

4http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html 

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html


Chapter 2. State of the art 

13 

 

 

 

 
and time costs increment with bigger dataset sizes. Also, expanding the number of col- 

laborated nodes leads to moved forward precision of the worldwide show. Comparing two  

agreement calculations, POW (proof of work) and POA (proof of accuracy), they found 

that POA successfully improves the effiency of POW by diminishing square era time due 

to expanded believe, hence diminishing mining trouble. 

In [68] [88], Federated Learning (FL) has been employed in the realm of COVID- 

19 diagnosis. Qayyum et al. [68] used a cluster-based FL approach (CFL) to automate 

the process of COVID-19 diagnosis. Their method, while prioritizing data security, led 

to a notable 16% enhancement in CFL method performance. Contrary to [68], Zhang 

et al. [95] introduced a fresh FL technique based on dynamic fusion. This innovative 

approach determines the involvement of clients based on their local model performance  

and organizes model fusion according to each client’s training timeline, thereby amplifying  

detection flexibility. 

Ni et al. [64] proposed a novel dual filtering mechanism to address Byzantine attacks in  

Federated Learning (FL) within edge-IoT environments. Their approach aims to enhance 

the security of the FL training process by identifying and eliminating malicious gradients.  

Additionally, they developed an adaptive weight adjustment scheme to ensure consistent 

gradient sizes, thus promoting effective model aggregation. Despite its innovative de- 

sign, Ni’s scheme overlooks a critical aspect: the non-identically and non-independently 

distributed nature of real datasets used in Edge Computing (EC) environments. This 

oversight poses challenges to the robustness of existing FL aggregation algorithms and 

increases the vulnerability of the FL global model to attacks in such scenarios. Conse- 

quently, addressing this issue is crucial for ensuring the efficacy and security of FL in 

real-world EC settings. 

 

 
2.5 Discussion and Comparison 

In this study, we tried to include FL in CPS as well as list as many articles as possible 

to get a solid picture of its implementation, results, and limitations in CPS.  Table 2.1, 

originally compiled by Mademoiselle Guendouzi, classifies and compares the 

contributions surveyed regarding FL applications across several CPS domains. We have 

updated this table in recent years to provide the most current and comprehensive 

overview. The table considers various criteria, including FL location (Cloud-based, Fog- 

based, or Edge-based) and architecture (centralized or P2P), aggregation method, 

aggregation selection case (fixed or dynamic), DL model, dataset reference, and data type 

(iid or non-iid), the use of TL, and the security method. 

Initially, it’s important to note that considerable research has been dedicated to im - 

plementing FL on the cloud layer to engage a large number of collaborators and enhance  

long-term learning. Conversely, recent studies seek to boost user involvement by integrat- 

ing FL into the Fog or Edge layers to meet security and latency demands. 

Subsequently, we observed that the majority of contributions [67], [82],[18], [36],[96], 

[46], [36], [75], [85], [70],[47], and [89]employ a centralized FL architecture, with exceptions 

being [70],[64] and [56], which utilize a P2P approach in scenarios where FL is deployed on 

the edge layer without a global or centralized server. Among them, FedAVG emerges as 

the prevalent aggregation algorithm due to its simplicity in handling homogeneous data 



Chapter 2. State of the art 

14 

 

 

 

 
and models. However, [96], [46], and [36] implement the FedPer algorithm to enhance 

learning, while [70] and [89] devise their own aggregation methods tailored to their specific 

architecture. Regarding aggregator selection, only [75] and [70] have developed their own 

algorithms for selecting the aggregator for each FL round. Furthermore, current research 

endeavors to broaden architectures by incorporating heterogeneous users in terms of data 

or learning models. Consequently, TL approaches are favored to facilitate knowledge 

sharing, expedite convergence, and enhance system stability. Lastly, for security purposes, 

Homomorphic encryption and Differential Privacy are commonly employed for model  

sharing, whereas blockchain is utilized in P2P architectures. 



 

 

 
Contribution FL Position Dataset Model Architecture Aggregation Aggregator iid Data TL Security 

Połap et al.[67] Cloud-based Skin cancer 

MNIST 

CNN Centralized FedAVG Fixed Yes No Blockchain 

Tian et al. [82] Cloud-based MNIST 

CIS-IDS 2017 

IoT-23 

Denoising 

Autoencoder 

Centralized FedAVG Fixed No No No 

Chen et al.[18] Cloud-based UCI 

SmartPhone 

CNN Centralized FedAVG Fixed No Yes Homomorphic 

Encryption 

Differential Privacy 

BGV Encrption 

Hao et al. [36] Cloud-based MNIST CNN Centralized FedAVG Fixed Yes No Homomorphic 

Encryption 

Zhang et al.[96] Cloud-based MDI [61] 

ImageNet 5 

CNN 

VGG-11,13,16,19 

Centralized FedPer Fixed No Yes Homomorphic 

Encryption 

Kevin et al.[46] Cloud-based COCO 6 CNN Centralized FedPer Fixed No Yes No 

Hao et al. [36] Fog-based Fasion-MNIST CNN Centralized FedPer Fixed No Yes Blockchain 
Differential Privacy 

Saha et al.[75] Fog-based MNIST MLP Centralized FedAVG Dynamic No No No 

Wang et al. [85] Fog-based MNIST CNN Centralized FedAVG Fixed No Yes No 

Yao and Ansari [91] Fog-based MNIST CNN Centralized FedAVG Fixed No No No 

Qu et al. [70] Edge-based CIFAR-10 CNN P2P DANE Dynamic No No Blockchain 

Khan et al. [47] Edge-based MNIST Multinomial logistic 

Regression 

Centralized FedAVG Fixed Yes No No 

Xu et al.[89] Edge-based MNIST 

CiFAR-10 

LENET 

AlexNet 

Centralized ELFISH Fixed Yes Yes No 

Liu et al. [56] Edge-based KDDCup99 MLP P2P FedAVG Fixed Yes No Blockchain 

Differential Privacy 

Qayyum et al. [68] Edge-based Covid_19 
dataset 

CNN P2P FedAVG Dynamic No Yes Blockchain 
Homomorphic 
Encryption 

Ni et al. [64] Edge-based Fasion-MNIST 
MNIST 
CIFAR-10 

CNN P2P FedAVG Dynamic No Yes Homomorphic 
Encryption 

 
Blockchain 

C
h

a
p

te
r 

2
. 

S
ta

te
 o

f th
e

 a
r

t 

4
4

 



 

 

Mlle. guendouzi 
Badra Souhila [100] 

Cloud-based 
Edge-based 
Fog-based 

Fasion-MNIST CNN P2P FedGA 
FedPer 
FedAVG 

Dynamic No Yes Homomorphic 
Encryption 

 
Blockchain 

 

Table 2.1: Comparison of the State of The Art. 



45 

 

 

Chapter 2. State of the art 

 

2.6 Conclusion 
 

In this chapter, we have looked at different FL architectures suggested for 

various areas of CPS. It has been shown that each proposal uses machine learning 

techniques in unique ways to meet specific needs, which affects their architectures. 

However, despite these differences, none of the architectures completely overcome all 

the challenges related to FL, mainly because of the complex nature of FL research. 



46 

 

 

 
 
 
 
 

Chapter 3 
 

FedGA-ICPS: Federating Learning 

through Genetic Algorithms for 

ICPS 

 
Industrial cyber-physical systems (ICPS) have attracted significant interest over the past 

decade and are expected to continue growing in the coming years, driven by technologi- 

cal advances and the emergence of new heterogeneous environments.As a result, there is 

grow to interest in using machine learning (ML) techniques to unify decision -making pro- 

cesses in these ICPSs, which remains an area under research and development.Federated 

learning (FL) is a machine learning technique that facilitates collaboration between ICPS 

to improve decision making and accelerate the training of deep learning models through  

transfer learning. 

We observe that the implementation of ML techniques, including FL, Deep Learn- 

ing (DL) and Transfer Learning (TL), in ICPS varies across different research works, 

depending on the factors factors such as system requirements, network architecture, en - 

vironmental conditions, security considerations, and capabilities of the entities involved, 

such as cloud, fog, and edge computing resources.However, despite the progress that has  

been made, no single solution can address all the challenges associated with FL due to the 

vast and evolving nature of this research field. Integrating a correct solution f or a speci fic 

application in every situation remains a complex task. In this chapter, we will start by 

defining and building the architecture of our proposed FedGA -ICPS framework.We will 

then improve its performance through performing various tests. 

 

 

3.1 Design Architecture 
 

Considering the fact that the goal of our project is to deploy machine learning strate- 

gies (namely FL, DL and TL) at each of the three levels of the system (Edge, Fog and 

Cloud). Decentralized and centralized, with distributed learning across four system levels, 

is the design we presented. The IoT layer, represents a set of different industrial sensors  

and,actuators. The Edge layer, is made up of different industrial grades. The Fog layer, 

consisting of a cluster of Fog nodes and Cloud layer , replaces ICPS servers globally.Figure 



Chapter 3. FedGA-ICPS Framework 

47 

 

 

 

 
3.1 presents our developed architecture for the FedGA-ICPS framework. Details of the 

layers are explained below. 
 
 
 
 
 
 

 

Figure 3.1: The Proposed Architecture Design for FedGA-ICPS framework. 

 
 

 
3.1.1 IoT Layer 

 
In the industrial setting, this layer encompasses all IoT components found within factories.  

Here, sensors and actuators are deployed for various purposes across different layers.  

Sensors, including robots, surveillance cameras, and a range of heterogeneous sensors 

(such as those for humidity, temperature, movement, and gas detection), gather data 

tailored to the factory’s domain. For example, in an automobile assembly plant, robots  

collect data on defective spare parts. This data may or may not be relevant depending 

on the context. Subsequently, once data collection is complete, it is transmitted to the 

Edge layer, specifically to the edge server within the manufacturing facility, for further  

processing before being utilized in executing FedGA-ICPS. 

During the execution of our framework, directives are issued to actuators either after  

or during the decision-making process to carry out domain-specific actions. 



Chapter 3. FedGA-ICPS Framework 

48 

 

 

 

3.1.2 Edge Layer 

The Edge layer or manufacturing layer serves as a consolidation of various industrial 

zones located geographically worldwide, spanning across countries and cities. Within  each 

zone, there exists a cluster of factories exhibiting diversity in their application domains, 

computational resources, and crucially, learning capabilities, which directly impact their 

decision-making processes. 

Every industrial factory maintains a dataset housing its proprietary information, which  

expands as IoT sensors continuously gather data. This data undergoes processing through 

data mining techniques to refine and extract pertinent information. The evolving dataset 

is utilized for local training of neural models using specific deep learning a lgorithms tai- 

lored to the factory’s domain application. Consequently, the factory is equipped to make  

predictions autonomously without the need to transmit data to a central server. 

 

3.1.3 Fog Layer 

After the consolidation of various manufacturing facilities into separate industrial zones 

worldwide, the establishment of a node to represent the latter becomes imperative. Hence, 

the Fog layer embodies a cluster of nodes functioning as fog servers. Each node serves 

as the overseer for a specific zone and is strategically positioned in close proximity to its 

designated area. 

The primary duties of each node encompass the collection and storage of local per - 

sonalized models, ensuring transfer learning by facilitating the movement of these models  

between edge nodes, uploading the models to the aggregator, and finally, receiving the 

aggregated model and disseminating it to the corresponding zone. 

 

3.1.4 Cloud Layer 

The cloud layer, often referred to as the management layer, serves as the overseer of the  

entire system. It encompasses the global server, responsible for initially providing the 

default aggregator. This aggregator gathers all the local neural models and facilitates 

federated learning to generate a global model. This process involves executing a carefully  

selected aggregation algorithm, as elaborated in Section 3.2.4, tailored to different envi- 

ronmental contexts. Subsequently, the global model is broadcasted across the network  

participants. 



Chapter 3. FedGA-ICPS Framework 

49 

 

 

 

3.2 FedGA-ICPS Framework 
 

As depicted in Figure 3.2 and according to Guendouzi et al. [33], FedGA-ICPS framework 

comprises five stages: CPS (red rectangle), Learning (blue rectangle), Election (green 
rectangle), Aggregation (yellow rectangle), and Broadcasting (violet rectangle). In the 

following, we will elaborate on each component and step of the FedGA-ICPS FedGA- 

ICPSframework. 

 
1. Initially, FedGA-ICPS establishes and implements an ICPS,which is composed of en- 

tities and components with diverse forms and characteristics. Each entity possesses 

its own structure and behavior, enabling communication and interaction within 

various environments. 

 
2. Then, through simulation and run-time execution, FedGA-ICPS gathers, formats, 

cleans, and normalizes streaming data that is generated and communicated between  

different ICPS components. This data is utilized for the learning step, which relies 

on a neural network model assigned to each respective device. 

 
3. Consequently, FedGA-ICPS proposes a set of components to elect the best candidate 

for federating the learning between the embedded local models.  The election process 

considers various parameters, including processing and memory capacities, latency, 

availability, security, etc. 

 
4. After a local convergence learning, FedGA-ICPS conducts aggregation using genetic 

algorithms. These algorithms consider the weights of the local models. Subse- 

quently, in the selected component, the optimal weight vector for broadcasting is 

generated. 

 
5. Finally, FedGA-ICPS broadcast to the different clients, edges, and components the  

resulting optimal weights through TL. 

 
The following section details each step of FedGA-ICPS. 

 
 

Figure 3.2: The Interoperability and Integrity Validation and Evaluation [33] 

Prepare data Candidating Performing Publishing 
Broadcast Aggregation Election ICPS  

Classifi- 

cation 

Learn- 
ing 

Aggrega- 

tor 

Clients 

Global 

Model 

Selection 

Clients 

Models 

Scoring 

Structure 

Attributes 

Tasks 

Network 

Entities 

Loss Accu- 

racy 

Models 
Transfer 



Chapter 3. FedGA-ICPS Framework 

50 

 

 

 

3.2.1 Learning 

The goal of this phase is to create a local model for each edge entity. It includes two 

subprocesses .Here are the details: 

 

Deep Learning 

 
During the learning phase, individual edge nodes undergo training processes for their neu- 

ral network models using locally sourced datasets. These datasets and training method- 

ologies vary across industries, reflecting the unique needs of the factories in which they  

operate. Upon achieving high model accuracy post-training, the edge nodes transmit the 

updated parameters, including the model itself and its precision, to the nearest fog node. 

Subsequently, the fog node facilitates the dissemination of these parameters to the Cloud 

server, facilitating the update of the repository housing efficient models. Conversely, if 

the model accuracy falls short of expectations post-training, the edge node initiates a 

request for a learning transfer, seeking assistance to improve its model performance. 

 

Transfer Learning 

 
This methodology has been integrated into our framework, serving two distinct purposes. 

Firstly, in cases where the accuracy of the local model diminishes, the fog node initiates a 

request to the Cloud server for a high-performance model relevant to the same application 

domain and task as the edge node. The Cloud server consults the structured repository, 

as depicted in Figure 3.4, to identify the suitable model, which is then transferred to the 

designated edge node via the fog node. Secondly, the framework facilitates model sharing 

for Federated Learning (FL), a concept elaborated upon in Section 3.2.5. FL involves the 

collaborative training of models across distributed edge nodes. 
 
 
 
 

 
 
 

Figure 3.4: TL Registry Structure. 

 
Both phases of deep and transfer learning are represented by the sequence diagram 

shown in Figure 3.5. 



Chapter 3. FedGA-ICPS Framework 

51 

 

 

 
 
 
 
 

 
 

Figure 3.5: Learning Sequence Diagram. 

 

3.2.2 Election 
 

In the process of selecting the suitable candidate for federated learning, FedGA-ICPS as- 

sesses the capability of various components within the system, such as Fog or Cloud nodes. 

By default, the computing cloud server is designated as the primary aggregator. How- 
ever, depending on factors like available memory and processing capacity, the cloud server 

may designate another component as a secondary aggregator.FedGA-ICPS organizes all S 

components, denoted as S, into a prioritized list of aggregators based on their capacities. 



Chapter 3. FedGA-ICPS Framework 

52 

 

 

⟨ ε5    , C(ε5    ) 

⟨ ε1, C(ε1)⟩ 

⟨ ε2 , C(ε2 )⟩ 

 

 
Guendouzi Badra Souhila. [100], have formulated the election process by an election 

tree ET, which is characterized by the tuple ⟨ E, C, P⟩ , where: 

 
• E are the entities that are detailed in Section 3.2.1. 

 

• C returns a value that takes into consideration an entity attributes as its actual 
available capacity of memory, processing capacity, etc. 

 

• P assigns a priority value to a given entity ε to resolve the nondeterministic problem 
when entities capacities are equals. 

 

In the context of FedGA-ICPS, periodic capacity assessments of each node are integral, 

as they can influence the election order. Illustrated in Figure 3.6, the cloud server ε1 

assumes the position of the root of the tree, signifying its status as the most potent entity 

at time t = 0. Conversely, children nodes represent the less efficient entities, while leaves 

typically often IoT devices, regarded as the weakest within the system. The priority 

functions of each entity, denoted as Pi, are depicted by the arcs within the tree structure. 
 

     P6 P7  
⟩ ⟨6  ε  , C6(ε  )⟩ 

C ⟩ 
 
 

     P3 P4  
⟨3 ε , C3(ε )⟩ 

C 

Figure 3.6: A Configuration of the Election Process at a slot of time. 

 
The summary of the election phase is represented by the sequence diagram shown in 

Figure 3.7. 
 
 
 
 

 
 

Figure 3.7: Election Sequence Diagram. 

⟨ ε4, 

⟨ ε7, 



Chapter 3. FedGA-ICPS Framework 

53 

 

 

 

3.2.3 Federation 

In contrast to FedAvg [81] and FedPer [9], the FedGA technique developed within FedGA- 

ICPSoperates differently. In FedGA, all edge nodes solely transmit the base layer weights 

to the selected aggregator. Subsequently, the aggregator computes the updated weights 

by invoking the genetic algorithm (as illustrated in Figure 3.8 ). The genetic algorithm 

operates as follows: a weight vector serves as a representation of the system across the 

chromosomes. 

 

1. Define an adequate chromosome which the weight vectors. 

 
2. Select a large set of chromosomes, population takes into account all weight vectors 

collected from the different components. 

 
3. Apply the reproduction operators (selection, crossover, mutation). selection is ap- 

plied on vectors with high ranking (fitness evaluation). In our case, the fitness is 

the loss function. The crossover operation is based on the single point paradigm. It 

means that a vector is divided into two parts to be exchanged with another vector 

to form a new population. Finally, the mutation operation collects randomly only 

10% of weights to reproduce new vectors. 

 
4. FedGA-ICPS repeats this process until all edge nodes models converge with a maxi- 

mal accuracy. 
 
 
 
 

Figure 3.8: FedGA Schema. 

 

FL process is summarized in Figure 3.9. 



Chapter 3. FedGA-ICPS Framework 

54 

 

 

B 

 
 

 

Algorithm 2 Federated Genetic Algorithm (FedGA) [32] 

The K clients are indexed by k; B is the local mini-batch size,Dkis the dataset available 

to client k, Dt is the dataset used for the test which is available on the aggregator, WB 

is the vector of base layers, WP is the vector of personalized layers, E is the number of 

local epochs, and η is the learning rate. 

1: Procedure FedGA d Run on the server. 

2: Initialize W 0 ; 
3: for each round t = 1, 2, 3, ... do 
4:       for each client k ∈ K do 
5: Wt+1 ← ClientUpdate (k, Wt       ); d In Parallel. 

B, k 

6: end for 
; bf B, k 



Chapter 3. FedGA-ICPS Framework 

55 

 

 

B 

7: Wt+1 = GA (Dt, W t) ; d Only base layers are aggregated 
B B 

8: end for 

9: End procedure FedGA 

10: Procedure ClientUpdate (k, wt) d Run on client k. 

11: β ← (Split Dkinto mini-batches of size B;) 

12: for each local epoch i from 1 to E do 

13: for batch b ∈ β do 
14: wB, wP ← w − η∆ L(wB, wP, b); d base layers are updated and trained and 

personnalized layers are trained 

15: end for 

16: end for 

17: return t to the Server  

18: End procedure ClientUpdate (k, wB) 

 
 
 

Figure 3.9: FL Sequence Diagram 

 
3.2.4 Broadcasting 

Following the aggregation phase, FedGA-ICPS disseminates the weights of the model’s  

base layers to the involved components during the learning phase. Consequently, a new  

model characterized by high accuracy and minimal losses is crafted during the training 

phase. The broadcast phase from the aggregator to fog nodes and subsequently to edge 



Chapter 3. FedGA-ICPS Framework 

56 

 

 

 

 

nodes employs the TL technique, which selectively transfers personalized layers. 

 
 

3.3 Conclusion 
 

In this chapter, the motivation for the proposed FedGA-ICPS architecture and framework is 
defined by Guendouzi Badra Souhila. [100], the architecture is then explained in detail, with a 
description of its four layers. Furthermore, a comprehensive description of the framework is 
provided, detailing the steps that define the FedGA-ICPS implementation and illustrating them 
using various UML diagrams. In the next chapter, the effectiveness of the FedGA-ICPS framework 
will be demonstrated through the presentation of its application . 

 
 
 
 
 
 
 
 
 
 
 
 

. 



Chapter 4. FedGA-ICPS Implementation and Experiments 

57 

 

 

 
 
 
 
 

Chapter 4 
 

FedGA Application 

 
 

In the work already done by Mlle. Guendouzi Badra Souhila. [100], 
(https://github.com/SouhilaGuendouzi/SoftwareImpacts-FedGA-ICPS), which utilized Python 
along with PyTorch, NumPy, Matplotlib, PyGAD, Socket, Threading, Pandas, among others that we 
have mastered well, we tested this pre-existing work initially performed with GPU by transitioning 
it to CPU. Additionally, we integrated datasets such as Fashion MNIST, EMNIST, MNIST, and CIFAR-
10 into this work and made topology changes including Convolutional Neural Networks (CNNs), 
Recurrent Neural Networks (RNNs), Gated Recurrent Units (GRUs), Artificial Neural Networks 
(ANNs), and DenseNet. Furthermore, we conducted tests with two optimization algorithms, 
Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO), using the EMNIST and 
MNIST datasets. 

4.1.1 Dataset Fashion MNIST 

The Fashion MNIST dataset (short for Fashion Modified Na- 

tional Institute of Standards and Technology) consists of 

70,000 small square images measuring 28×28 pixels. These 

images depict Zalando’s clothing items 3 and are categorized 

into 10 classes numbered from 0 to 9. Since its introduction 

in 2017, this dataset has been widely used for evaluating 

classification algorithms. Figure 4.2 illustrates a sample of 

images from this dataset. 

For our experiments, we employed this dataset in two sce- 

narios:iid dataset; where it is partitioned into homogeneous 

subdatasets at the edge nodes, ensuring they have the same 

size and distribution of samples, and non-iid dataset; 

where it is partitioned into heterogeneous subdatasets, 

resulting in unequal sizes and distributions of samples 

across nodes. 

 

4.1.2 Dataset EMNIST 

Figure 4.2: Taken from the 

Fashion MNIST dataset. 

 

 
 

3https://github.com/zalandoresearch/fashion-mnist 

https://github.com/SouhilaGuendouzi/SoftwareImpacts-FedGA-ICPS


Chapter 4. FedGA-ICPS Implementation and Experiments 

58 

 

 

 

 
EMNIST (Extended Modified National Institute of 

Standards and Technology) is an extension of the 

MNIST dataset commonly used in machine learn- 

ing and computer vision errands. It comprises of 

written by hand character pictures comparable to 

MNIST but incorporates capitalized and lowercase 

letters as well as digits. The EMNIST dataset con- 

tains 814,255 pictures part into preparing and test- 

ing sets. Each picture is 28x28 pixels, making it ap- 

propriate for preparing and assessing models for as- 

signments like character acknowledgment and clas- 

sification.Figure 4.3 illustrates a sample of images 

from this dataset. 

 

 

Figure 4.3: Taken from EMNIST 

dataset. 

 
 

4.1.3 Dataset MNIST 

The MNIST dataset could be a collection of 70,000 grayscale 

pictures of manually written digits from zero to nine. Each 

picture is 28x28 pixels in estimate and is labeled with the 

comparing digit it speaks to. The dataset is commonly 

used in machine learning and computer vision investigate 

as a benchmark for assessing calculations in assignments 

such as digit classification and picture acknowledgment. The 

MNIST dataset is partitioned into 60,000 preparing pictures 

and 10,000 testing pictures, making it a standard dataset for  

preparing and assessing machine learning models.Figure 4.4 

illustrates a sample of image from this dataset. 

 

4.1.4 Dataset Cifar-10 

The CIFAR-10 dataset consists of 60,000 colour images in 

10 categories, with each category containing 6,000 images. 

These categories include objects such as aircraft, cars, feath- 

ered creatures, cats, deer, frogs, horses, ships, and trucks. 

Each image measures 32 x 32 pixels and is widely used to 

create and test machine learning and computer vision models,  

especially for tasks such as image classification and protest 

identification. Figure 4.5 illustrates a sample of image from 

this dataset. 

 

4.1.5 Neural Network Models 

In order to test our classification with five distinct neural 

organisation models described in gives the first chapter in 

 

 
Figure 4.4:Taken fromMNIST 

dataset. 
 
 
 
 
 
 

 
Figure 4.5: Taken from 

Cifar-10 dataset. 



Chapter 4. FedGA-ICPS Implementation and Experiments 

59 

 

 

 

 
section 1.3.7 , we present the code corresponding to each 

demonstration in figures 4.6,4.7,4.8,4.9,and 4.10. These areas detail the specific imple- 

mentation of each neural organisation, including parameters, layers, execution capabilities 

and optimisers. This approach will allow us to take an in-depth look at how each demon- 

stration works and compare its implementation on the modified datasets we have chosen. 

By examining the code of each demonstration, we will also be able to understand the dif - 

ferences and similarities between the CNN, ANN, RNN, GRU and DenseNet approaches 

in terms of design and operation. 

 

 
Figure 4.6: CNN model. 

 
 

 
Figure 4.7: ANN model. 

 

 
4.1.6 Transfer Learning 

To ensure Transfer Learning (TL) between Edge entities, it is essential to define the 

application domain and tasks of each entity. In our experiments, we assume that all 



Chapter 4. FedGA-ICPS Implementation and Experiments 

60 

 

 

 
 
 

 
 

Figure 4.8: RNN model. 
 
 

 
Figure 4.9: GRU model. 

 

entities share the same task, which is image classification, but have distinct domains. We 

have partitioned our benchmark dataset into non-iid subdatasets among them, with the 

exception of Edge ε5, which shares the same domain and task as Edge ε3 for performance 

evaluation purposes. Table 4.1 outlines our TL configuration for all five Edge nodes. 

 
 Domain Task 

Edge ε1 A Image Classification 

Edge ε2 B Image Classification 

Edge ε3 C Image Classification 

Edge ε4 D Image Classification 

Edge ε5 C Image Classification 

Table 4.1: Application Domains and Tasks. 

 
 

4.1.7 Election 

In the first round of FL, the Cloud node selects an aggregator, which can be itself or 

another fog node. This selection is based on their capacity, which is initially a dynamic 



Chapter 4. FedGA-ICPS Implementation and Experiments 

61 

 

 

 
 

 
 

Figure 4.10: densenet model. 

 

random integer, and their priority (see section 3.2.3 and Figure 3.7). The other fog nodes 

then upload their local models to the chosen aggregator instead of the default unique 

aggregator, which is the Cloud node. The capacity and priority attributes are initialized 

using the random Python module, as shown in Figure 4.11. 
 
 

 

 

Figure 4.11: Election attributes.. 

 
 

4.1.8 Federated With Genetic Algorithm (FedGA) 

To start, we characterised a global show that will be tested using a fraction of the dataset  

from each Edge node. After collecting all local personalized models, we created our initial  

population, which consists of a set of individuals representing weight vec tors. Each vector 

includes all weights of a personalized model. As illustrated in Figure 4.12, we selected 5 

GA generations and 3 solutions to be chosen as parents in the mating pool. The parents 



Chapter 4. FedGA-ICPS Implementation and Experiments 

62 

 

 

 

 
were selected based on their rank using the Fitness evaluation function. 

 

 

Figure 4.12: FedGA Configuration. 

 
We selected the fitness function, illustrated in Figure 4.13, to be the global model 

error, determined by testing on a fraction of data from each Edge node. 
 
 

Figure 4.13: FedGA Fitness Function. 

4 .2.9 Optimization Algorithms 

4.2.9.1 Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is a search method that uses a set of agents moving  

through the search space to find the global minimum of an objective function. Each 

particle's trajectory is determined by a simple rule that incorporates its current velo city 

and the exploration histories of itself and its neighbors. 

 
In this table, we examine the EMNIST dataset using two optimization techniques: the 

Standard Genetic Algorithm and Particle Swarm Optimization. We analyze how each 

method generates and interprets graph representations of the dataset. Finally, we discuss 



Chapter 4. FedGA-ICPS Implementation and Experiments 

63 

 

 

 
 

and compare their performance, strengths, and potential applications, providing insights 

into the effectiveness of each approach in data analysis and machine learning. 

 
Graphs of the EMNIST dataset with 

the standard genetic algorithm 

 
Graphs of the EMNIST dataset with the 

Particle Swarm Optimization 

 
Discussion and 

comparison 

 

 

 

 

 
We noticed that the 
FedAVG graph with 

Particle Swarm 
Optimization achieves 

values 2% better in training 
and 10% better in testing 
than the first one with the 
standard genetic algorithm 

 

 

 

 

 
 
 

We noticed that the FedGA 
graph with Particle Swarm 

Optimization achieves 
values 2% better in training 

and 15% better in testing 
than the first one with the 
standard genetic algorithm 

 

 

 

 

 
 

We noticed that the FedPer 
graph with Particle Swarm 

Optimization achieves 
values 1.75% better in 

training and 10% 
simulated testing with the 

standard genetic algorithm. 

Table 4.2: Comparing graph representations between the Standard Genetic Algorithm and Particle 
Swarm Optimization 



Chapter 4. FedGA-ICPS Implementation and Experiments 

64 

 

 

 

 

4.2.9.2 Ant Colony Optimization (ACO) 

Ant Colony Optimization (ACO) is a population-based metaheuristic designed to find 

approximate solutions to difficult optimization problems. In ACO, a group of software 

agents known as artificial ants search for good solutions to a given problem. This method  

transforms the optimization problem into finding the best path on a weighted graph. The  

ants incrementally build solutions by traversing the graph. The construction of these 

solutions is stochastic and guided by a pheromone model,[101] which is a set of 

parameters associated with the graph's components (nodes or edges) that are updated in  

real-time by the ants. 

 
In this table, we examine the MNIST dataset using two optimization techniques: the 

Standard Genetic Algorithm and Ant Colony Optimization. We analyze how each method 

generates and interprets graph representations of the dataset. Finally, we discuss and 

compare their performance, strengths, and potential applications, providing insights into 

the effectiveness of each approach in data analysis and machine learning. 
 
 

 
Graphs of the MNIST dataset with the 

standard genetic algorithm 

 
Graphs of the MNIST dataset with the 

Ant Colony Optimization 

 
Discussion and 

comparison 

 

 

 

 

 
We noticed that the 

FedAVG graph with Ant 
Colony Optimization 
achieves values 0.5% 

simulated trining with the 
standard genetic 

algorithm and 5% better 
in testing than the first 
one with the standard 

genetic algorithm 

 

 

 

 

 
 

We noticed that the 
FedGA graph with Ant 
Colony Optimization 
achieves values 0.8% 

better in training and 5% 
better in testing than the 

first one with the 
standard genetic 

algorithm 



Chapter 4. FedGA-ICPS Implementation and Experiments 

65 

 

 

 

 

 

 

 

 
We noticed that the 

FedGA graph with Ant 
Colony Optimization 
achieves values 0.8% 

better in training and 5% 
better in testing than the 

first one with the 
standard genetic 

algorithm 

Table 4.3: Comparing graph representations between the Standard Genetic Algorithm and Ant 
Colony Optimization. 

 
 

 
4.2 Experiments and Results 

The experiments were conducted on a framework named DESKTOP-FO7DGKA, 

equipped with an In- tel(R) Core(TM) i5-10310U CPU @ 1.70GHz with a frequency of 

2.21 GHz, and 8.00 G of RAM. The system runs a 64-bit operating system with an x64 

processors. The nodes are locally based, and their communication is established using 

sockets and threads. The selection of models and datasets is detailed in section 4.2.5 and 

section 4.2.4, respectively. 



Chapter 4. FedGA-ICPS Implementation and Experiments 

66 

 

 

 

4.2.1 FL Evaluation 

We evaluated the FL method using our FedGA aggregation method and monitored train- 

ing and test accuracies for all four datasets with all five models. The results of these 

scenarios are presented as follows: 

 
Fashion MNIST dataset with Recurrent Neural Network (RNN) model 

 
In this first scenario, we study the evolution of the four edges of the Fashion MNIST 

dataset using a recurrent neural network (RNN) model with aggregation algorithms. 

 
• FedAVG 

By applying FedAVG as an aggregation algorithm in this case, the outcomes dis- 

played in Figure 4.14 show low training and testing accuracies for all the local 

models, with a low value of 4%. This is mostly due to the use of a single, ineffective  

model across all edge nodes, as well as the insignificance of the data as long as they 

all have the same amount of data and the same distribution. 

 

 

Figure 4.14: FedAVG(1). 

 
 

• FedPer 

With FedPer, local models are divided into base layers and custom layers. The 



Chapter 4. FedGA-ICPS Implementation and Experiments 

67 

 

 

 

 
layers analyzed by the individual are not communicated to the server, and only 

the base layers are aggregated using TL. The results presented in Figure 4.15 show 

convergence up to the third round for all local edge node models of up to 5.9% in 

the training phase and 4% in the test phase, confirming an improvement in training  

accuracy over FedAVG. 
 
 

Figure 4.15: FedPer(1). 

 

• FedGA 

The results of using the FedGA algorithm are shown in Figure 4.16, where all local 

models diverge with a training accuracy of 0.44% and a testing accuracy of 3.6% 

for all edge nodes. 
 
 

Figure 4.16: FedGA(1). 

 
 

EMNIST dataset with Artificial Neural Network (ANN) model 

 
For this second scenario, we consider that we have tested the devlopement of the four 

edges with the EMNIST dataset and the Artificial Neural Network (ANN) model. 



Chapter 4. FedGA-ICPS Implementation and Experiments 

68 

 

 

 

 
• FedAVG 

By applying FedAVG as an aggregation algorithm with the EMNIST dataset with 

(ANN) model , the results displayed in Figure 4.17 show a value of 2.5% in the 

training phase and 10% in the testing phase. 

 

Figure 4.17: FedAVG(2). 

 
 

• FedGA 

The results of using the FedGA algorithm are shown in Figure 4.18 where all local 

models diverge with a training accuracy of 1.5% and a testing accuracy of 9% for 

all edge nodes. 
 
 

Figure 4.18: FedGA(2). 

 

 
• FedPer 

With FedPer, local models are divided into base layers and custom layers. The 

layers analyzed by the individual are not communicated to the server, and only 

the base layers are aggregated using TL. The results presented in figure 4.19show 

a convergence up to the third round for all local edge node models of 1.7% in 

the learning phase and 9% in the test phase, confirming a Regression in learning  

accuracy compared to FedAVG. 



Chapter 4. FedGA-ICPS Implementation and Experiments 

69 

 

 

 

 

 
 

Figure 4.19: FedPer(2). 

 

MNIST dataset with DenseNet model 
 

For this scenario, we consider that we have tested the devlopement of the four edges with 

the MNIST dataset and the DenseNet model. 

 
• FedAVG 

By applying FedAVG as an aggregation algorithm with the EMNIST dataset with 

(ANN) model , the results displayed in Figure 4.20 show a value of 0.5% in the 

training phase and 3% in the testing phase. 
 
 

Figure 4.20: FedAVG(3). 

 
 

• FedGA 

The results of using the FedGA algorithm are shown in Figure 4.21 where all local 

models diverge with a training accuracy of 0.8% and a testing accuracy of 4.5% for  

all edge nodes. 

• FedPer 

With FedPer, local models are divided into base layers and custom layers. The 

layers analyzed by the individual are not communicated to the server, and only the 



Chapter 4. FedGA-ICPS Implementation and Experiments 

70 

 

 

 

 

 
 

Figure 4.21: FedGA(3). 

 
Base layers are aggregated using TL. The results presented in figure 4.22 show a 

convergence up to the third round for all local edge node models of 0 .6% in the 

learning phase and 4% in the test phase. 

 

Figure 4.22: FedPer(3). 

 
 

Cifar-10 dataset with Convolutional Neural Network model 
 

In this scenario, we consider that we have tested the devlopement of the four edges with 

the Cifar-10 dataset with Convolutional Neural Network model. 

 
• FedAVG 

By applying FedAVG as an aggregation algorithm with the EMNIST dataset with 

(ANN) model , the results displayed in Figure 4.23 show a value of 1.9% in the 

training phase and 8.8% in the testing phase. 

• FedGA 

The results of using the FedGA algorithm are shown in Figure 4.24 where all local 

models diverge with a training accuracy of 1.6% and a testing accuracy of 8% for 

all edge nodes. 



Chapter 4. FedGA-ICPS Implementation and Experiments 

71 

 

 

 
 
 
 
 
 
 
 
 

 
 

Figure 4.23: FedAVG(4). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.24: FedGA(4). 



Chapter 4. FedGA-ICPS Implementation and Experiments 

72 

 

 

 

 
• FedPer 

With FedPer, local models are divided into base layers and custom layers. The 

layers analyzed by the individual are not communicated to the server, and only 

the base layers are aggregated using TL. The results presented in figure ?? show a 

convergence up to the third round for all local edge node models of 1 .5% in the 

learning phase and 9% in the test phase. 
 
 
 

Figure 4.25: FedPer(4). 

 

4.3 Discussions and comparison 

Based on the experiments conducted and the results obtained in the previous section  

through both steps of the FedGA aggregation algorithm and the developed TL procedure, 

we have drawn several observations. 

 
In the first scenario, which uses the Fashion MNIST dataset with a Recurrent Neural  

Network (RNN) model, we observed that FedPer performs better compared to both 

FedGA and FedAVG. Although FedGA and FedAVG are very close in performance, 

FedAVG slightly outperforms FedGA. This indicates that FedPer is particularly effective 

with this type of dataset and model combination. 

 
For the second scenario, which relies on the EMNIST dataset with an Artificial Neural  

Network (ANN) model, FedPer again shows outstanding performance compared to 

FedAVG and FedGA. FedPer stands out above both algorithms, though FedPer and 

FedAVG are relatively close in terms of performance. This suggests that FedPer maintains 

its superiority across different types of neural network models and datasets. 

 
In the third scenario, which uses the MNIST dataset with a DenseNet model, the results  

are very similar to those of the second scenario. This similarity arises due to the partial  

sharing of data between these scenarios. Additionally, we noted that the type of processor 

used has a significant impact on improving the accuracy of the graphs. This highlights the  

importance of hardware in optimizing model performance. 

 
Furthermore, it is important to emphasize the strength of FedGA -ICPS. Its main 



Chapter 4. FedGA-ICPS Implementation and Experiments 

73 

 

 

 

 

advantage lies in its ability to automatically correct a node when its model is weak by  

requesting a pre-trained model, if one exists. This capability ensures robustness and 

adaptability, making it a powerful tool in federated learning environments. 

 
Overall, datasets with fewer objects tend to yield better results compared to those with  

more objects, as evidenced by the comparative performance of the algorithms. We also  

tested both the EMNIST and MNIST datasets with two optimization algorithms: Particle  

Swarm Optimization (PSO) and Ant Colony Optimization (ACO). The results underscore 

the versatility and efficacy of these optimization techniques in enhancing model 

performance in various scenarios. 
 

4.4 Conclusion 

In this chapter, we have defined the work of Mlle. Guendouzi Badra Souhila [100]. We have 

integrated datasets such as Fashion MNIST, EMNIST, MNIST, and CIFAR-10 into this work and 

made topology changes including Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs), Gated Recurrent Units (GRUs), Artificial Neural Networks (ANNs), and 

DenseNet. Furthermore, we conducted tests with two optimization algorithms, Particle Swarm  

Optimization (PSO) and Ant Colony Optimization (ACO), using the EMNIST and MNIST datasets. 

We also compared the results between FedPer, FedAVG, and FedGA for each dataset and model. 



General Conclusion 

74 

 

 

 

In today’s world, technological advancements have led to an era of interconnected devices,  

providing us with unprecedented amounts of data. This data has fueled the success and  

widespread application of artificial intelligence across various sectors. However, concerns 

regarding data confidentiality and user privacy present significant obstacles to utilizing  

this sensitive information. Federated Learning (FL) has recently emerged as a promising 

solution to this issue. FL enables distributed client devices to collaboratively train a 

shared prediction model while keeping all training data locally on the individual devices.  

In recent years, this approach has garnered significant attention in both industry and 

academia. Leading tech companies have already implemented FL in production across 

multiple domains to tackle privacy and data collection challenges. 

 
In this work, we evaluated the innovative solution, FedGA-ICPS, which was 

developed by Mademoiselle Guendouzi Badra Souhila. [100] . Extensive tests were 

conducted on multiple benchmarks and topologies, including datasets such as Fashion  

MNIST, EMNIST, MNIST, and CIFAR-10. We also experimented with models like 

Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Gated 

Recurrent Units (GRUs), Artificial Neural Networks (ANNs), and DenseNet. 

Additionally, we tested two optimization algorithms, Particle Swarm Optimization (PSO) 

and Ant Colony Optimization (ACO), using the EMNIST and MNIST datasets. These tests  

aimed to evaluate the effectiveness of these optimization techniques in enhancing model  

performance. The results highlight the versatility and efficacy of PSO and ACO in various  

scenarios, demonstrating their potential to improve the performance of Federated 

Learning models in diverse environments. 

 
As a future perspective, we would like to have the opportunity to test this work on a machine 

with powerful computational capabilities, including a GPU. Currently, our PC lacks a GPU, which 
limits our ability to perform multithreading. Therefore, to validate these tests, it is necessary to 
conduct them on a larger scale. Additionally, we can explore testing other genetic algorithms to 
further enhance our study. 



Bibliography 

75 

 

 

 
 

 

[1] Mohammad Aazam and Eui-Nam Huh. Fog computing and smart gateway based 

communication for cloud of things. In 2014 International conference on future inter- 

net of things and cloud, pages 464–470. IEEE, 2014. 

[2] Mohammad Aazam and Eui-Nam Huh. Fog computing micro datacenter based dy- 

namic resource estimation and pricing model for iot. In 2015 IEEE 29th international 

conference on advanced information networking and applications, pages 687–694. 

IEEE, 2015. 

[3] Maysam F Abbod, James WF Catto, Derek A Linkens, and Freddie C Hamdy. 

Application of artificial intelligence to the management of urological cancer. The 

Journal of urology, 178(4):1150–1156, 2007. 

[4] Naeem Akhtar, Anurag Rana, Ruhul Amin, Hitumoni Nath, Kalpana Nath, 

Parthvi Kirankumar Jingar, and Selvan Ravindran. Analyze the impact of digital 

transformation on learning using soft computing. International Journal of Intelligent 

Systems and Applications in Engineering, 12(14s):565–572, 2024. 

[5] Ali Al Bataineh, Devinder Kaur, and Seyed Mohammad J Jalali. Multi-layer per- 

ceptron training optimization using nature inspired computing. IEEE Access, 10: 

36963–36977, 2022. 

[6] Vítor Alcácer and Virgilio Cruz-Machado. Scanning the industry 4.0: A literature re- 

view on technologies for manufacturing systems. Engineering science and technology, 

an international journal, 22(3):899–919, 2019. 

[7] Rasim Alguliyev, Yadigar Imamverdiyev, and Lyudmila Sukhostat. Cyber-physical 

systems and their security issues. Computers in Industry, 100:212–223, 2018. 

[8] Tor Anderson, Chin-Yao Chang, and Sonia Martínez. Distributed approximate new - 

ton algorithms and weight design for constrained optimization. Automatica, 109: 

108538, 2019. 

[9] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav 

Choudhary. Federated learning with personalization layers. arXiv preprint 

arXiv:1912.00818, 2019. 

[10] Hamid Reza Arkian, Abolfazl Diyanat, and Atefe Pourkhalili. Mist: Fog-based data 

analytics scheme with cost-efficient resource provisioning for iot crowdsensing appli- 

cations. Journal of Network and Computer Applications, 82:152–165, 2017. 



Bibliography 

76 

 

 

 

 
[11] Eddy Bajic. Localisation et identification de ressources industrielles par l’internet  

des objets. GeSI-Revue des Départements de Génie Electrique et Informatique In- 

dustrielle, (92):19–27, 2018. 

[12] Mohamed Ben-Daya, Elkafi Hassini, and Zied Bahroun. Internet of things and supply 

chain management: a literature review. International journal of production research, 

57(15-16):4719–4742, 2019. 

[13] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Fog computing: 

A platform for internet of things and analytics. Big data and internet of things: A 

roadmap for smart environments, pages 169–186, 2014. 

[14] Hung Cao, Monica Wachowicz, Chiara Renso, and Emanuele Carlini. Analytics ev- 

erywhere: generating insights from the internet of things.  Ieee Access, 7:71749–71769, 

2019. 

[15] Adrian Carrio, Carlos Sampedro, Alejandro Rodriguez-Ramos, Pascual Campoy, 

et al. A review of deep learning methods and applications for unmanned aerial 

vehicles. Journal of Sensors, 2017, 2017. 

[16] Gang Chen. A gentle tutorial of recurrent neural network with error backpropagation. 

arXiv preprint arXiv:1610.02583, 2016. 

[17] Yang Chen, Yu Chen, Qiang Cao, and Xiaowei Yang. Packetcloud: A cloudlet-based 

open platform for in-network services. IEEE Transactions on Parallel and Distributed 

Systems, 27(4):1146–1159, 2015. 

[18] Yiqiang Chen, Xin Qin, Jindong Wang, Chaohui Yu, and Wen Gao. Fedhealth: 

A federated transfer learning framework for wearable healthcare. IEEE Intelligent 

Systems, 35(4):83–93, 2020. 

[19] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, 

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase represen- 

tations using rnn encoder-decoder for statistical machine translation. arXiv preprint 

arXiv:1406.1078, 2014. 

[20] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical 

evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint 

arXiv:1412.3555, 2014. 

[21] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Gated 

feedback recurrent neural networks. In International conference on machine learning, 

pages 2067–2075. PMLR, 2015. 

[22] Li Da Xu, Wu He, and Shancang Li. Internet of things in industries: A survey. IEEE 

Transactions on industrial informatics, 10(4):2233–2243, 2014. 

[23] Saneev Kumar Das and Sujit Bebortta. Heralding the future of federated learning 

framework: architecture, tools and future directions. In 2021 11th International 

Conference on Cloud Computing, Data Science & Engineering (Confluence), pages 

698–703. IEEE, 2021. 



Bibliography 

77 

 

 

 

 
[24] Amir Vahid Dastjerdi, Harshit Gupta, Rodrigo N Calheiros, Soumya K Ghosh, and 

Rajkumar Buyya. Fog computing: Principles, architectures, and applications. In 

Internet of things, pages 61–75. Elsevier, 2016. 

[25] Christian W Dawson and Robert Wilby. An artificial neural network approach to 

rainfall-runoff modelling. Hydrological Sciences Journal, 43(1):47–66, 1998. 
 

[26] Li Deng, Dong Yu, et al. Deep learning: methods and applications. Foundations and 

trends® in signal processing, 7(3–4):197–387, 2014. 
 

[27] Niklas Donges. Gradient descent: an introduction to 1 of machine learning’s most  

popular algorithms. Built In, 23, 2021. 
 

[28] Zhaoyang Du, Celimuge Wu, Tsutomu Yoshinaga, Kok-Lim Alvin Yau, Yusheng Ji, 

and Jie Li. Federated learning for vehicular internet of things: Recent advances and 

open issues. IEEE Open Journal of the Computer Society, 1:45–61, 2020. 

[29] Rohollah Fallah Madvari. Artificial intelligence (ai), machine learning (ml) and deep 

learning (dl) on health, safety and environment (hse). Archives of Occupational 

Health, 6(4):1321–1322, 2022. 
 

[30] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual  

prediction with lstm. Neural computation, 12(10):2451–2471, 2000. 
 

[31] Nicole Gruber and Alfred Jockisch. Are gru cells more specific and lstm cells more  

sensitive in motive classification of text? Frontiers in artificial intelligence, 3:40, 

2020. 
 

[32] Souhila Badra Guendouzi, Samir Ouchani, and Mimoun Malki. Genetic algorithm 

based aggregation for federated learning in industrial cyber physical systems. In 

Computational Intelligence in Security for Information Systems Conference, pages 12– 

21. Springer, 2022. 
 

[33] Souhila Badra Guendouzi, Samir Ouchani, and Mimoune Malki. Enhancing the 

aggregation of the federated learning for the industrial cyber physical systems. In 

2022 IEEE International Conference on Cyber Security and Resilience (CSR), pages 

197–202. IEEE, 2022. 
 

[34] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K Ghosh, and Rajkumar Buyya. 

ifogsim: A toolkit for modeling and simulation of resource management techniques 

in the internet of things, edge and fog computing environments. Software: Practice 

and Experience, 47(9):1275–1296, 2017. 
 

[35] Sarra Hammoudi, Zibouda Aliouat, and Saad Harous. Challenges and research di- 

rections for internet of things. Telecommunication Systems, 67:367–385, 2018. 
 

[36] Meng Hao, Hongwei Li, Xizhao Luo, Guowen Xu, Haomiao Yang, and Sen Liu. 

Efficient and privacy-enhanced federated learning for industrial artificial intelligence. 

IEEE Transactions on Industrial Informatics, 16(10):6532–6542, 2019



Bibliography 

78 

 

 

 
 

[37] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu- 

tation, 9(8):1735–1780, 1997. 

 
[38] Chris Jay Hoofnagle, Bart Van Der Sloot, and Frederik Zuiderveen Borgesius. The 

european union general data protection regulation: what it is and what it means. 

Information & Communications Technology Law, 28(1):65–98, 2019. 

 
[39] Junyan Hu, Hanlin Niu, Joaquin Carrasco, Barry Lennox, and Farshad Arvin. 

Voronoi-based multi-robot autonomous exploration in unknown environments via 

deep reinforcement learning. IEEE Transactions on Vehicular Technology, 69(12): 

14413–14423, 2020. 
 

[40] Shih-Chia Huang and Trung-Hieu Le. Principles and labs for deep learning. Academic 

Press, 2021. 

 
[41] Ahmed Imteaj and M Hadi Amini. Fedar: Activity and resource-aware federated 

learning model for distributed mobile robots. In 2020 19th IEEE International Con- 

ference on Machine Learning and Applications (ICMLA), pages 1153–1160. IEEE, 

2020. 

 
[42] Michaela Iorga, Larry Feldman, Robert Barton, Michael J Martin, Nedim S Goren, 

and Charif Mahmoudi. Fog computing conceptual model. 2018. 

 
[43] Md Aminur Islam, F Bin Abul Kasem, S Khan, MT Habib, and F Ahmed. Cloud 

computing in education: potentials and challenges for bangladesh. International 

Journal of Computer Science, Engineering and Applications, 7(5):11–21, 2017. 

 
[44] Marija Jegorova, Chaitanya Kaul, Charlie Mayor, Alison Q O’Neil, Alexander Weir, 

Roderick Murray-Smith, and Sotirios A Tsaftaris. Survey: Leakage and privacy at 

inference time. IEEE Transactions on Pattern Analysis and Machine Intelligence, 

2022. 

 
[45] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, 

Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel  

Cummings, et al. Advances and open problems in federated learning. Foundations 

and trends® in machine learning, 14(1–2):1–210, 2021. 

 
[46] I Kevin, Kai Wang, Xiaokang Zhou, Wei Liang, Zheng Yan, and Jinhua She. Feder- 

ated transfer learning based cross-domain prediction for smart manufacturing. IEEE 

Transactions on Industrial Informatics, 18(6):4088–4096, 2021. 

 
[47] Latif U Khan, Shashi Raj Pandey, Nguyen H Tran, Walid Saad, Zhu Han, Minh NH 

Nguyen, and Choong Seon Hong. Federated learning for edge networks: Resource 

optimization and incentive mechanism. IEEE Communications Magazine, 58(10): 

88–93, 2020. 



Bibliography 

8 

 

 

 

 

[48] Wazir Zada Khan, Ejaz Ahmed, Saqib Hakak, Ibrar Yaqoob, and Arif Ahmed. Edge 

computing: A survey. Future Generation Computer Systems, 97:219–235, 2019. 



Bibliography 

81 

 

 

 

 
[49] Hyungbin Kim, Yongho Kim, and Hyunhee Park. Reducing model cost based on the 

weights of each layer for federated learning clustering. In 2021 Twelfth International 

Conference on Ubiquitous and Future Networks (ICUFN), pages 405–408. IEEE, 

2021. 
 

[50] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 

arXiv preprint arXiv:1412.6980, 2014. 
 

[51] Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu, and 

Bingsheng He. A survey on federated learning systems: Vision, hype and reality for  

data privacy and protection. IEEE Transactions on Knowledge and Data Engineering, 

35(4):3347–3366, 2021. 
 

[52] Shancang Li, Li Da Xu, and Shanshan Zhao.   The internet of things: a survey. 

Information systems frontiers, 17:243–259, 2015. 
 

[53] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learn- 

ing: Challenges, methods, and future directions. IEEE signal processing magazine, 

37(3):50–60, 2020. 
 

[54] Jie Lin, Wei Yu, Nan Zhang, Xinyu Yang, Hanlin Zhang, and Wei Zhao. A survey 

on internet of things: Architecture, enabling technologies, security and privacy, and 

applications. IEEE internet of things journal, 4(5):1125–1142, 2017. 

[55] Yuan-Pin Lin and Tzyy-Ping Jung. Improving eeg-based emotion classification using 

conditional transfer learning. Frontiers in human neuroscience, 11:334, 2017. 
 

[56] Hong Liu, Shuaipeng Zhang, Pengfei Zhang, Xinqiang Zhou, Xuebin Shao, Geguang  

Pu, and Yan Zhang. Blockchain and federated learning for collaborative intrusion 

detection in vehicular edge computing. IEEE Transactions on Vehicular Technology, 

70(6):6073–6084, 2021. 
 

[57] Tom H Luan, Longxiang Gao, Zhi Li, Yang Xiang, Guiyi Wei, and Limin Sun. Fog 

computing: Focusing on mobile users at the edge. arXiv preprint arXiv:1502.01815, 

2015. 

 
[58] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera 

y Arcas. Communication-efficient learning of deep networks from decentralized data. 

In Artificial intelligence and statistics, pages 1273–1282. PMLR, 2017. 
 

[59] Peter Mell, Tim Grance, et al. The nist definition of cloud computing. 2011. 
 

[60] Luis Miralles-Pechuán, Dafne Rosso, Fernando Jiménez, and Jose M Garcia. A 

methodology based on deep learning for advert value calculation in cpm, cpc and 

cpa networks. Soft Computing, 21(3):651–665, 2017. 
 

[61] Hussein Mouzannar, Yara Rizk, and Mariette Awad. Damage identification in social 

media posts using multimodal deep learning. In ISCRAM. Rochester, NY, USA, 

2018. 



Bibliography 

82 

 

 

 

 
[62] Ranesh Kumar Naha, Saurabh Garg, Dimitrios Georgakopoulos, Prem Prakash Ja- 

yaraman, Longxiang Gao, Yong Xiang, and Rajiv Ranjan. Fog computing: Sur- 

vey of trends, architectures, requirements, and research directions. IEEE access, 6: 

47980–48009, 2018. 
 

[63] Trong Nguyen. An empirical evaluation of the implementation of the california con- 

sumer privacy act (ccpa). arXiv preprint arXiv:2205.09897, 2022. 
 

[64] Lina Ni, Xu Gong, Jufeng Li, Yuncan Tang, Zhuang Luan, and Jinquan Zhang. 

rfedfw: Secure and trustable aggregation scheme for byzantine-robust federated 

learning in internet of things. Information Sciences, 653:119784, 2024. 

[65] Chris Nicholson. A beginner’s guide to lstms  and recurrent neural networks. Skymind. 

Saatavissa: https://skymind. ai/wiki/lstm. Hakupäivä, 6:2019, 2019. 
 

[66] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions 

on knowledge and data engineering, 22(10):1345–1359, 2009. 
 

[67] Dawid Połap, Gautam Srivastava, and Keping Yu. Agent architecture of an intelligent  

medical system based on federated learning and blockchain technology. Journal of 

Information Security and Applications, 58:102748, 2021. 
 

[68] Adnan Qayyum, Kashif Ahmad, Muhammad Ahtazaz Ahsan, Ala Al-Fuqaha, and 

Junaid Qadir. Collaborative federated learning for healthcare: Multi-modal covid-19 

diagnosis at the edge. IEEE Open Journal of the Computer Society, 3:172–184, 2022. 

[69] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural 

networks, 12(1):145–151, 1999. 
 

[70] Youyang Qu, Shiva Raj Pokhrel, Sahil Garg, Longxiang Gao, and Yong Xiang. A 

blockchained federated learning framework for cognitive computing in industry 4.0 

networks. IEEE Transactions on Industrial Informatics, 17(4):2964–2973, 2020. 
 

[71] Mirco Ravanelli, Philemon Brakel, Maurizio Omologo, and Yoshua Bengio. Light 

gated recurrent units for speech recognition. IEEE Transactions on Emerging Topics 

in Computational Intelligence, 2(2):92–102, 2018. 
 

[72] Jinke Ren, Yinghui He, Guan Huang, Guanding Yu, Yunlong Cai, and Zhaoyang 

Zhang. An edge-computing based architecture for mobile augmented reality. IEEE 

Network, 33(4):162–169, 2019. 
 

[73] Independently RNN. Recurrent neural network. 2021. 
 

[74] Karen Rose, Scott Eldridge, and Lyman Chapin. The internet of things: An overview. 

The internet society (ISOC), 80(15):1–53, 2015. 
 

[75] Rituparna Saha, Sudip Misra, and Pallav Kumar Deb. Fogfl: Fog-assisted federated 

learning for resource-constrained iot devices. IEEE Internet of Things Journal, 8 

(10):8456–8463, 2020. 



Bibliography 

83 

 

 

 

 
[76] Prashanth Saravanan. Understanding loss functions in machine learning. Engineering 

Education (EngEd) Program| Section, 2021. 
 

[77] Iqbal H Sarker. Deep learning: a comprehensive overview on techniques, taxonomy, 

applications and research directions. SN Computer Science, 2(6):420, 2021. 
 

[78] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural net- 

works, 61:85–117, 2015. 
 

[79] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. Activation functions in neural 

networks. Towards Data Sci, 6(12):310–316, 2017. 
 

[80] Yuanhang Su and C-C Jay Kuo. On extended long short-term memory and dependent 

bidirectional recurrent neural network. Neurocomputing, 356:151–161, 2019. 
 

[81] Tao Sun, Dongsheng Li, and Bao Wang. Decentralized federated averaging. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 45(4):4289–4301, 2022. 
 

[82] Pu Tian, Zheyi Chen, Wei Yu, and Weixian Liao. Towards asynchronous federated 

learning based threat detection: A dc-adam approach. Computers & Security, 108: 

102344, 2021. 
 

[83] Amy JC Trappey, Charles V Trappey, Usharani Hareesh Govindarajan, Allen C 

Chuang, and John J Sun. A review of essential standards and patent landscapes 

for the internet of things: A key enabler for industry 4.0. Advanced Engineering 

Informatics, 33:208–229, 2017. 
 

[84] Pengfei Wang, Chao Yao, Zijie Zheng, Guangyu Sun, and Lingyang Song. Joint t ask 

assignment, transmission, and computing resource allocation in multilayer mobile 

edge computing systems. IEEE Internet of Things Journal, 6(2):2872–2884, 2018. 

[85] Wendong Wang, Cheng Feng, Bo Zhang, and Hui Gao. Environmental monitor- 

ing based on fog computing paradigm and internet of things. IEEE Access, 7: 

127154–127165, 2019. 

 
[86] Jeremy West, Dan Ventura, and Sean Warnick. Spring research presentation: A 

theoretical foundation for inductive transfer. Brigham Young University, College of 

Physical and Mathematical Sciences, 1(08), 2007. 
 

[87] Md Whaiduzzaman, Anjum Naveed, and Abdullah Gani. Mobicore: Mobile device  

based cloudlet resource enhancement for optimal task response. IEEE transactions 

on services computing, 11(1):144–154, 2016. 
 

[88] Xiaolong Xu, Hao Tian, Xuyun Zhang, Lianyong Qi, Qiang He, and Wanchun Dou. 

Discov: Distributed covid-19 detection on x-ray images with edge-cloud collabora- 

tion. IEEE Transactions on Services Computing, 15(3):1206–1219, 2022. 
 

[89] Zirui Xu, Zhao Yang, Jinjun Xiong, Janlei Yang, and Xiang Chen. Elfish: Resource- 

aware federated learning on heterogeneous edge devices. Ratio, 2(r1):r2, 2019. 



Bibliography 

84 

 

 

 

 
[90] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learn - 

ing: Concept and applications. ACM Transactions on Intelligent Systems and Tech- 

nology (TIST), 10(2):1–19, 2019. 

[91] Jingjing Yao and Nirwan Ansari. Enhancing federated learning in fog-aided iot by 

cpu frequency and wireless power control. IEEE Internet of Things Journal, 8(5): 

3438–3445, 2020. 

[92] Aston Zhang, Zachary C Lipton, Mu Li, and Alexander J Smola. Dive into deep 

learning. Cambridge University Press, 2023. 

[93] Huaqing Zhang, Yanru Zhang, Yunan Gu, Dusit Niyato, and Zhu Han. A hierarchical  

game framework for resource management in fog computing. IEEE Communications 

Magazine, 55(8):52–57, 2017. 

[94] Jiawei Zhang. Gradient descent based optimization algorithms for deep learning 

models training. arXiv preprint arXiv:1903.03614, 2019. 

[95] Weishan Zhang, Tao Zhou, Qinghua Lu, Xiao Wang, Chunsheng Zhu, Haoyun Sun,  

Zhipeng Wang, Sin Kit Lo, and Fei-Yue Wang. Dynamic-fusion-based federated 

learning for covid-19 detection. IEEE Internet of Things Journal, 8(21):15884–15891, 

2021. 

[96] Zehui Zhang, Ningxin He, Dongyu Li, Hang Gao, Tiegang Gao, and Chuan Zhou. 

Federated transfer learning for disaster classification in social computing networks. 

Journal of safety science and resilience, 3(1):15–23, 2022. 

[97] Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep 

neural networks with noisy labels. Advances in neural information processing systems, 

31, 2018. 

[98] Chunyi Zhou, Anmin Fu, Shui Yu, Wei Yang, Huaqun Wang, and Yuqing Zhang. 

Privacy-preserving federated learning in fog computing. IEEE Internet of Things 

Journal, 7(11):10782–10793, 2020. 

[99] Wenbo Zhu, Yan Ma, Yizhong Zhou, Michael Benton, and Jose Romagnoli. Deep 

learning based soft sensor and its application on a pyrolysis reactor for compositions  

predictions of gas phase components. In Computer Aided Chemical Engineering, 

volume 44, pages 2245–2250. Elsevier, 2018. 

[100] GUENDOUZI, BAdra Souhila. Federated Learning in Distributed Cyber Physical 

Systems: A State-of-the-Art. Diss. 2022. 



Bibliography 

85 

 

 

 

 
Abstract 

This thesis is part of our end-of-cycle project to obtain a master's degree in network and 

data engineering. The project explores Federated Learning in Distributed Networks, 

specifically leveraging collaborative machine learning without compromising data privacy. 

We evaluated the FedGA-ICPS approach developed by Ms. Badra Guendouzi on various 

datasets to assess its performance in heterogeneous environments. Extensive testing was 

conducted on benchmarks such as Fashion MNIST, EMNIST, MNIST, and CIFAR -10, using 

models like Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), 

Gated Recurrent Units (GRUs), Artificial Neural Networks (ANNs), and DenseNet. In 

addition, we tested two optimization algorithms, Particle Swarm Optimization (PSO) and 

Ant Colony Optimization (ACO), with the EMNIST and MNIST datasets. These tests were 

conducted to evaluate the effectiveness of these optimization techniques in improving 

model performance. The results underscore the versatility and efficacy of PSO and ACO in 

various scenarios, demonstrating their potential to enhance the accuracy and efficiency of 

our models within the FedGA-ICPS framework. The project implementation was done in 

Python, as it is the most suitable language for this type of project, offering rich libraries in 

the domain. 

Keywords : 

Federated learning, machine learning, FEDGA-icps, benchmarks, models,  Python. 

 

 
Résumé 

Cette thèse fait partie de notre projet de fin de cycle pour l'obtention d'un master en 

ingénierie des réseaux et des données. Le projet explore l'apprentissage fédéré dans les 

réseaux distribués, en mettant l'accent sur l'utilisation de l'apprentissage collaboratif sans 

compromettre la confidentialité des données. Nous avons évalué l'approche FedGA -ICPS 

développée par Mme Badra Guendouzi sur divers ensembles de données pour mesurer ses 

performances dans des environnements hétérogènes. Des tests approfondis ont été réalisés 

sur des jeux de données de référence tels que Fashion MNIST, EMNIST, MNIST et CIFAR - 

10, en utilisant des modèles tels que les réseaux de neurones convolutifs (CNN), les réseaux 

de neurones récurrents (RNN), les unités récurrentes avec portes (GRU), les réseaux de 

neurones artificiels (ANN) et DenseNet. De plus, nous avons testé deux algorithmes  

d'optimisation, l'optimisation par essaim particulaire (PSO) et l'optimisation par colonies 

de fourmis (ACO), avec les ensembles de données EMNIST et MNIST. Ces tests ont été 

menés pour évaluer l'efficacité de ces techniques d'optimisation dans l'amélioration des 

performances des modèles. Les résultats mettent en évidence la polyvalence et l'efficacité 

de la PSO et de l'ACO dans divers scénarios, démontrant leur potentiel à améliorer la  

précision et l'efficacité de nos modèles dans le cadre de FedGA-ICPS. La mise en œuvre du 

projet a été réalisée en Python, car il s'agit du langage le plus approprié pour ce type de 

projet, offrant des bibliothèques riches dans le domaine. 

Mots-clés : 

Apprentissage fédéré, apprentissage automatique, FEDGA-icps, jeux de données, 

modèles, Python. 



Bibliography 

86 

 

 

 

 صخلم

  .تانايبلاو  تاكبشلا  ةسدنه  يف  ريتسجاملا  ةجرد  ىلع  لوصحلل  ةرودلا  ةياهن  عورشم  نم  اءُ   زج  ةلاسرلا  هذه  ُ  دعُ  ت

  ساسملا  نود  ينواعتلا  ملعتلا  نم  ةدافتساال  ىلع  زيكرتلا  عم  ،ةعزمولا  تاكبشلا  يف  يلارديفلا  ملعتلا  وعرشملا فشكتسي

 مييقتل ةفلتخم تانايب تاعموجم ىلع يزودنق ةردب ةديسلا هتروط يذلا FedGA-ICPS جنه مييقتب انقم دقل .تانايبلا ةيصوصخب

 يف هئادأ

،Fashion MNIST لثم  ةيعجرم  تانايب  تاعموجم  ىلع  ةفثمك  تاراتبخا  ءارجإ  مت  .ةسناجتملا  ريغ  تايئبلا 

EMNIST، MNIST وCIFAR-10، ةيفافتلاال ةيبعصلا تاكبشلا لثم جذانم مادختساب )CNNs(، ةيبعصلا تاكبشلا 

 (sNNA)  ةيعانطصاال  ةيبصعلا  تاكبشلا  ،(sRUG)  ةقلغملا  ةيراركتلا  ةيبعصلا  تادحولا  ،(sNNR)  ةيراركتلا
 نيسحتو  )PSO(  يئيزجلا  برسلا  نيسحت  اهمو  ،نيسحتلل  نيتيمزراوخ  راتبخاب  انقم  ،كلذ  ىلإ  ةفاضإلاب  DenseNet.و

  ةيلاعف  مييقتل  ترااتبخلاا  هذه  تيرجُ  أ  .STIMNو  STIMNE  تانايب  يتعموجم  عم  ،(COA)  لمنلا  تارمعتسم

 هذه

 امهتيناكمإ رهظُ  ي امم ،ةفلتخم تاهيورانيس يف ACOو PSO ةيلاعفو عنوت ىلع جئاتنلا دتؤك .جذامنلا ءادأ نيسحت يف تاينقتلا

 بسناأل ةغللا اهنوك ،Python ةلغ مادختساب وعرشملا ذيفنت مت FedGA-ICPS. راإط يف انجذانم ةءافكو ةقد زيزتع في

 .لاجملا اذه يف ةينغ تاتبمك رفوت ثيح ،عيراشملان م عنولا اذله
 

 :ةيحاتفملا تاملكلا

 .نثوياب ،جذامنلا ،ةيعجرملا ريياعملا ،FEDGA-ICPS ،يلاآل ملعتلا ،يلراديفلا ملعتل


	Remerciement
	Contents
	List of Figures
	1.1:  Deep Learning Approaches………………………………………………………………………11

	General introduction
	Chapter 1 Background
	1.1 Introduction
	1.2 Machine Learning
	1.3 Deep Learning
	1.3.1 Single-layer neural network
	1.3.2 Multi Layer neural network
	1.3.3 Activation functions
	Sigmoid Activation Function.
	Hyperbolic Tangent Activation Function TanH
	ReLU Activation Function
	Softmax Activation Function

	1.3.4 Deep Learning Approaches
	1.3.5 Table of approch
	Table 1.1: Deep Learning Approaches
	1.1.1 Loss Functions
	Mean Absolute Error (MAE)
	Mean Squared Error (MSE)
	Cross Entropy Loss

	1.1.2 Deep Learning Optimizers
	Batch Gradient Descent (BGD)
	Stochastic Gradient Descent (SGD)
	Mini-batch Gradient Descent (MBGD)
	Momentum
	Root Mean Squared Propagation (RMSProp)
	Adaptive Moment Estimation (ADAM)

	1.1.3 Deep Learning Types
	Artificial Neural Network (ANN)
	Convolutional Neural Networks CNNs
	Recurrent Neural Networks (RNNs)
	Long Short Terme Memory (LSTM)
	Gated recurrent unit (GRU)
	DenseNet network


	1.2 Transfer Learning
	1.3 Federated Learning
	1.3.1 Federated Learning Approaches
	• Horizontal FL
	• Vertical FL
	• Federated transfer learning
	Degree of federated Learning
	• Cross-Silo Federated Learning
	• Cross device Federated Learning
	Network topology
	• Peer to Peer Decentralized Federated Learning Architecture

	1.3.2 The Life cycle of a Model in Federated Learning
	1.3.3 Federated Optimization Algorithms
	The Federated Averaging Algorithm (FedAVG)
	Federated Learning with Personalization Layers (FedPer)
	Federated Genetic Algorithms

	1.3.4 Federated Learning Challenges
	Expensive Communication
	Systems Heterogeneity
	Statistical Heterogeneity
	Privacy Concerns


	1.4 ICPS
	1.5 IoT
	1.5.1 IoT Architecture
	Sensing Layer
	Network Layer
	Service Layer
	Interface Layer


	1.6 Cloud
	1.6.1 Characteristics
	1.6.2 Service Models
	Software as a Service (SaaS)
	Platform as a Service (PaaS)
	Infrastructure as a Service (IaaS)

	1.6.3 Cloud Solutions
	Public Cloud
	Private Cloud
	Community cloud
	Hybrid Cloud


	1.7 Fog
	1.7.1 Characteristics
	1.7.2 Fog Node Attributes
	1.7.3 Fog Node Architectural Service and Deployment Models
	1.7.4 Architecture
	Physical layer
	Fog device, server, and gateway layer
	Monitoring layer
	Pre and post-processing layer
	Storage layer
	Resource management layer
	Security layer
	Application layer


	1.8 Edge
	1.8.1 Architecture
	Data source
	Edge nodes

	1.8.2 Features
	Connectivity
	Local Data Processing
	Remote monitoring
	Portability
	Security


	1.9 Conclusion

	Chapter 2 State of the art
	2.1 Introduction
	2.2 Cloud-based FL
	2.3 Fog-based FL
	2.4 Edge-based FL
	2.5 Discussion and Comparison
	2.6 Conclusion

	Chapter 3
	3.1 Design Architecture
	3.1.1 IoT Layer
	3.1.2 Edge Layer
	3.1.3 Fog Layer
	3.1.4 Cloud Layer

	3.2 FedGA-ICPS Framework
	3.2.1 Learning
	Deep Learning
	Transfer Learning

	3.2.2 Election
	3.2.3 Federation
	3.2.4 Broadcasting

	3.3 Conclusion

	Chapter 4
	4.1.1 Dataset Fashion MNIST
	4.1.2 Dataset EMNIST
	4.1.3 Dataset MNIST
	4.1.4 Dataset Cifar-10
	4.1.5 Neural Network Models
	4.1.6 Transfer Learning
	4.1.7 Election
	4.1.8 Federated With Genetic Algorithm (FedGA)
	4 .2.9 Optimization Algorithms
	4.2.9.2 Ant Colony Optimization (ACO)
	4.2 Experiments and Results
	4.2.1 FL Evaluation
	Fashion MNIST dataset with Recurrent Neural Network (RNN) model
	• FedAVG
	• FedPer
	• FedGA
	EMNIST dataset with Artificial Neural Network (ANN) model
	• FedAVG (1)
	• FedGA (1)
	• FedPer (1)
	MNIST dataset with DenseNet model
	• FedAVG (2)
	• FedGA (2)
	• FedPer (2)
	Cifar-10 dataset with Convolutional Neural Network model
	• FedAVG (3)
	• FedGA (3)
	• FedPer (3)


	4.3 Discussions and comparison
	4.4 Conclusion
	Abstract
	Keywords :
	Résumé
	Mots-clés :
	الكلمات المفتاحية:



