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Preface

The actual course presented in this document concerns the Mechanical
Strength of Materials 2 (Résistance des Matériaux 2) which is a
continuation of the first course of the Mechanical Strength of Materials 1
titled (Résistance des Matériaux 1) previously seen by students in their 2™
year of Mechanical Construction License. This course fully respects the
entire program given in French language and cited in the canvas of the 3™

year of Mechanical Construction License.

We will approach in this course initially a reminder on pure bending of
symmetrical beams, then we interest to the various methods of calculating
the deflection of beams, energetic methods, combined loadings analysis,
and the study of hyperstatic structures. This constitutes the main objective

of our course.



Contents

GENETal INITOAUCTION. ... ..ectiieiiiieeiieeeiee ettt ettt e ettt e et e e etteeeteeesbaeesssaeeessaeesssaaessseeasseeansseesssseesnseeanns 9
Chapter I: Pure bending of symmetrical Deams ............cccveriieiiiiiiiiiniiecii e 12
L. INEEOAUCTION ..ttt h et ea e bt et s et e bt et e e st e nbeenteseee st enseeneesaeenbesneens 12
2. A reminder of the different types Of SUPPOTLS ....cccuvieiiiiiiiiiieeiie e e 12
2.1. Pinned support OF fIXE JOINT.......c.eovieiiiiiiiieete ettt ettt sr e b e sb e e b e e teestbesrbesssessseesseesseessnessnas 12
2.2. Roller and simple supports 0r MODILE JOINT.........cccvirvvieiiierrieriesierteere et ereereeseesereereesbeesseesseesseesssessnes 12
2.3. Fixed support OF €MBDEAAING.......cccveciiiciiiiieiieriiesee e ereere et eieesteeseaesbeesseesseesseesseesssesssessseessessssesssessnes 13

3. A reminder on the calculation of the inertia moment of beam cross section.............ccccceevveerevennnnnn. 13
3.1. Calculation of the inertia moment of the beam cross-sectional area.............ccceeeevrevieeecieenieeeree e, 14

4. Industrial examples to calculate shearing forces and bending moments ............c.ccceeeeeecviereeeneenen. 15
4.1. Example of a beam bending calculation of an hoisting drum .............ccccevieiieninienieninenceeeeeee 15
4.1.1. Calculation of the shearing fOrceS T(X) ......ccveeriieeriieeiiieeieeeiee ettt eree e 16
4.1.2. Calculation of the bending moment Mf{X) ........c.cocueviriiniiiiniiiniieeereee e 17

4.2. Other industrial examples of beams with their equivalent (beam-support-load) .........ccceeevvvevviencriennnnnns 18

5. Uniformly distributed 10ad..........ocoiiiiiiiiiiiciece ettt et en 19
6. Non uniformly distributed 10ad...........cccuiiiiiiiiiiiiiiciieeee e ens 22
7. Normal tensile and compressive stresses due to the bending moment in a beam...........c.ccccvveneee. 28
8. Tangential stress or shear stress due to the shear force in abeam..........ccccceeviiiiiiiiiniiiniiiiiee 30
Directed works No. 1 “Pure bending of symmetrical beams” ..............cccoeviieiiiiiiiinieniiciecieeeeee 32
Chapter II: Deflection of symmetrical beams for pure bending ............cccccveeevieriieiiieniieeiienie e 36
1. Demonstration of the normal stress calculation in fleXure..........coccoiieiiiiiiiniiiiiiieeee 36
2. Deflection of beams with CONStant CroSS=SECION ......ccueieevireiiieeiieeeiieeeieeeeieeeeree e e eeereeeareeeaeeas 38
2.1. Double-integration method of the beam deflected differential equation .............ccceeeeveeeiiienieencreeeenieenne, 39
2.2. MethOd Of SUPEIPOSILION ..eeuviieeiieiiieeiiiecteeetee et e et e e tteeeebeeebaeesebeeesbeeeeseessseeessseessseessseesssasesseessseeenens 41
2.3. MethOd Of MOIMENE ICA ....eevietieiieiie ettt ettt ettt e bt e sb e sat e ettt et e e bt e sbeesaeesateeabeenbeebeenaeeeneas 44
Directed works No. 2 “Deflection of symmetrical beams for pure bending”...........c.cccoveviieviierreennn. 49
Chapter III: Energetic methods for €lastic SYStEMS.......ccuiiecuiiieiiiiieiieeciie e e e 52
L INETOAUCTION ...ttt et e e et e e st e e e e tee e abaeesasaeessaeenssaesssseeenssaesnsaeesnseeennseeas 52
2. General relation of the elastic Strain ENEIEY........c.cecuieriieriierieeiierie ettt ettt e ereeseeeebeesaeeens 54
2.1. Work of aXial IoadINg .......cecuieiuieriiiiieeieeie ettt ettt ettt et et e bt e sat e s ateenbeeabeebe e neesneeenees 54
2.2. WOrK Of SHEATr LOAAINEG ......veevietieiieeie ettt et ettt et e s bt e sateeateenbeeabeenbe e seesneeennes 56

B TN 1 ;11 < 1 ¢ 4 U TUSORI 57

3. Elastic strain energy in traction O COMPTESSION .....eeeuurreerureerereenireenrreenseeesseeesseessseeesseesssseesnsens 58
3.1 Toughness modulus and resilience MOAUIUS.........c.cecvveriierierierieeie ettt e eeeere et esseesseessaens 61
3.2 Castigliano theorem to calculate diSplacemeEnt ...........covevierieriiiiiieieeeeee et re e 62



4. Elastic strain energy in BeNdiNg ..........cccuiiieiiiiiiiiciiieeeeeee et e e e e e e e rae e enaeeeeenes 63

5. Elastic Strain €Nergy N tOTSIOMN .......eeiuiiriieriieeiiesiteetee et eit e st et e st e esteesateesaeesabeesseesnteesaeeenseeseesaeeans 65

5.3 Castigliano theorem to calculate rOtatioN...........ccciiieciiieiiieciieeiie et eee et sre e eeebeeereesereeenes 66
6. General expression Of €lastic StraiN ENETEY .......ccveeuieriieriieeiieeieerie et eeiee et e sreebeesaeebeesebeenseesaaeens 67
Directed works No. 3 “Energetic methods for elastic SyStems” ...........ccceeevieriieiieniieeiienie e 68
Chapter [V: Combined 10adings analySiS..........cccueercuiieiiiieeiiiiieriieesieeeeiee et eereeesree e e esveeeereeeeee s 71
L. INEEOAUCTION ...ttt ettt et sab e et et e et e e sabeenbeesseeenbeesabeenbeesnbeenseenneeans 71
2. Unsymmetrical DENAING .......c.ooruiiiiiiiiiiiiiieie ettt ettt ettt e et e e sae et e e saeesnbeesaesnneens 72

2.1 Neutral plan and deflection in unsymmetrical bending ...........cccccoeceeiiierieniinienieieeeeeere e 73
3. Tensile with bending 10adiNg ..........ccvieiiiriiiiiiiiieieece ettt e s e et e sebeesaeseaeens 77
4. Torsion with bending 10adinNg ...........ccooiiiiiiiiiiiie e e e e e e e e ree e enreeeennes 78
Directed works No. 4 “Combined loadings analysis”..........ccccecierieririinieneniieneereeeeseeseeeseesee e 84
Chapter V: Solution of hyperstatiC StIUCIUIES ........c.cevuieriieriieiieeie ettt ettt eee et e seeesaeeaae e 87
L. INEEOAUCTION ..ttt b et st b e et e et e bt e st e e st e s bt enbesetesaeenseeneesaeenbesneens 87
2. Example of hyperstatic SYSTEIMS: .....uiiiiiiiiiieieiieeeiieeriee et e et eetee e st e e st e e saaeeessseeessseeesseesnreeesnneeas 87
3. De@ree Of MY PETSTATICILY ...eeeuvietieiiieiie ettt ettt ettt et et e e bt e st e et e e sieeenbeesnbeenseesaneens 89
4. Solution Of NYPErStatic SHUCLUIES ......ccuteiiietieeiieiiie et eiee ettt et e e ebeeseeeebeesteesbeessaeebeesseessseenseas 90

4.1. Integration method to obtain the beam curvature equation and to resolve the hyperstatic system.......... 90

4.2. Energetic method to calculate the deflection and to resolve the hyperstatic system.............cccecuerveennenne. 95

4.3. Numerical calculation of the previous hyperstatic example and comparison of the numerical results with

the several theoretical results obtained PrevioUSLY........ccveiiiiiiiiiiie e 97
4.4. Superposition method to resolve the hyperstatic SYSIEM ........cuevcverrieeriierierierie e e eieeeeseesene e eere e 99
4.5. Initial parameters method to resolve the hyperstatic SYSteM..........ccvevveeriereerieerienieere e eieeieeseeeeeens 101
Directed works No. 5 “Solution of hyperstatic SyStems”..........ccceieiiieeiiieeiieeeee e 102
Bibliographic REfEIENCES .......oouiiiiieiieie ettt et e 104
AADPEIAICES ...ttt ettt ettt e et e et e ettt e bt e et e e bee e st e e bt e enb e e bt e eabeenbeeanbeenbeeesteenbeeenbeeseeenbeenseeenee 106



List of Figures

Figure I- 1: Pinned support or fixed JOINt [17]..ccc.ooiiriiiiiiieieeiesieeeeee e 12
Figure I- 2: Roller support or mobile Joint [2] & [17] eeoceeeoiieeiieeieeeee et 12
Figure I- 3: Fixed support or embedding [17]....c.cooiieiiiiiieieet ettt 13
Figure I- 4: Typical cross sections 0f beams [3].......cccoeviiriiriiiiiniiiiiieeeeeeeee e 13
Figure I- 5: Beam with its symmetrical axes ¥ & Z and neutral axis X........ccccooceeveriininnenicneenennens 14
Figure I- 6: Cantilever beam of the hoisting drum [4] .......cocieriieiiinieeieeceeeee e 15
Figure I- 7: Determination of the embedding reaction and moment............c..ccccveevciieeeiieeniee e, 16
Figure I- 8: Variation of the shear force 7(x) along the beam ...........c.ccoerviniiniiiiniiniice 16
Figure I- 9: Determination method of the bending moment for the cantilever beam ..........c...c..cc........ 17
Figure I- 10: Variation of the bending moment Mf(x) along the beam..............ccceevvererierieniieniennnn. 17
Figure I- 11: Industrial examples of beams solicited in bending [2] & [5]..ccveevveeeiieeriieeiieeeieeee. 18
Figure I- 12: Illustrative example of uniformly distributed load g [18]......ccccooeeeiiiiiiiiiiiiiee 19
Figure I- 13: Normal tensile and compressive stresses in a beam loaded in bending around the Z axis............. 28
Figure I- 14: The deflected shape of a cantilever beam with it cross-sectional.............cccceevereeniennene 29
Figure I- 15: Shear stresses in the beam [10]......c.cooiiiiiiiiiiiiieieeeee e 30
Figure II- 1: Normal sStress in fIEXUIe. .......c.cooiuiiiiiiiieiie ettt 36
Figure II- 2: Normal force in fleXure [11].....cccooiiiiiiiiiieieiietee et 37
Figure II- 3: Deflection 0f @ Beam.......cccuooiiiiiiiii e 38
Figure I1- 4: Moment area thEOTEIM........c..eeeriiiiiiie e et et e et seeesteeesteeeseaeeetaeeesaeeesaeeensaeesnseeas 44
Figure II- 5: Moment area theOTEIM..........cc.eiiiiiiiiiiiieiie ettt ettt bee s esaeeens 45
Figure II- 6: The deflection at the D POINt........ccceeviiiiiiiiiiiiieieeeeeeeee e 46
Figure I1- 7: THE QIStANCE £5/4 . cuveerveerieeiieeiiieiiieeiieeteeeite et estteeveesteeesaeesseeesseeseeesseeseessseenseessseeseensseans 46
Figure 1I- 8: Xz and the MOMENt AT€a A ...cccvveerrieierieeiiieeeiieeitee ettt e eieeesteeesteeesreeetaeeeareesnsaeesnseees 46
Figure I1- 9: The diStANCE £10/4 «vveeveeruieetieeiieeiteeiie ettt ettt ettt e ettt e st e e bt e sateebeesnaeeseesnneens 47
Figure II- 10: Xp and the MOmMENt Qr€a Apg ..coveevereeerierieniieieeiesieeieeese ettt 47
Figure II- 11: Geometrical calculation of the deflection yp......cccceveeveiieiiieciiiniieiieiecece e 47
Figure III- 1: Stresses generated in a beam subject to different loads .........c.ccoevveeiiieiiiieeiiieeieeeen. 52
Figure III- 2: Generated work and stress versus strain for axially loaded rod..........c.cccceeieniiiinnnee. 54
Figure III- 3: Generated work for shear 10ading ..........coccooeeiiiiiniiniiniineee e 56
Figure III- 4: Tensile test and €lastiC ZONE ...........cevueeiiriiriieiiieieeeeeee et 58
Figure I1I- 5: ModUlus Of TE€STHENCE .....ccuviieiiieiiiie ettt e e e e re e eaaeeereeesnnee s 61
Figure III- 6: Modulus of tOUZRNESS .......oouiiiiiiiieii et 61
Figure III- 7: Torsion loading and its generated shearing Stress........coceveeverieneeiienieneeiesieneeeeens 65



Figure IV- 1: Typical combined shaft [0adings [16]......cc.ccecuiiriiiieiiiiieiiieeiieeeeeee e 71
Figure IV- 2: Compressor-turbine assembly [18] ........cocuoviiiiiriiiniiiiiiiieieeiereeeeceee e 71
Figure IV- 3: Different planes of symmetry in Deams ............cecueerieeiienieeiiienieeieerie e 72
Figure IV- 4: Symmetrical and unsymmetrical planes and 10adings ............cccceevvieriieiienieeciienieenen. 72
Figure IV- 5: FIeXUre in tWo PLAneS ........c.ceeeviiiiiieiiiie ettt eee et eeseaeeesaeeeaaeeennaeesnnee s 73
Figure TV- 6: NEUtral Plan.........ccoiiieiiiieiieccee ettt et e et e e e e e v e e esaeeennaeesnseeesnseeas 74
Figure IV- 7: Beam subjected to traction and bending loading ..............ccoeceeiiiiiiiniiiiiineiieeieee 77
Figure IV- 8: Neutral plane in the tensile-flexure type loading [2] .......cceeevieviiniiienieiiieiecieeeeee 77
Figure I'V- 9: Shaft subjected to torsion and bending 10ading .............cccceeeevieriiriiinieiiieieeieeee e, 78
Figure V- 1: Beam system for carrying 10ads [5] .....cocooiiriiiiiiniiinceeeecceeeee e 87
Figure V- 2: HyperstatiC WINE [2]...ccueecuieeiieiieeie ettt ettt ettt ste et e stteebeessaeeseesaseenseenseesnseens 87
Figure V- 3: Cantilever beam supported by an additional B support at the right extremity................. 88
Figure V- 4: Unknown moment and r€aCtIONS .........cc.eeeruiieeiuiieeiiieeeiieeeiieesieeesreeesveessseeesseesssseesneens 88
Figure V- 5: Degree of hyperstaticity N fOr SOMe SYSteMS ......c.cevueeviiriiriiiienieneeienienieeie e 89
Figure V- 6: The deflection of the hyperstatic cantilever beam............ccccoecieiiiiiiiniiiiiiiecee e 90
Figure V- 7: Hyperstatic cantilever beam subjected by a uniformly distributed load........................... 99
Figure V- 8: Calculation of point A deflection using the superposition procedure............ccceeevveenneee. 99
Figure V- 9: Hyperstatic cantilever beam subjected by a non uniformly distributed load.................. 101
List of Tables

Table I- 1: Inertia moments for some beam cross-sectional areas............ccceeveeeeeerieeiiienieeiieenie e 14
Table I- 2: Properties of common engineering materials at 20°C [3] & [8] .ooveevierieeiienieeiierieeeae 29

Table I- 3: Mean and maximal shear stresses for circular and rectangular cross-sectional of beams ..31



List of symbols

A: Beam cross-sectional area

b: Width of the rectangular cross-section of the beam
C: Torque

CG: Centroid or the gravity center

Cs: Safety coefficient

d: Diameter of the circular cross-section of the beam
D: Diameter

E: Modulus of elasticity or Young's modulus

F: Force

f: Deflection

Jfmax: Maximum deflection

Fs: Safety factor

h: Thickness or height of the rectangular cross-section of the beam
I: Inertia moment

1,: Polar inertia moment

L: Length of the beam

Mf(x): Bending moment function of x

Mfar: Maximal bending moment

M: Moment

M;: Torsion moment

P: Weight

q(x): Uniformly or non uniformly distributed load
R: Radius of the circular cross-section of the beam
R,: Reaction according to the X axis

R,: Reaction according to the Y axis

r: Radius of curvature

T: Torsion torque

T(x): Shear force function of x

U: Elastic strain energy

u: Elastic strain-energy density

u,: Deformation; displacement

u,: Deflection

V: Volume

W: Work; Weight

y(x): The equation of the curvature of the beam
Vmin: The minimal deflection of the beam

. Shearing strain or angular strain
&: Normal strain

0 : Rotation angle; slope; twist angle
v: Poisson’s ratio

4 : Shear modulus

o : Normal stress

O ., - Allowable or admissible stress

o, : Ultimate strength
o, : Yield stress
7. Shearing stress



General Introduction

General Introduction



General introduction

This course constitutes a solid support for 3rd year License students in Mechanical Engineering
branch, specialty Mechanical Construction, especially in terms of calculating the strength of
materials, particularly with regard to the calculation of the mechanical resistance and the sizing of

static or hyperstatic beams subjected to pure, unsymmetrical or combined bending.

In the Chapter I, we have presented a reminder concerning the calculation of the pure beam bending.
Calculation of inertia moment, trenchant force or shear force and bending moment along the beam are
presented in detail in this course. In addition, bending moment variations for beams subjected to
uniformly and non uniformly distributed load are given in this document in order to calculate the
tensile stresses in the beam, and then extract the maximal value of this stress. This maximum stress is
compared to the yield stress of the beam material to see if this beam will be fractured or not. Finally,
the calculation with demonstration of the tangential or the shear stress which is due to the shear force

is show in this document.

In the Chapter II, different methods of the calculation of the beam deflection have been shown, we
can cite for example: double-integration method, superposition method and moment area method.

Several examples have been presented to better understand each method separately.

Chapter III is interested in the study and calculation of the elastic strain energy of different
structures subjected to traction, compression, shearing, bending and torsion loadings. The knowledge
of the elastic strain energy or the elastic strain-energy density and the strain energy verification
criterion has two advantages; the first advantage is that we can calculate exactly the necessary strain
energy to deform elastically a part and the second advantage is that this knowledge allows us to know
whether or not our part will undergo plastic deformation after it absorbs impact energy.

A material that has a very high resilience modulus is more resistant to impact and does not deform
plastically, also it absorbs and stores more elastic energy. On the other hand, a material that has a
very high toughness modulus will need very high energy to make it break

Using the Castigliano theorem based on calculation of the derivative of the total elastic strain energy,

we can calculate the displacement, rotation or the deflection at a given point of a bar, shaft or beam.
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Chapter IV concerns the study of the unsymmetrical beams or the beams subjected to an
unsymmetrical load, in other words, the beams which are not solicited in their planes of symmetry.
Also, beams or shafts can be subjected simultaneously to many combined loadings as traction with
bending or torsion with bending. In these cases, the use of the Von Mises or Tresca criterions is
necessary to calculate the equivalent generated stresses in the structure and to verify if this latter can
withstand the applied loading or not. Moreover, these criterions allow us to size the beam or the shaft

and to calculate the minimum diameter with which the shaft can not deform plastically or breaks.

Finally, in the Chapter V, we have presented the different methods used to solve the hyperstatic
system. Hyperstatic system is defined as a system in which its static equilibrium equations are unable
to find the generated internal forces and their reactions in the structure. The hypestatic system is
recognized when the number of the unknown actions of the supports is higher than the number of the

static equilibrium equations of this system.

Also, the end of each chapter is completed by a directed works (DW) in order to allow students to
apply the theoretical knowledge acquired in the course in the form of exercises.

In order to give to our students a good learning, and to make them interested to the real problems that
will encounter in the industry and put them face to face with these problems, several examples of
industrial applications of SOM (Strength of Materials) were presented to them in this document.
Finally, this course will provide to our students the basic notions and useful fundamental knowledge
and information allowing them to choose, calculate and size the beams as best as possible. In
addition, this module will help students acquire good study skills and competency that they will need
in the world of work. Also, it aims to give them the fundamental knowledge of engineering

principles, plus strong practical, theoretical, and transferable skills.
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Chapter I: Pure bending of symmetrical beams

1. Introduction

After that the students have seen in their 2™ year of License the basic notions of calculation in
resistance of materials of structures solicited by different loadings as tensile, compression, buckling,
shearing, bending, etc; we remind them in this chapter, the principle of calculating of the mechanical

resistance and sizing of beams in pure and plane bending.

2. A reminder of the different types of supports
2.1. Pinned support or fixed joint

Figure I-1 gives a schematization of the pinned support and its reactions. The reaction R, along the x

axis and the reaction R, following the y axis are not zeros.

Figure I- 1: Pinned support or fixed joint [17]
2.2. Roller and simple supports or mobile joint

Figure I-2 gives a schematic diagram of the roller support and the simple support, and their reactions.
The reaction Ry, along the x axis is zero because the support is free to move along the x axis; while

the reaction R, following the y axis is not zero and this for both connections.

TITTT7
Simple (Frictionless
surface, i.e. Cof=0)

L 3 ]
Roller Be:fm . = - % | — 4
> . | | ol
s

Figure I- 2: Roller support or mobile joint [2] & [17]
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2.3. Fixed support or embedding

Figure I-3 gives a schematization of the fixed support or the embedding and its reactions and
moment. The reaction R, along the x axis and the reaction Ry, following the y axis are not zeros.

Also, the embedding moment M, is not zero either.

{
éfz
T

AR

Figure I- 3: Fixed support or embedding [17]

3. A reminder on the calculation of the inertia moment of beam cross section

The following figure shows some types of beam cross sections. Each section has characteristics and a
specific use for it, for example solid cross sections are more rigid than hollow cross sections; on the

other hand, the latter are not heavy.

Solid cross sections

Hollow cross sections

Thin-walled open cross sections

Figure I- 4: Typical cross sections of beams [3]
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3.1. Calculation of the inertia moment of the beam cross-sectional area

Figure I-5 presents the beam axes and its cross sectional area. Y

Y

SR ‘ Beam cross-

> sectional area
Z

Figure I- 5: Beam with its symmetrical axes Y & Z and neutral axis X

The inertia moment of the cross plane beam section with respect to the Z axis is defined by the
following integral:

I.=[yds (I-1)

I is the inertia moment of the cross-sectional area with respect to the Z axis and also with respect to
the center of gravity of the cross section of the beam. If a beam made with a linearly elastic material
is subjected to pure bending, then, the Y and Z axes are principal centroidal axes. Therefore, I, will be
equal to /,. The polar moment of inertia is equal to:

I,=1_+1, (I-2)

p
Some moments of inertia of some beam cross-sectional areas are indicated in the following table:

Cross-sectional areas Moments of inertia |z

4 4
Z:”R _ D" Gith D= 2R
4 64

12:%(1{4—1%4)
o
)

; _b*a+2n) (-’
12 12

v
b
le—»!

Table I- 1: Inertia moments for some beam cross-sectional areas
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4. Industrial examples to calculate shearing forces and bending moments

4.1. Example of a beam bending calculation of an hoisting drum

The example presented in the following figure concerns a hoisting drum; it is composed with a drum
mounted on a cantilever beam; the drum can lift a heavy load by a cable wrapped on it. Also, an
equivalent schematic (beam-support-load) of the hoisting drum system is presented in the following
figure.

In dynamic, the following system must be sizing using the vibration and fatigue laws, but in static,

the strength of materials laws should be used and this is exactly what will be presented in this chapter.

f, \\
Wy ‘\ ? .!'J
7 > .
1 S
- T +
7 / él
r

W

/
ﬂ w

Figure I- 6: Cantilever beam of the hoisting drum [4]

In the above figure, W presents the weight of the load to be lifted; / is the length of the cantilever
beam. The cross-sectional of the beam is rectangular having a width equal to b; the thickness of this
cantilever beam is /.

To dimension this beam, we must search initially the maximum bending moment, then we calculate
the maximum bending stress and we compare it with the material yield stress of this beam (the detail
will be seen in section 7 of this chapter). To determine the maximum bending moment or the
variation of this bending moment along the whole beam, we must already make at the beginning the

forces and moments equilibrium to calculate the unknown reaction and embedding moment.
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Figure I- 7: Determination of the embedding reaction and moment

Using the above figure (Figure I-7), we can determine the following static equilibrium equations and

deduce later the unknown embedding reaction Ry and embedding moment Mc:

Y F,=0=>Ry-W=0=Ry=W=mg

m 1s the mass of the load, g is the gravity;

DY M, =0=Mc—-Wl=0= Mc=WI

4.1.1. Calculation of the shearing forces T(x)

a) Rules to determine the shear forces or the trenchant forces T(X)

We call the shear force (7) the internal transverse force and the bending moment (Mf) the internal
moment. We try to determine these two parameters but at any point located in the longitudinal axis of
the beam i.e. as a function of x. As a general rule when we cut the beam in two parts at x (Figure 1-7),
the shear force will be equal to the sum of the forces which are found in the section (0-x), the forces
that are headed toward the upward are positive and the forces directing downward are negative. For

our example, we obtain a constant 7(x) equal to:

O<x<I=>Tx)=Ry=T,,
If I plot the shear force 7(x) as a function of x, I then obtain the following curve:

R
o >
z
3
|_
0
I
0 X (mm)

Figure I- 8: Variation of the shear force T(X) along the beam
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4.1.2. Calculation of the bending moment Mf(x)

a) Rules to determine the bending moment Mf(X)

As a general rule, when we cut the beam in two parts at x, the bending moment will be equal to the
sum of the moments and the forces moments existing in the part (0-x) with respect to x. The positive

direction that must be followed to calculate the bending moments is that shown in black arrows in the

figure below:

<
l

Figure I- 9: Determination method of the bending moment for the cantilever beam

For the previous example, we have:
O<x<I=>Mf(x)=Ryxx—Mc=Wx-WIl=W(x-1I)

If I plot the bending moment Mf(x) as a function of x, I then obtain:

Wi
£
g
Z 0
3
S

Wi

X (mm)

Figure I- 10: Variation of the bending moment Mf(x) along the beam

The maximum bending moment Mf,,. i1s found in the embedding zone, it is equal to Wi, this tells us

that the embedding zone is the most dangerous zone, i.e. the zone in which the beam would risk

breaking in the first place.
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4.2. Other industrial examples of beams with their equivalent (beam-support-load)

Note to that we apply the same manner used in the latter example to determine shear effort and

bending moment.

Corr
H 1 8000 daN
2000mm | 2000 mm |
- - = = i
At Bu
4000 daN ¥ ¥ 4000 daN

Lifting beam

Beam mounted on
lathe machine

g=100daN.m™'  AC 500 daN

TLILILLY

Airplane wing embedded in the cabin

poulie 1 palier A palier 8 poulie 2

= ¢! A ]
I - _,l ; : (arbre) 1 -
|A T1¥ 200 dan ‘ @mamum i
MEAS 1500 280 |

Shaft-pulley transmission
system

i=F B

Wagon axle shaft

Figure I- 11: Industrial examples of beams solicited in bending [2] & [5]
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5. Uniformly distributed load

A beam loaded with a uniformly distributed load means that it supports a constant linear load along
its length (i.e. a constant load divided by the length of the beam).

To better understand, here is an example illustrating the previous definition in the figure below. The
weight of these different men who sit on the I-shaped beam can be modeled by a linear distributed

load applied to the entire beam or by a point load applied to the centroid of the beam.

Q=W /L

Their total weight is W in T
Newton

Figure I- 12: Illustrative example of uniformly distributed load q [18]

We show in the following examples of 7(x) and Mf(x) calculation for a beam solicited by a constant

and uniformly distributed load ¢ (N/m):

Example 1:

R %
Ra a(x)=q B
A v v v v v \ 4 \ 4 \ 4 \ 4 v B X
STAP7
/

A
\ 4

Static equilibrium equations:

l
Y F=0=R,+R,~[q(x)dx=0=R, +R, =ql
0

1
S M/, =0= [q()xdc-R, xI=0=R, :%:M:q,_RB :%l
0
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Trenchant force:
X ql
0<x<I=T(x)=R, —jq(x)dxjr(x)=?_qx
0
The shear force diagram is shown in the below figure:
T(x)
4

ql/2

12 / X

v

—ql/2

Bending moment:

0<x<l= Mf(x)=R, xX—Jq(x)xdx:Mf(x):%lx_%xz
0

Or

O<x<I=>Mf(x)=R, XX—qu(x)dxjx(%(x_o)]:l:Mf(x):q?lx_%xz

The bending moment diagram is shown in the below figure:

Mftx)

ql* /8

The maximum bending moment Mf,.., is located at a distance of //2 from the support A, it is equal to

ql’/s.
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Exemple 2:

TOKN
20 k N/m

.- o S
L v

Static equilibrium equations:

3 3
Y F=0=R,+R,~70-[q(x)dx=0=R, + R, [20dx=0=> R, +R, =110kN .... eq(1)
1 1

SYM/,=0= +(70*1)+iq(x)xdx—RB *3 =0:>+70+j.20xdx—RB *3=0= R, = 50kN
eq()= R, :110—50:6E)kN |
Trenchant force:
0<x<1=T(x)=R, =60kN
1<x<3:>T(x):RA—70—j|£q(x)dx:>T(x)=—10—]{20dx:—20x+10

1 1

The shear force diagram is shown in the below figure:

7

60 kN

Bending moment:

0<x<1= Mf(x)=R,x=060x(kN.m)

1<x<3= Mf(x) :RA'X_7O(X_1){Uq(X)dx]X[x2_lﬂ

2
= Mf(x) = 60x—70x+70—20x(@] =—10x? +10x + 60

The bending moment diagram is shown in the below figure:

“1/ O~

Bending Moment

The maximum bending moment Mf,,,, is located at a distance of 1m from the support A, it is equal to
60 kN.m.
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6. Non uniformly distributed load

A beam solicited by a non-uniformly distributed load means that it supports a variable linear load
along its length (i.e. a variable load divided by the length of the beam). Uniformly varying load as for
example triangular distributed load or trapezoidally distributed load can be presented by a linear

polynomial g(x). Another type of non uniformly distributed load exist which is irregular varying load.

Example 1:
(=9
Y
B X
q(x)="Tx
/
Static equilibrium equations:
l ] 1
> F=0=R,+R, - [q(x)dx=0=R, +R, = %J.xdx =41 = oy -e4(])
0 0
The equivalent system of our above system is as follows:
Qequiv 4
A l B X
g ,: 213 L1377
M/, =0= Qeqm%z—RB xl=0=R, =§Qe"“"v I=R, :%ql
1
eq(l) = RA = Qequiv - RB = gql
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Trenchant force:

X
0<X<1:>T(X)=1veA—jq(x)dx:>T(X):-%%X2 4
0

6
X — 0 + o0
T'(X) + 0
T(X)
T(0)=Ta=ql/6
— o0

T'(x)=—gx:0:>x=0
/

T(x)= —%%xz 2 o)=L

6 6
lg , ql [ l
T(x)=——>x"+—=0=>x,=——=; X, =+—F—
Y N G
q!
T()=-*
() 3

The shear force diagram plotted by Matlab [6] is shown in the below figure:

T(x) 4
ql/6
/33 ! X
ezplot('-0.5*x"2+0.1667") i
g3 )
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Bending moment:

O<x<I=>Mf(x)=R,xX —qu(x)dx]x[é(x—O)ﬂ = Mf(x) = %lx_ixa

6/
X — oo ~1/43 +1/43 +00
MF'(X)=T(x) — 0 + 0 —
MF(x) +00
+ 5\1/—5 gl’
i <

1 !
Mf'(x) = T(x) = —E%xz +%

Mf"(x) =T'(x) = —%X = 0= x =0 is the deviation point.

Mf(X) = %x—%ﬁ = Mf(0)=0

ql . 4q ql 4
Mf()()=zx—ax3 :ij[z—asz:O:xl =0; x,=0;x; =~
Mf()=0

The bending moment diagram plotted by Matlab [6] is shown in the below figure:

Mfix)
A
1
——=ql . .
93 5
Tzplot('-0.167*x"3+0.1667*x') ? l )Ck
133
The maximum bending moment Mf,,,. is located at a distance of // V3 from the support A, it is equal
1
to —=ql~.
93
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Numerical application with RDMG6:

Using the RDM6 software [7], we could plot the variation of the shear force, the bending moment, the
normal stress due to bending and we can also extract the beam deflection.
If we take for the previous example, a length / equal to 1m, a radius R of the beam equal to 10 mm

and a load ¢ equal to 1000 N/m. The distance from the support A where Mf,,,. is located is equal to
/3 =0,578 m; we then obtain with our previous theoretical calculation a maximum bending

moment equal to:

Mf,

1 .
o =——=ql" , so after calculation, we find Mf ,,,,= 64.15 N.m.
9v3

Using formula (I-4) which will be seen later, the maximum stress is given by the following
relationship:

1
——ql* (R/2
:Mfmax*ymax _[9'\/§q ]( )

7 max I (aR* /4)

z

= 40,85 Mpa = 4,085 10 Pa.

Note that this stress is located at the same point of the beam where the maximum bending moment

was located.

A very good agreement was obtained between the theoretical results and the numerical results

obtained by the RDM6 finite element software. Here are some results obtained by RDM6.

Variation along the beam of the shear force obtained by RDM6:

IrESEEE M
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Variation along the beam of the bending moment obtained by RDMG6:

Fichier Unités Afficher

DESESER N

&= 1000 m/s2 Untés=m.N.rad. K

Variation along the beam of the normal stress obtained by RDMG6:

Fichier Unités Afficher M sultats  Optimi

D ERnESSESES v

g = 1000 mfs2 Uritdis = m N, radl K

o] [1]=g

EEE

9= 1000 m/s2 Untdz=m,N.rad. K
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Rapport de calcul RDM6

+ +
| Flexion d'une poutre droite |
+ +

Utilisateur : BELOUFA
Nom du projet : C:\Users\BELOUFA\Documents\exemplecours rdm2
Date : 18 septembre 2023

R +

| Données du probleme |
B — +
R +

| Matériau |

[ +

Nom du matériau = Acier
Module de Young =210000 MPa
Masse volumique = 8000 kg/m3
Limite élastique = 250 MPa

R +
| Noeuds [ m ]|
R +

Noeud 1: x= 0.000
Noeud 2: x= 1.000

R +
| Section(s) droite(s) |
N +
Noeuds 1 -->2

Rond plein : D =20.00 (mm)

Aire =3.14 cm2

Moment quadratique : Iz = 0.79 cm4

Fibre supérieure : vy = 10.00 mm Wel.z=0.79 cm3

Fibre inférieure : vy = 10.00 mm Wel.z=0.79 cm3
Poids de la structure = 25.13 N (g = 10.00 m/s2)

S — +
| Liaison(s) nodale(s) |
S — +

Noeud 1 : Fleche =0
Noeud 2 : Fleche =0

B T, +

| Cas de charge(s) |

B T, +

Charge linéairement répartie : Noeuds=1->2 pyo=0.00 pye=-1000.00 N/m
[ — +

| Résultats |

[ +

+ +

| Déplacements nodaux [ m, rad ] |

+ +

Noeud Fleche Pente

1 0.000000 -0.011789

2 0.000000 0.013473
Dy maximal = 0.00000E+00 m a x = 0.000 m
Dy minimal = -3.95442E-03 ma x = 0.520 m

+ +
| Efforts intérieurs [ N N.m MPa ]|
+ +

Ty = Effort tranchant Mfz = Moment fléchissant Sxx = Contrainte normale

Noeud Ty Mfz Sxx

1 -166.67 -0.00  -0.00
2 333.33 0.00 0.00

Moment flechissant maximal = 64.15 N.m a 0.578 m
Moment flechissant minimal = -0.00 N.m a 1.000 m

Contrainte normale maximale = 81.68 MPa a 0.578 m
Contrainte normale minimale = -81.68 MPa a 0.578 m

+ +
| Action(s) de liaison [N N.m ] |
+ +

Noeud 1 Fy= 166.67
Noeud 2 Fy= 333.33

+ +
| Informations sur le calcul |
+ +

Pivot minimal = 4.94800842940110E+0003
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7. Normal tensile and compressive stresses due to the bending moment in a beam

All the definitions and examples shown previously to calculate the variation of the bending moment
in the beam are useful now to determine the variation of the mechanical stress along the beam. The
knowledge of the variation of the mechanical stress in the beam is necessary to find the dangerous
section in the beam which corresponding to the maximum bending moment or the maximum stress;
this latter is compared to the yield stress of the material or to the material allowable stress in order to
see if the beam will be fractured or not. If we notice that the beam does not resist to the loading that
we have applied to it, then, many solutions can be deployed as: resize the beam again, change it form,
use another resistant material, decrease the loading magnitude or change the place where this loading
is applied, add more supports, etc.

The figure below shows the normal tensile and compressive stresses generated in a beam subjected to

bending.

A Compressive
stress

Compressed
zone

X~~-

Tensioned
zone

Neutral fiber
The stress o is zero in this
fiber

Tensile stress

Figure I- 13: Normal tensile and compressive stresses in a beam loaded in bending around the Z
axis

Note that the axis of the neutral axis always passes through the axis of the gravity center or through
the centroid of the cross-sectional area; y,,, is the farthest distance from the neutral fiber axis (Figure
I- 13).

The normal stress for any variable x and y is given by following formula (formula which will be

demonstrated later in the Chapter II):

Mf(x)x
otx,y) =Y (13)
The maximum normal stress due to bending is equal to:
o, = Mf v X V. (1-4)
IZ
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If we take our example illustrated previously in paragraph 4.1 or in the below figure, we obtained a

maximum bending moment Mf,,,, equal to Wi, thus the inertia moment of the beam cross-sectional is
equal to/_=bh’/12. Thus, since the bending takes place around the Z axis, and according to the

arrangement of the beam presented in the figure below, the distance y,,,, will then be equal for our

case to //2.

h#%}f%—ﬂ

7 Beam cross-sectional

Figure I- 14: The deflected shape of a cantilever beam with it cross-sectional

Let us now apply the formula (I-4); we obtain a maximum stress equal to:

= oWt in N/m’ ou Pa.

max 2

The calculated maximum stress will be compared either to the yield stress oy of the beam material or
to the admissible or allowable stress of the beam material which is calculated by the following
formula:

_9yr

O-adm - CS

-5)

With Cs is the safety factor or coefficient. Cs is between 2 and 4 for normal constructions and it is
> 10 for constructions which would endanger the lives of people.

If 0,,.> 0., then the beam will break or will undergo plastic deformation, otherwise, the beam will
undergo elastic deformation.

We give in the below table (Table 1-2), some essential mechanical properties (including the yield

elastic limit oy) for some metallic materials:

Coefficient of linear

Specific weight Young's modulus Yield and ultimate Stress thermal expansion
Material bin'  kNm' b/’ GPa Oy (MPa) Oy (MPa) 10e-6°F 1 e-6°C  Poisson’s ratio
L. Metals in slab, bar, or block form
Aluminum alloy 00084 27 10-12¢6  70-79 100-500 310-550 13 7 033
Brass 0.307 84 14-16e6 9-110 70-550 300-590 11 20 034
Copper 032 87 16-18¢6 112120 200[9] 230-380 95 17 033
Nickel 0.318 87 30e6 210 140-620 310-760 72 13 031
Steel 0.283 71 28-30e6 195-210 200-1700 550-2000 6.5 12 0.30
Titanium alloy 0.162 44 15-17e6 105-120 760-900 900-970 4555 8-10 033

Table I- 2: Properties of common engineering materials at 20°C [3] & [8] [3]
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8. Tangential stress or shear stress due to the shear force in a beam

Due to the bending moment Mfz, a shear force T(x) (Figure I- 15) and a normal stress o will be

created. Fiy being the normal force corresponding to the x axis, due to the normal stress o acting on

the near face; Fr = Fy+dFy is due to the normal stress o+ do acting on the far face; and dFp is

the force due to the shear stress 7 acting on the bottom face.

FF:FN+dFN

£ N

’--\---7----..'--‘
L )
P
k)

Mf(x)

HYHssssssmEE.

\
/

Figure I- 15: Shear stresses in the beam [10]

The normal force Fyy can be calculated by:
hl2 hl2

Fy=[odS=b[ody
y y

As we have indicated in the equation (I-3), o = Mf.y/ 1), equation (I-6) can be written as:

 Mfb hi2
Fy —T _[y dy
So, we can deduce dFy:
_dMfb"E
by =— [yay
z y
30
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The force dFp due to the shear stress 7 is given by:

dFy, =7dS'=brdx (1-9)
The forces equilibrium gives:
SF=0=F,+dF,—F, =0= Fy +dF, — F, —dF, =0=dF, =dF,,  (I-10)
Substituting (I-8) and (I-9) in (I-10), we can obtain:
hl2
bfdx:bde J-ydy (I-11)
I
hi2
brdx = bdMy J‘ydy
z y
dMf (x) "¢ dMf (x)
=>7(X)=———— |ydy,avec T(x)=—"—=
0= {yy (0)="""
aMf(x)"¢ 1 7(x) : bh*
=>7(xy)=——>= dy =— h/2) — avec [ . =—— 1-12
(x5) de{yy”z[( f -] avee 1. =22 (-12)
Cross-sectional type Curves of 7(y) Shear stresses
1T(\x
7(x,y)= 5%[132 -y
B z
y=R_~ 7 R*
_ I, =
7=0 z 4
7(v)
T T
y:O mean == 2
T = Tmax S 7[ R
4
z-lTlZlX = _z-mean
3
1 7(x) _
R YA f(x,J/)—ET[(h/z) -]
N
: y R~ b’
h . o =0 .=
! >Z () 12
i =0 T T
\y y —_ mean == =5
b T = Thax S  bh
<>
3
Tmax = _Tmean
2

Table I- 3: Mean and maximal shear stresses for circular and rectangular cross-sectional of

beams
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Directed works No. 1 “Pure bending of symmetrical beams”

Exercise N°1

The beam presented below is supported at its both ends A and B and it is subjected to bending by two
forces Frl =284 N and Fr2 = 852 N.

1) Calculate the vertical reactions at the supports A and B.

2) Plot the variation of the shear force over the entire length of the beam.

3) Plot the variation of the bending moment along the beam and determine the maximum value of the

bending moment.

Fl’z; A

60 mm 140 mm 60 mm

A
\ 4
A
\ 4
A
\

Exercise N°2

The beam shown in the figure below is mounted on a lathe machine, the material of the beam is steel
with a circular section (diameter d=15 cm), the linear weight of the beam is 137 daN/m, the length of
the beam is L = 2m, the practical strength or allowable stress of the steel is 0,qn=200 MPa. The beam
to be machined can be modeled as a beam placed on two supports A and B and stressed by its own
weight which is uniformly distributed over its entire length.

1) Plot the variation of the shear force over the entire length of the beam.

2) Plot the variation of the bending moment along the beam and determine the maximum value of the

bending moment. Calculate the maximum bending stress.

g= 137daN/m
’; *’r e T er— e ALY VvV VvV VvV VvV V VvV V¥ f YYB
ST /%é
2m

4
\ 4
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Exercise N°3

The device shown in the figure below makes it possible to bend a hollow tube (3), the bending force
F applied by the bending head (7) is provided by a hydraulic cylinder, the tube is placed on two
rollers (4) and (5). The yield stress of the tube material is oy=340 N/mm? or MPa.

1) Determine the maximum shear force in the tube.

2) Calculate the average shear stress in the middle of the tube, the dimensions of the tube section are
shown in the figure below.

3) Calculate the maximum normal stress generated at the tube as a function of the bending force.

4) Then determine the effort required to bend the tube.

!l‘l‘l

330 330

P.S: Dimensions are
given in mm.
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Exercise N°4

A tower crane jib is made up of two IPN type beams. The weight P of each beam is equal to 0.5 tones
and the load to be lifted Q weighs is 2 tones, the material of the beams is steel with an elastic limit
o, = 800 MPa. The safety coefficient Cs is equal to 2.

1) Calculate the moment of inertia I of the section of the IPN beam.

2) Determine the maximum bending moment in each beam.

3) Calculate the maximum stress, do you think these beams will hold this weight Q.

t,r‘ T
.II:K ) _—_-__H___""-——____ i
HEE= 1 ||-'§if\f,ﬂ.\fwa\ NAWAW HY
I 1
a | L
P
Q
S
i
54
£ f’a!‘; Q:E"-
e ﬁ ] h;=b;=5 mm
| = h=b=200 mm
T T

Q2

/ pY Q2

L=20m

A
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Chapter 11
Deflection of symmetrical beams for pure

bending
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Chapter II: Deflection of symmetrical beams for pure bending

1. Demonstration of the normal stress calculation in flexure

The engineer is interested not only in the stresses caused by loads on a beam but also in the deflection
produced by these loads. It is sometimes mentioned that you should not exceed a certain value of the
maximum deflection. In the figure below (Figure II- 1), before the deformation of the beam, all the
top, neutral and bottom surfaces are equal, but when we apply a constant moment on the beam, the
highest compressed surface mp will bend downward with a distance less than that of the neutral
surface nn' (the latter will not undergo any deformation), and the tense surface m'p’ will bend
downward with a distance greater than that of the neutral surface nn’, this will give the appearance of

an angle d@ . Therefore, r is the radius of curvature of the neutral fiber.

2

n n
__________ n._______..n S
r‘ e oy
n n'
Before
deformation Y
0O After
deformation

S
Figure II- 1: Normal stress in flexure

nn' =SS, = initial length before deformation.
S’S; 1s the elongation of the fiber along the X axis which is located at a distance of y from the neutral

axis.
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We have:

to(do/2) =" =55 LSS v AL, (II-1)

2r 2y nn' 1, "

Referring to the below figure, we have:

F
O-xx:ngx:EZ:d "

11-2
r dA ({1-2)

J

Figure II- 2: Normal force in flexure Erreur ! Source du renvoi introuvable.

Since the moment of the normal and the tensile forces about the neutral axis is zero, then, their sum is

equal to zero (the sum is represented by the integral form):

Y dFx=[dFx=0= Fx=0 (11-3)
= F, =[o,dd=[EZda=0 (I1-4)
r
The bending moment Mfis equal to:
2
Mf=Fy=|[o,yd4= HE%ydA = HEdeA = %Hysz (I1-5)
I = ” y2dA (11-6)
=y = L (11-7)
r
r EI
Knowing that 1 = M , then:
r EI
o =Ee —Ery-pM My (11-9)
° r EIL I
0, (x.y)= @ (11-10)
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2. Deflection of beams with constant cross-section

The below figure shows the deformed shape of a beam subjected to bending.

Figure II- 3: Deflection of a beam

We take note that ds = dx. Indeed, in practice we only tolerate very small deflections, so the

curvature of the beam must remain almost flat and the angle d@will be too small, we will then have:

dy
tgef~0=—
& dx

v is the deflection of the beam at x point.

Knowing that:
tg(d0)~dO =ds/r=dx/r=1/r=d0/dx

Let us substitute € in the last equation:

1 d’y de dy(x)
PR g = W= = )= ol

We know from the equation (II-8) that:

_ M

1
r EI

Let's compare the two previous equations, we can write the following differential equation:

d*y(x) _ do) _ Mf
dx? dx El

= y"~(Mf/EI.)=0o0r 8'—(Mf/EI_)=0

When, y(x) represents the variation along x-axis of the deflected beam.

38
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2.1. Double-integration method of the beam deflected differential equation

The calculation procedure of the beam deflection formula and the maximum beam deflection using
the integration method is presented in this paragraph. Below is an example that will show the

calculation of the beam deflection using this method.

Example 1:
= = Y
Ra Q|/2 q(x):q Rg Q|/2
A \ 4 A\ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 \ 4 B X
707
/

q .-

0<x<l:>Mf(x):RAx—jiq(x)xdx:>Mf(x):%lx—2

2
Mf =EI, d g}:d—yzﬁ(x):jMf(x)dx: 1 J[q—lx—gxzjdx
dx dx EIl, EI 7\ 2 2

dy 1 qg 5 ql ,
= ——=y'(x)=0x)=—|-x"+—x"+C
a7 (%) = 0(x) EIZ( 6" T4 :

= y(x) = I@(X)dx =Iﬁ[—%x3 Jr%lx2 +C, jdx
1 q ql
= y(x) :E—L(—ax“ +Ex3 +C1x+C2j

The boundary conditions are:

At the A, B supports, we have respectively: y(0) = y(/) =0
y0)=0=C,=0

3
y(=0=c, =9

24
3
So, y(x):L ~ 4y +q—lx3 —ix
EI_\ 24 12 24

The maximum deflection fi.x 1s the optimum of the previous function y(x), it is equal to:

5ql*

=y(/2)=—-
Joax = ¥(1/2) 38AET
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Note:

EI represents the bending rigidity or the bending stiffness (modulus of elasticity or Young's modulus
multiplied by the surface moment of inertia of the cross section of the beam), so if £ or /. increases,

we will have a low deformation and a low deflection f.

The slope of the deformation of the beam at x=//2 is zero because (dy/dx) at I/2 =0 and therefore the

maximum deflection f,,, is at [/2.

The maximum angle is found at the supports A and B, it is equal to:

dy ql3
0 =L =yp0)=y()==
[dxjmax Y'(0)=y'{) 24E]

oy = 2"
= |0(0)| =|61)| = 24T
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2.2. Method of superposition

When we have a beam subjected to many loads (forces, moments, uniformly load, etc), the final slope
or deflection at any point on this beam is equal to the sum of different deflections or slopes calculated

separately for each load.

Example:

We want to determine by the superposition method the resultant of the maximum deflection of the
steel console beam presented in the below figure: The profile has a mass m of 120 kg/m, which gives
a weight W equal to 120kg *5m*g = 6000N for 5m (the gravity g is taken 10 m/s?); therefore a
uniformly distributed load of 6000/5=1200N/m will be applied to the beam, the final load ¢ will be
equal to 1200 N/m. Another force equal to 4000N is applied inversely to the distributed load ¢ at a

distance of 3m from the embedding point.

1200 N/m

S AARAARARA
7
7 —

4 000 N
1200 N/m

W ILAXIIIII
7 +7

A
|—4 5m "-l | im Im
4 000N
For the first beam:
1200 N/'m

**##*i#*?

A

3m l-|

5 5
> F=0=R-[qdr=0= R=[1200dx = R =6000N
0 0

juoo

5
ZM:0:>—Mc+jqxdx:O:>Mc: x*dx = Mc =15000 N.m
0

0
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2

Mf(x) = Rx — Mc — q% = 6000x — 15000 — 600x°
D _ jmdx = L (£200x* +3000x —15000x + C,)
dx 4 EI El

,(x) = é(— 50x* +1000x — 7500x + C,x + C, )

The boundary conditions are:

0(0) = [fly

J =0=>C, =0et »(0)=0=C,=0
X x=0

_ 1 . 4 3 2
So, y,(x) = 50x" +1000x —7500x

_-93750
Max EI

|y1 (x) Mar |y1 (5)

For the second beam:

NN

4 000 N
D> F=0= R+4000=0= R =—-4000N
> M =0=—-Mc-4000*3=0= Mc =-12000 N.m
0<x <3= Mf'(x) = Rx — Mc = -4000x +12000
3<x<5= Mf?(x) = Rx — Mc+4000(x—3)=0

dy =0'(x) = j M), (x) - L (£2000x* +12000x + C)

EI

O<x<3=>—

0<x<3=yp'(x)=—

1 ( 2000 e
EI

+ 6000x> +Cx+Cj

The boundary conditions are:

0'(0) = (dy] =0=>C,=0et ' (0)=0=>C, =0
dx x=0
So,
0<x<3:>y1(x):i( 2000 x° +6000x j
EI\ 3

0<x<3=6'(x)= é(— 2000x +12000x)
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For 3<x<5:

Indeed, the bending moment between 3 and 5m is zero, but the deflection in this zone is not zero so

the beam remains straight. The slope of this straight line is constant and it is equal to that obtained for

the 3m point, i.e. £(3):

18000
0<x<3=60'3) =———=6°@3
x (3) I (3)

3<x<5m 02(3)= 18000 _ Y () -y'(3) _ 7 (x)~(36000/ED)

EI (x-3) (x-3)
18000 36000 18000
3<x<5=yi(x)=| ——(x=-3) |+ = -1
X Y (x) ( I (x )] Z Z7 (x=1)
So,
18000
3<x<5= 9y (x)= -1
X ¥5(x) ZI (x—=1)
72000

i, =pi6),, =5

After superposition, the total maximum deflection will be equal to:

—-93750 N 72000 —21750

V) =l = O, #2365, =

EI EI
If E=200 x 10° Pa and /=113 x 10 m*, so:

|y(5)|Max =-9,6.10"m ~—0,96mm
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2.3. Method of moment area

Mathematical method based on the integration of a differential equation can determine the deflection
y(x) and the slope 8(x) of a beam at any given point. In this section we will see how with geometric
properties of the elastic curve of the bending moment, we can determine the deflection and slope of a
beam at a specific point. This latter method is called method of moment area. Figure 1I-4 gives more

detail about this theorem.

e
E—
e
[ E—
ot o
e
pram—
S

Deflection of

the beam
Tangent line at
D point
A
¢ v =do
Tangent line at C point
W(X) CG of Mf area
between C and D
Bending
moment
diagram o
\ e
A {¢ 0 B
Xa
Xp

Figure II- 4: Moment area theorem
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From the above figure, we like to measure the deflection y¢ or yp corresponding respectively to the C

and D points, we know that:
do(x) _ Mf(x)

1-17
dx EI. ( )
1
j do(x) = E—IZjMf(x)dx (11-18)
In the last Mf diagram and for the bending moment area comprised between C and D points Figure II-
4, we have:
6D 1 xD
do = g'[dﬁ(x) =0,-06, = R jc MF (x)dx (11-19)
Op —0.=0,,c (11-20)
xD
[ Mf ()dx = 4, 11-21)
xC
A
=0, B =L 11-22
bic = 2 (11-22)

z

Acp represents the area of the bending moment comprised between C and D points (see Figure 11-4).

From the above figure, we can plot:

Figure II- 5: Moment area theorem

The intersection point between the two tangents at the C and D points (Figurell-5) presents the
gravity center of the area Apc of the bending moment diagram Mf comprised between C and D.
df0=0,,.=0,—-0. is asmall angle, so, we can write approximately:
19(40) = 1(0,, )= 0, c =2 (11-23)
XD
Where X is the distance between the D point and the CG point of the 4pc moment area (Figure 11-4
& Figure II-5). Replacing the equation (II-22) in the equation (I1-23), we can find:

4 t
9.  =“pc _’pic 11-24
be = E T X (11-24)
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So, ¢, will be equal to:

Ay X
e =g (I1-25)

Now, we have understanding the calculation procedure of the distance 7, we can calculate the
deflection yp at D point (Figure 1I-6) referring to the areas (4z4 and Ap,) and with the help of the 734
and #p,4 calculated respectively at the B and D point. We have chosen the B point because the

deflection yjz is equal to zero in this point which is the roller support B.

Figure II- 6: The deflection at the D point

Firstly, we calculate 73,4 using the two tangents at B and A points presented in the below figure
(Figure II-7).

Figure II- 7: The distance tg/a

tp4 18 equal to:
A,,.X

ty  =—2—L I1-26
84 =g (11-26)
Where Xj is the distance between the B point and the CG point of the 434 moment area (Figure 11-8).
Mftx) 4
Area CG OfABA
Aps
[}
A ' B »X
— X

Figure I1I- 8: Xz and the moment area Aga
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Secondly, we calculate 75,4 using the two tangents at D and A points presented in the below figure
(Figure I1-9).

Figure I1- 9: The distance tp/a

tp/4 1s equal to:
_ Ay Xy
El

z

(11-27)

tD/A

Where Xp is the distance between the D point and the CG point of the Aps moment area
(Figure 11-10).

Mf(x) A CG of Apy
Area D
Apa ]
A = »X
Xb
Figure I1- 10: Xp anﬁ the moment area Apa
Using the following figure to calculate geometrically yp.
I
Lp
A = E
3 VDT
\\‘&.1‘ ¥
S
P to/a Ena
*x._\\‘ ]
T,
-
T
"'\___“ H

Figure I1- 11: Geometrical calculation of the deflection yp

Knowing Lp, tp/4, L and tz,4 and with the help of the two triangles AFE and ABH, we can write:
EF/AF =HB/ AB = EF = AF(HB/ AB)=L,(t;,,/L) (11-28)
Then yp will be equal to:
yp=EF—t, =L,y /L)—tp,, (I1-29)
Note that we can make the same previous manner to calculate the deflection y¢ at C point.
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Example:

In this example, we try to calculate the maximum deflection of a cantilever beam (see the below

figure) using the two methods studied previously (method of the double-integration and method of

the moment area).

7 P

Double-integration method:

X

O(x)zjﬁg(x)dxzi(P(x_l))dxz P (%—lx]

0 T, 0 EI. EI.
r P ¢ x? P (1 i
=(0(x)dx=— || ——Ix |dx=—| = x> ——x?
y(x) .([ (x)dx £l 2[(2 xe £l (6x 2x]
1 PP
= - __
V(D) = froa 3 EL

Moment area method:

Using the two tangents on the 4 and B points, the angle 6,,, = 8, because 8, = 0at x=0; the total

bending moment area Az4 and the distance Xp which represents the distance between the B point and
the gravity center of the area A4, we can find:

A, X
l = =7 :—BA B
V()= froax =54 El

z

Knowing that: Mf,,.,,=-PI ; so, Aps=(Mfmax. l)/2=-PZZ/2 » Xg=21/3, then:

Ay X 1 PP
l = =t = B4 B = ——
y( ) fmax B/ A E[Z 3 EIZ

We found the same f,,,, with two methods.

The moment area method has the advantage that is faster than the other methods.
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Directed works No. 2 “Deflection of symmetrical beams for pure bending”

Exercise N°1

The beam shown in the figure below is mounted on a lathe machine, the material of the beam is steel
with a circular section (diameter d=15 cm), the linear weight of the beam is 137 daN/m, the length of
the beam is | = 2m, the Young's modulus of the beam E=200 GPa. The beam to be machined can be
modeled as a beam placed on two supports A and B and solicited by its own weight which is

uniformly distributed over its entire length. Using the results of the DW N°1 series:

1) Determine the beam deflection equation y(x) by the method of integration of the differential
equation.

2) Deduce the maximum deflection of the beam.

3) What will be equal the value of this maximum deflection if we choose a diameter of 10 mm, what

can you conclude ?

g= 137daN/m

A" \ 4 A\ 4 \ 4 \ 4 A 4 \ 4 \ 4 \ 4 \4 \ 4 VB

STV 2m

Exercise N°2

A robot arm exerts a moment M=50000 daN.mm on the free end of an embedded beam (see the
figure below), the beam has a diameter d=75 mm, its length / is 500 mm.

1) Determine the equation of the deformation of the beam y(x) by the double-integration method and
the moment area method.

2) Deduce the maximum deflection of the beam by the two methods knowing that the Young's
modulus of the beam E=200 GPa.

‘Z

A
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Exercise N°3

An electrical contact relay is made from a blade (AB), parallelepiped (90 x 10 x 0.6mm), made of
brass and embedded in A. The operation is carried out in C by an electromagnet placed at the distance
h from the blade (the electromagnet is at rest). If the gap of the contacts at B is e = 3 mm, determine
the necessary force that the electromagnet must exert to establish contact.

From what values of h the contact is possible?

45 45

E Brass = 100 GPa.

0l
o

'%_
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Chapter III

Energetic methods for elastic systems
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Chapter I111: Energetic methods for elastic systems
1. Introduction

When a beam is subjected to several loads as bending, torsion, traction or compression, several
shearing and normal stresses will be generated at any internal point in this beam (Figure III- 1).

d F: Tensile
............ . Corce
y, .
~
~
Mf: Bending
Moment
QVV
:TV)C
TVZ
Uxz Oxx
@ Tox ‘/1_
Oz i
zZy

Figure III- 1: Stresses generated in a beam subject to different loads
The stress and the strain symmetrical tensors are equals to:
o, O, O E. &, &

— XX Xy Xz — XX Xy Xz
oc=|o0,, O, O,|,=&, &, &, (II1-1)
O-zx O-zy O-zz gzx gzy gzz

In the elastic zone of the beam material, the stresses function strains (Hooke's law) are given by:

E
S — |
O-xx (1+V)(1—2V)[( V)gxx +V(gyy +gzz )]
E
S — |
O-yy (1 +V)(1 —21/) [( V)gyy +V(€xx + gzz )]
E
e — -
O-zz (1 + V)(l _ 2V) [( V)gzz + V(gxx + g,W )] (III_z)
E
o, . = [
R S
E
O-‘CZ = (C;XZ
) I+v
o= ¢
Y 14y ¥
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Where E is the elasticity or the Young's modulus of the beam material and v is the Poisson's ratio.
(ITI-2) can be written in the matrix form as:

o, 1-v v v 0 0 0 &,

o, v l1-v v 0 0 0 g,

o, E v v 1-v 0 0 0 g,
= . (I11-3)

o, (+vfi-2v)f 0 0 0 1-2v 0 0 |[le,

(o 0 0 0 0 1-2v 0 g,

o, |0 0 0 0 0 1-2v|l¢€,

The elastic behavior law (the Hooke's law) of the isotropic material can be simplified to:
oc=Cs (I11-4)

C is the matrix of the material elastic constants.
From the equation (III-2), we can express the strains function stresses, so, the strain-stress relations

are given by:

E = %[Gxx - V(ny + 0. )]

1
gly = E [O-yy - V(Gxx + Gzz )]
1
gzz = zz - V(Gxx + ny )]
£ (I11-5)
_L+v
xy T Xy
_1+v
b4 E Xz
_I+v
gyz - To-yz
For the isotropic linear elastic material, the elastic shear modulus is equal to:
U= E (111-6)
2(1+v)
Equation (III-5) can be written:
1
E = E [O-xx - V(O-yy +0.. )]
1
gyy = E [O-yy - V(Gxx + Gzz )]
1
g, = = [O'ZZ - V(O'xx +to, )]
i (111-7)
1
g‘CZ = _O-XZ
Sy
1
Eyz = E O'yz
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Normal stresses produce volume changes and shear stresses produce a change in shape (distortion).
The relation o, = ,u(2gxy) can be writtenz = uy,,, where 7 is the shearing stress, ¢, is the shear

strain or the shear deformation and y,  is the angular strain. So, (III-7) relations can be expressed as:
1
= E [O-xx - V(O_yy +0, )]
1
gyy = E [O-yy - V(O-XX + GZZ )]

&, = %[O-zz - V(Gxx to, )]

; (I11-8)
__¥
7xy - P
Ty
Ve =
M
T
Ve = ;

2. General relation of the elastic strain energy
2.1. Work of axial loading

The below figure show the axial strain induced by the application of an axial force in a rod; the
objective is to show how we calculate the axial elastic strain work or energy of this rod.

F
e . A
AP = . C A ¥ N
i T “gl/ Elastic , Line sl .
T | ! ine slope =E'
-y zone\ !
iy Z X //: ly

= | e
. -
S Usx & Volume dV
H'-\-\.\_\__\_- - 4 A - "~ ~-~-=2
B % - dz p
- - -""‘-\-._\_\_ - B

= e e 1 \
HK‘%H -m-‘| : | > F\
“\\_‘_\ /\\F dy b
C, L--q- -
Axially loaded rod [12] dx '
duy
on=F/A
A
Elastic :
Zone™~~_| ! Line slope = FE
l P

»

Figure III- 2: Generated work and stress versus strain for axially loaded rod
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In the above figure, after the application of the force F, the rod deforms axially along the X axis by a
value of u,. The global translation work in Joule or N.m is equal to:

W=Fu, =F _ du, (111-9)
If we have a torque load T applied around the X axis (Figure III- 2) which generates an angle &_, then

the rotation work is equal to:
W=T.®8. (III-10)

When we differentiate the (I11-9), we obtain:
dW =F.du, (III-11)

In the elastic part /' = E'u_where E' is the rod stiffness in N/m.

(ITI-11) becomes:

dW =FE'u .du,

=>W= IE'ux.dux

:>W=1E'ui =lE'uxux (M-12)
2 2
1

=>W==Fu,
2

Note that if £ (Young's modulus in N/m?) is constant and if the rod cross-section area decreases from
A to dydz, therefore, the applied force also decreases from F' to F; with the same proportionality rate
of the decrease of this area; but the stress o remains exactly the same. Moreover, the extension

decreases from u, to du, with the same proportionality rate that exists between L and dx, but the
deformation ¢ remains constant. In addition, for an infinitesimal volume dV (Figure III- 2), the

work of the elementary force F will be equal:
1

aw = EFX du (IT1-13)
We know that:
F
. F__E F. =0 dydz (I11-14)
A dydz i
Also:
u du
E,.=—=—>">=du_=¢_dx (ITI-15)
’ L dx ’

Replacing equations (I11-14) and (III-15) in the equation (III-13), we can find:
dw = %O‘xx dydz.e  dx
=dW = %O‘n £ dxdydz (III-16)

= dW = %aﬁ.ede
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We know that for a tensile loading, the Hooke's law will be equal in the elastic zone:

o, =Eec_ (111-17)

Where E is the elastic tensile modulus, then the equation (III-16) can be written as:

aw = %E.gide (I11-18)
2.2. Work of shear loading

In the following figure, the shear force T, generates the shearing stress 7, and produces a shape

change in the below infinitesimal volume.
Y

¥

it ‘ I |=71,dvdz

o

Figure III- 3: Generated work for shear loading

As we have demonstrated latter, the work of the elementary shear force T, is written in the form of:

dW:%Ty.duy (II1-19)
We know that:
o = gy = I = T s (111-20)
Also:
du
26, =7, = dxy = du, =2¢ dx =y, dx (I11-21)

Replacing equations (I11-20) and (III-21) in the equation (III-19), we can find:
1
dw = Erxy dydz.y, dx

= dW = %T dxdydz

xy '7xy

(I11-22)
1
=dW = Efxy.]/xde

=dW =7_._dV

xy *“xy
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We know that for a tensile loading, the Hooke's law will be equal in the elastic zone:
Ty = MYy =2UE,, (I11-23)

Where u is the elastic shear modulus, then the equation (III-22) can be written as:
1
aw = 5 wyLdv (I11-24)
We can also write (I11-24) as:
2
aw =2u.e dV (I11-25)

2.3. Strain energy

The total elementary strain energy dU in Joule is equal to the sum of all the elementary axial and

shear works which are generated in the three directions (X, Y and Z). dU will be equal to:
dU =Y dW, (I11-26)
We can write the previous relation as:
du =dw +dW, +dW_+dW +dW_+dW, (I1-27)
dw.., dWw, and dW_, represent the elementary works respectively along the X, Y and Z axes.

dw,,, dW, . and dW _ represent the elementary works in the three directions X, ¥ and Z axes.

Xy 2 X:
1
= 5(0“ B A O T Y AT T, Y (111-28)
1
dU = E(O'xx Egt0o, &, +O_ & +2r & +27 & +27 &, )dV (111-29)
1
dU = b (cosn+0,6,+0 6. )+, 6, +T1 6. +1,5, )}dV (I11-30)

The total elastic strain energy U for a volume /" can be written as:
1
U= b (cocn+o,6,+0 6 )+ e, +r 6. +7, 5, )}dV (I11-31)

The strain-energy density « in Joule/m® or N/m? is defined as the total elastic strain energy U in Joule

divided by the structure volume in m’:

u=22 (111-32)
DV
Using the two equations (III-28) and (III-30), we find the strain-energy density u:
1
u= E(O-vcx 'gxx + O-yy .8}3} + O-zz -gzz + Txy -7)(}; + sz '}/xz + Tyz .7/),2) (III-33)
1
u= ) (O',u E,tT0,8, +0_ &, )+ (rxy £y, +TE, +T & yz) (111-34)
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The unit of u is N/m?”. Using the equation (III-8), the strain-energy density « can be expressed only in

function of stresses as:

u _E( ix -|—g§y +gi )_%(Gxxoyy +o0,0., -I-GZGH)-I-i(ny +Gi, +Gi) (I11-35)

Using the equation (ITI-2), the strain-energy density u can be expressed only in function of strains as:

u :—[(l—v)(gfx +Sjy +€fz)+ ZV(SHSW +E,8, +SZSR)]+ 2;1(8; +5jz +Sz2x)
1= 2v (I1-36)
" /Z (sm +e, +gzz)2 +;z(gfx +£f{y +gfz)+2,u(gfy +g§z +£3x)
—2v

Note that in a structural element or machine part with a nonuniform stress distribution, the

determination of the strain-energy density u is necessary.

3. Elastic strain energy in traction or compression

The below figure show the behavior law for a bar material subjected to a tensile test. The elastic zone

is limited by the yield stress oy and the yield strain &y.

—

X

r—=F/A
L, A g A

The area of this Oy[-~—--
elastic zone is equal

to yield elastic strain- | Line slope = £

energy density uy

‘5xx

&

-nhl
A

Figure III- 4: Tensile test and elastic zone

Using the equations (III-1) and (III-5), the symmetrical tensors of the stress and the strain are equals

in the case of a tensile test to:

o

XX XX

0 ¢,=-ve, 0 (I1-37)
0

Ql
© o o
o o o

™l

Il

0
0
Replacing the components of the previous tensors in the equation (I1I-3) of the strain-energy density

u, we find:

U=—0o_.& (IT1-38)
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The elastic strain-energy density u represents the area under the elastic straight-line of the stress-

strain diagram (Figure III- 4) corresponding to the values of o and ¢ .

(III-38) can be also written as:

2
Uslo g =19y (I11-39)
2 e T g

U is the elastic strain energy in Joule and V is the volume of the bar.
The maximum elastic strain-energy density signifies that a material can store or absorb energy
without yielding or without undergoing plastic deformation is given by the following relationship:

1

u, = ) Oy .Ey (111-40)

Where o, and ¢, represent respectively the material yield stress and yield strain, uy is called also the
yield elastic strain-energy density and is equal to the total area of the elastic zone (Figure III- 4). The
latter is also known under the name the modulus of resilience. The capacity of a structure to
withstand an impact load without being permanently deformed clearly depends upon the resilience of
the material used.

(II1-40) can be also written as:
1 1oy
Uy ==0,&V=—-2L
Y 2 Y=Y 2 E

Uy is the yield strain energy; the strain energy verification criterion allows us to know the energy U

4 (I11-41)

which can be applied without having a risk to deform plastically a mechanical part. The strain energy
criterion is given by:

FsxU <U, (111-42)
Where, Fs is the safety factor used to avoid permanent deformation. We can see in the (III-39)
equation, that there is no linearity between U and o, . For this reason; the safety factor Fis is applied

to the strain-energy U and not to the stress.

Example 1:

In this example we like to calculate the required maximum yield stress o, that a rod material should

have in order to does not undergo a permanent deformation and that after the application of an axial
force of magnitude F' equal to 33.74 kN, the elastic modulus of the material is £=200 GPa, the
diameter of the cross-section area of this rod is d=20mm and its length L=1.5m, the Fs factor of

g

<
/59

safety is equal to 5.
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Let's calculate firstly, the area of the rod cross-section:

d* 0,02*
R 71'
4 4

A=rx =3.14x10"*m?

The stress o is equal to:

o= F_ 33740 1.074%x10*N/m? ou Pa =107.4 MPa

A4 314107
The strain energy generated by the force F is equal to:

2 2 8
U=2p=L9 41 —05x 010 5 14x107 x1.5=13.6 Num = 13.6 Joule

2 E 2 E 200x10
As was indicated in the (III-42) equation, to have more safety, the value of the strain-energy U must

be majored by the safety factor Fis:
FsxU =5x%x13.6 =68 N.m

1 o2 1 o2
FsxU<=—22V or FsxU < -2 Ax L
2 E 2 E

Then, o, must be superior to:

9
oy >,/M:>ay >\/2X200X10 X136 S 24x10° Pa= o, > 240 MPa
AxL 3.14x107" x1.5

So, we must use a material with a yield stress o, higher than 240 MPa as not to have a permanent

deformation of the rod material after the application of the force F of 33.74 kN.

Example 2:

In this example we like to calculate the strain energy for a rod when it will be submitted to stress o
equal to 300 MPa, (E=200 GPa, A=90 square mm and L=3m):

U=—-0_ &, V=""TxV=——"xA4xL _
2 - 2 F 2 FE Oxx Before ela.suc
1 300 2 After elastic deformation
_ deformation

=— x90x 3000 = 60750 N.mm = 60.75 Joule
2 200000

After the application of this stress, the value of the

compression AL 1is:

AL = o.L
X |
AL = M =4.5mm X
200000
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3.1 Toughness modulus and resilience modulus

a) Resilience modulus

The modulus of resilience is equal to the total area of the elastic zone (Figure III- 5) which represents
the elastic strain-energy density uy, it represents the capacity of a structure to withstand an impact
load without being permanently deformed. Resilience modulus or uy gives also an index for the
ability of materials to absorb or store energy without permanent deformation. In the below figure, it is
clear that the material B is more resilient and resist plus to the plastic deformation (more storage and

absorption of energy) than the material A.

Oxx T
GXX
A
()4 T
oy----4 Line slope = E E
! Line slope = F !
//( Gix |
/ @ ] b %
g >
Low resilience modulus ] N / Y
uy (Jm’) High resilience
! modulus uy (J/m?)
Material A Material B

Figure III- 5: Modulus of resilience

b) Toughness modulus
The toughness is equal to the area under the entire stress-strain diagram (

Figure III- 6), it is defined as the ability of a material to absorb energy up to fracture or as the energy
per unit volume required to cause the material to rupture. It is clear that the toughness of a material is
related to its ductility as well as to its ultimate strength o, and that the capacity of a structure to

withstand an impact load depends upon the toughness of the material used. As before, material B is

more resistant to impacts than material A.

_ O A .
O 4 Material A xx? Material B
OUt-mmmmm e oo -
oyl----------—5 oy
Oy{----

1
1
1
1
1
1
1
1
1
1
:

‘gxx /

> 1

&y / &r | ! gxic

Low toughness modulus (J/m®) / 24 &

High toughness modulus (J/m?)

Figure III- 6: Modulus of toughness
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3.2 Castigliano theorem to calculate displacement

The Castigliano theorem allows calculating the displacements u,;, u,; or u.; in a point 7 respectively
along the three axes X, Y or Z of the structure. It is defined as the derivative of the total elastic strain

energy with respect to the force F;applied in this point i

Total
u, =Y (I11-43)
oF;

Referring to the figure (Figure III- 4) and knowing that o = E¢, the elastic strain energy in the case of

traction or compression loading is equal after indices simplification to:

2 2 2
UTensile — lJ‘UE dVv = lj‘o-_dl/ - l F_Adx = F_dx (III-44)
2) 20 E Y T2 Eaa 2EA

Example 3:

The bar shown in the figure is embedded at 1. Let £ be the Young's modulus of the material. The area
of the cross section is 34 between the points 1 and 2 and 4 between the points 2 and 3. This bar

carries in 2 a force with components (>, 0, 0) and in 3 a force with components (F73, 0, 0) [15].

7/ E, 34 E. 4
#Fg ——’3—}_’(

2 3
L L

_—
-

A —
Y
Y

Let calculate:
1. The expression of the normal force N(X):

> F,=0=Rx—F,-F,=0=Rx=F, +F,
O0<x<L=>N(x)=N,=Rx=F, +F,
L<x<2L=Nx)=Ny,=Rx—-F,=F,+F,-F, =F,
Then:

N,=F,+F, and N,, = F,

2. The total elastic strain energy U™ :

U Total J.
2FEA 2FEA

0

L Nfz IN No o L {
3

A

3. The displacements u , and u , respectively in the points 2 and 3:

total total
uﬂ:aU L —(F,+F,) ; _aU L —(F, +4F,)
oF, T 3E4 oF, " 3E4
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4. The flexibility and the stiffness matrices of this bar:

Flexibility matrix [C]:
uxZ_Lllej[C]_Lll
u,) 3EA|l 4| F, 3EA|l 4

Rigidity matrix [K |:

F — —
) R e e
3 - U L|-1 1
4. Elastic strain energy in bending

In the case of a bending loading that will held in the XY plane and around the Z axis, we have the
bending strain energy due to the normal tensile and compressive stresses generated by the bending
moments Mf. and the shear strain energy induced by the shear forces 7). The shear strain energy is

neglected compared to the bending strain energy. The bending and shear elastic strain energy is equal

to:
Bending 1 1 1 0-2 1 Tz
U =—jang+—jrde=—”j—dV+—j”—dV (I11-45)
2y 25 2 E 2 7
Mf . .. .
o= ];Z Y T = jy ; 1. and A are the inertia moment and the area of the beam cross section.

e _ 1 I”Mglzy s+
= '[Elzdx“‘yzds+ J—dx
zljﬁg[fw —j—dx (I11-46)

= j—d+ —dx
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Example 1:

The following beam of length L and constant section (quadratic moment: I;) is supported at 1 and 3
on a simple support. The beam is made with steel having a Young's modulus E. It carries in its center
(middle point 2) a force with components (0, F, 0).

—x
] 3
& FY [ L&

We neglect the influence of the shear force: Bernoulli model. Let calculate:
1. The expression of the bending moment Mf,(X):

O<x<§:>Mfl(x)=Mf12 zgx

S <L M) = Mf =2 (1 -3)

2. The total elastic strain energy U™ :

1 (L L F2 (e L
UTotal _ ( J' Mfédx+ J.Mf223de — ( J. xzdx+ .[(L—x)deJ
0

2EI. 0 L/2 8E1 L/2

z

F? (1 L/2 1 L
= —x’ ——(L—x)3
8EI_ (3 |, 3 L2
UTUtal _ F2L3
96EI

3. The deflection in point 2:

_aUt{)tal 3 FL3
¥ OF  48EI,

u

48E]

e 48EI . . .
= F = TX u,, = The bending rigidity is equal toTz; it depends proportionally to £ and 7,

and inversely to L.
4. Comparison of the deflection of the point 2 calculated with Castigliano theorem with the
deflection calculated by the double-integration method:

Using the double-integration method seen in the Chapter II, the deflection y(x) for this example is
equal to:

(x) L £x3 - L X
4 4EI_\ 3 4

Now, the maximum deflection f,,,, is located in the center of the beam, and then f,,,, is equal to:

FI}
=y (L/2)=—
S =01 (L12) 48E

We find the same expression obtained by the Castigliano theorem
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5. Elastic strain energy in torsion

5.1 Torsion rigidity and shearing stress induced by torsion

The twist angle & must be less than 1° over a shaft length equal to 20 times the shaft diameter. The
example presented in the below figure shows a shaft of diameter d, radius R and length L subjected to

a torque M.

— ¥max

Figure III- 7: Torsion loading and its generated shearing stress

We know that:
dM, =t(r)xrxds

(I11-47)

7(r) is the shear stress at a point on the cross-section area 4 which is located at a radius r from the

center of this area 4. ds is a small area of the total area A. Thus, 7(r) is equal to:

1) = ux y(r) = uxrx 42 with y(ry = 740 RO (I11-48)
dx dx L
(I11-47)= Jth :j,uxrxﬁxrxds
dx
do 2 do
:Mt—yxng‘r ds—,uxd—x[]7 (I11-49)
L o
:IM,dx:I,uxlp xdo
0 0
After integration we can write:
uxli,
M, = 0=k .0=F xR (I1I-50)
k: 1s the torsional rigidity in N.m, it is equal to:
1
K,, =227 (I11-51)
‘ L
The elastic shear modulus 4 is equal to:
p— (I11-52)
2(v+1)
The polar inertia moment /,, is calculated by the following formula:
d* =R
I =[r2as="% _ 111-53
g I 32 2 ( )
The twist angle @ in radians is calculated like this:
0= M, L (11-54)
uxlI,
65

Chapter III: Energetic methods for elastic systems



5.2 Torsion strain energy

We know that from equation (I11-48):

T(r) = uxrx a0 (ITI-55)
dx
And from equation (I11-49), we have:
M
a9 __M, (I11-56)
dx  uxlI,

Substituting (I11-56) into (III-55), we obtain:

7(r)= uxrx L

x1,
(III-57)
M, xr
=1(r)=
P
M
= y(r)= w) M, xr (I11-58)
uoouxi,
The torsional strain energy is given by:
Torsion __ 1 _ 1 2-2
U _Ejrde_Ej”—dV
Torsi ]
Uesen = j j 4dsdx =— xj j s =— [ ——Ldx (I11-59)
uxlI, 785 I uxli,
y M;?
UTUrswn — lj. t ]lx
27 uxlI,
The deformation energy stored in a shaft with a length L can also be equal to:
UTorsion — %kt .02 (III-60)

5.3 Castigliano theorem to calculate rotation

The Castigliano theorem allows calculating the rotations 6, 6, or 6, in a point i respectively

around the three axes X, Y or Z of the structure. It is defined as the derivative of the total elastic strain
energy with respect to the moment M; applied in this point i:

Total
o - U
oM .

1

(111-61)

Example 1:

We consider the x-axis shaft shown in the below figure. Let x# be the transverse modulus of elasticity
of the shaft material. The torsion constant is /, between the points 1 and 2 and 3/, between the

points 2 and 3. The point 1 is embedded; the points 2 and 3 carry a respective torque intensities C
and C; (see the below figure). Let calculate:

7/ C, C;

/ w1, w31, X

21 2 3

-
L

Ilp—-

L J

66

Chapter III: Energetic methods for elastic systems



1. The expression of the torsion torque M(X):

DM, =0=>M,-C,-C,=0=>M,=C,+C,
O0<x<2L=>M"?=M, =C,+C,
2L<x<3L=>MP=M,-C,=C,+C,-C, =C,
Then:

M?=C,+C, and M =C,

2. The total elastic strain energy U " :

. _2L(M112)2 SL(M123)2 B I , 1
U 1_!)' 7 dx+2jL2ﬂ3Ipdx_Mp {(C2+C3) +gc§}

3. The rotations &, and &, respectively in the points 2 and 3:

B aUl‘Otal _L(
x2 acz

total
20 0, )
3

p P

4. The flexibility and the stiffness matrices of this shaft:

Flexibility matrix [C ] :

(sz L [2 2 }[Czj L [2 2 } L [6 6}
== =[C]=—- ==
0.) w,|2 7/3|C, M, |2 7/3] 3ul, |6 7

Rigidity matrix [K |:
C, [ 7 -6, Lo, [T -6
{CJ:ZI_LL6 6}(9 j:[K]:[C] :ZI_L{—6 6}

6. General expression of elastic strain energy

In the case of a combined loadings, the global elastic strain energy for all the loadings (traction,

compression, shearing, bending and torsion) is equal to:

2 2 T 2 M 2 2 2
[ Globat :l[J'F dx+J.MfZ dx+j y dx+J~ , dx+J.Tde+J.M—tdx (ITI-62)
2\ EA EI. A EIl, A u,
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Directed works No. 3 “Energetic methods for elastic systems”

Exercise N°1

The beam shown in the figure below is embedded at 1. Let E be the Young's modulus of the material.
The area of the cross section is 2A between points 1 and 2 and A between points 2 and 3. The beam

carries in 3 a force with components (F, 0, 0).

7

2FA EA |_ﬁ> —>x

2 ‘ 3
.
1

1 L L

- -l

1) Determine the expression for the normal force N(x).
2) If E=200 GPa, A=40mm?, L=200 mm and the force F=100 N, then calculate the elastic strain

energy and the displacement us.

Exercise N°2

Two beams with circular and rectangular cross-sections embedded on their left ends respectively
undergo an extension on their right ends by forces with a magnitude of 3F and 2F.

1) If F= 70daN, the length 1=2m and the Young's modulus of the material of the two beams E= 210
GPa, calculate the strain energy that the two beams will undergo as well as the displacement of their

right ends.

NS =

A Rayon R=50 mm _ [ 3F i (h*b=50*10) mm> ) ) -

& »
|w »|

Exercise N°3

For the example of a bar shown in the below figure, establish the expression of the total strain energy
E™4 and calculate the displacement u,if F>=20kN ; F;3; =20daN ; F, = 20N ; 7/ = 2m; E =300

Déf

GPa;4=10 cm?

/]

/

/ E 2F

A S I |-

;2,4 E2 : A y

/

Ne v o 20 | ¢

O @ ® ©®
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Exercise N°4

The beam below of length L and of constant circular cross section with a diameter d, the beam is
embedded at the left point 1. It is made of steel with Young's modulus E. It carries at 2 a torque
around the z axis with components (0, 0, C). By neglecting the influence of the shear force (according
to the Bernoulli model):

1) Determine the expression for the bending moment Mf(x).

2) Calculate the elastic strain energy knowing that E=200000 MPa, d=30mm, L=0.2 m and the torque
C=100 N.m and thus calculate the rotationd, .

AY

“ "

Exercise N°5

The beam presented in the below figure has a length L and a constant circular cross section with a
diameter d, the beam is embedded at the left point 1. It is made of steel with Young's modulus E. It
carries at 2 a torque with components (0, 0, C ) and a force of components (0, F, 0). Neglecting the
influence of the shear force, determine:

1) The expression for the bending moment Mf(x).

2) The elastic strain energy knowing that E=200000 MPa, d=30mm, L=0.2 m, F=50 N and the torque
C=100 N.m.

3) Using Castigliano's theorem, determine the deflection of the beam at the point 2.
AY AF

1

[

t'i"--..C

DO
i
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Chapter 1V

Combined loadings analysis
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Chapter IV: Combined loadings analysis

1. Introduction

In the below figure, we present a typical combined shaft loadings (traction, torsion, symmetrical and
unsymmetrical bending) applied at the same time on a shatft.

Transverse
Twist load
Transverse
due to load _
torsional Axial
load load
Torsional _
load Torsional
load
Deflection due to
bending moment
Axial }
load Transverse

load

Figure IV- 1: Typical combined shaft loadings [16]

Example:

A shaft of a turbine rotates with a certain rotation speed and with a certain torque which can generate
in the event of an anomaly the twisting of the rotating elements, this shaft carries a compressor
upstream and a turbine downstream, their weights generate the bending of the shaft, the air sucked in
and compressed by the compressor causes the traction of the shaft. Therefore, the shaft
simultaneously undergoes a combined solicitation of traction, bending and torsion.

Compressor Wheel Exhaust Gas

Torsion
Torque

Air suction which
generates an axial
force

Turbine Weight of the

Wheel turbine
Weight of the
compressor

Figure I'V- 2: Compressor-turbine assembly [18]
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2. Unsymmetrical bending

In plane or symmetrical bending, the loads are applied in the planes of symmetry (xy or xz plane) of
the beam. This results that the beam being deformed in a single y or z direction of the symmetrical
plane, also called the bending plane or the deflection plane. In this part we will study the non-
symmetrical beams and the case of symmetrical beams not loaded in their symmetrical plane; the
resulting bending is called unsymmetrical bending.

The below figure shows different symmetrical planes in the cross-sections of different beams:

i ( ] [— ]
1 I B _I G L
G
f . i ! L— !
Two symmetrical One symmetrical No symmetrical
planes plane plane

Figure I'V- 3: Different planes of symmetry in beams

Note that if we apply a force in one of the symmetrical plane presented in the below figure, we will
have a symmetrical bending. Otherwise, if we apply a force in a plane different to the symmetrical
plane or we apply simultaneously two forces in two symmetrical planes, we will have an

unsymmetrical bending.

=) aam

=
] _L}____
n
=

1T L1

O |

i

0 £ 0L

(a) Symmetrical bending (b) Unsymmetrical bending

Figure IV- 4: Symmetrical and unsymmetrical planes and loadings

72

Chapter IV: Combined loadings analysis



The following figure presents the bending moments generated in a beam which has a flexure in the

two planes.

Ya

Figure I'V- 5: Flexure in two planes

In the above figure, the normal stress due to the unsymmetrical bending is calculated for the A point

by the following relationship:

M, M
Oy = ]fy If : (IV-1)

MY, is the bending moment around the z axis.

Mf, is the bending moment around the y axis.
I and I, are the inertia moments of the beam cross-section respectively with reference to z and y axes.

The maximum normal stress caused by an unsymmetrical bending or that is located in unsymmetrical

beam is given by the following formula:

M max M
Urx max = fy Zmax + fz e ymax (IV_2)
' I, I

Vou OF 2z, are the farthest distances from the new neutral plane generated by the unsymmetrical

bending.

2.1 Neutral plan and deflection in unsymmetrical bending

The neutral plan corresponds to the plan in which the stresses are equal to zero. At any point (y,z)

located in the neutral plan (Figure IV- 6), we can write:

a:M—ﬁ}z+M—ny:0:>M—ﬁ}z:—M—ny:lztana:—zM—fy:a:—arctan Iz Mpy
Iy Iz Iy Iz z Iy Mfz Iy Mfz
a = —arctan EM = —arctan iz _1 = —arctan £ctgH (Iv-3)
Iy Mfsin@ Iy tan @ Iy
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v

Figure IV- 7: Neutral plan

The @ angle is found between the z axis and the plan of the applying force.
The o angle is found between the z axis and the neutral plan.
The A and C points are the farthest points from the neutral plan, in these points we found the

maximum stress of traction or compression.

74

Chapter IV: Combined loadings analysis



Example:

The below beam is subjected by a force applied on a plane inclined with respect to the plane of

symmetry xz by an angle of 70°. The width of the beam is b=10 mm and its thickness h is equal to

30 mm. Determine:

1) The inertia moments of the beam cross-section /. and /, respectively with reference to z and y axes.

2) The maximum bending moments Mf, ox and Mf: yax.

3) The maximum tensile stress.

4) The angle o of the neutral plane with respect to the z axis and the coordinates of the farthest point

from this plane.

V4

I=1m

A

7,/

—

X

1) 1;and |y
3 3
Iz = bh” _10.30° _ 22500mm* =2,25.10* m*
12 12

3 3
5 _hb® _30.10

ly=——= =2500mm* =2,5.10"m*
12 12

2) Mfy max and Mf; max
Fy=Fsin@=9397N ; Fz=Fcosf =342N
Mf e =—Fy*1=-939TN.m

Mf e = —Fz*1=-342N.m

MfMllx = \/(Mszax2 + MfyMaxz) = IOONm
We can calculate Mf ., directly also by:
Mf e = —F *1=—100N.m

Mf.,,.. = Mf,,. sin@ =—100*sin70 = —93,97N.m

Mf ptaxe = Mf o €080 = =100*cos 70 = =34,2N.m
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3) Maximum tensile stress:

In the calculation, we take the absolute value of the maximum bending moments

_ Mf yMax

O-Max -

Ml . M b My h 342 001 9397 0,03
Z Max + YViax = + - -9 + )
Iy Iz Iy 2 Iz 2 25100 2 225107 2

O e = 1,31.10° Pa =131 MPa

The maximum compressive stress is equal to -131 MPa.

4) The angle o of the neutral plane in relation to the z axis and the coordinates of the point

furthest from this plane:

Iz 1
tana = ——
Iy tan @

2,5.10”° tan70

Iz
= o = —arctan| —
(]y tan &

-8
] = —arctan( 2,25.10 ! j =-73,02°

Or otherwise:

F=100N

M, Mfz M, Mfz Iz M, Iz Mj
a=—ﬁ/z+—fy=0:>—ﬁ/z=——fy:>1=tana=———ﬁ):>a=—arctan ——ﬁ/
Iy Iz Iy Iz z Iy Mfz Iy Mfz
Iz Fz*x Iz Fcos® 2,2510° , 34,2 .
o = —arctan| — = —arctan| — —— = —arctan = =-73,02
Iy Fy*x Iy Fsin@ 2,510 93,97
i A
.
Neutral Plane “
Y
Negative angle / A: Farthest point which
o \ will incur the maximum
. tensile stress
+131 MPa
____________ . L » 7
Positive angle& i
B: Farthest point which will incur :
the maximum compressive stress : \ . .
-131 MPa | The coordinates of point A are (z=5, y=15) mm
' . The coordinates of point B are (z=-5, y=-15) mm
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3. Tensile with bending loading

We can simply apply an inclined force at the end of the beam and in the plane (xy). This force will be
broken down into two forces F which generates traction and F), which generates bending. The below
beam will then be subjected to the tensile and bending loadings, the maximum stress generated will
be equal to the sum of the maximum stress due to the bending and the maximum stress due to the

traction.

Figure IV- 8: Beam subjected to traction and bending loading

The maximum stress will be equal to:

4F,

traction

4
s Mo @V2) iy = [ y2ds _m
: 64

O =

or max 0’ (IV-4)

z

The neutral plan in this case is at a distance equal to v' from the axis of the beam, the stress o is zero

in this neutral plane (see the below figure).

- &.V 0=~ M. v
A . :
New neutral . Neutral
/ plane
plane
kﬁ = - > + —_
G G
m N N
= ——-—-{ LR A o =L
LS S
Flexure + Tensile = Tensile + Flexure

Figure IV- 9: Neutral plane in the tensile-flexure type loading [2]
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4. Torsion with bending loading

The shaft presented in the below figure is supported by two supports A and B, it is solicited by
flexure and torsion, the motor generates a motor torque C which causes a torque in the shaft, the

weight P of the beam generates its bending.

Support A Support B 47V

<
<

Figure IV- 10: Shaft subjected to torsion and bending loading

The motor power is equal:
P =C.o with =27 N/60 (IV-5)
P, is the power motor in Watt.
C is the motor torque in N.m.
 1s the rotation angular speed of the motor in rad/s.

N is the rotation speed of the motor in rpm.

When we design a shaft we must respect several criteria: mechanical resistance criterion, rigidity or
deformation criterion, critical speed criterion, fatigue criterion, etc. Thus, it is necessary to avoid
unbalancing the shaft and misalignment of the axes. Sometimes, we are forced to optimize the mass
of the shaft to reduce the cost of its manufacturing.

The resistance calculation makes it possible to size the shaft by determining the appropriate diameter
of the shaft to avoid possible breakage. If the diameter of the shaft is imposed, then we only check the

mechanical strength of the shaft.

Whatever the method of calculating the mechanical resistance of the shaft, we must follow the

following steps:

1. Calculation of the support reactions.

2. Determine in the vertical and horizontal planes the distribution of the bending moments Mf.
and Myf, and the torsion moment M, along the shaft.

3. Add the vertical and horizontal bending moment diagrams to draw the resulting bending
moment Mf diagram. We thus determine the maximum value of the resulting bending moment

and the dangerous section of the shaft.
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4.Calculate the maximum equivalent moment Ai such that:

Mi=\Mf +M,. (IV-6)

max f max
5. Determine the distribution of axial loads and their maximum value.

6. Calculate then the maximum normal stress o due to the bending by the following

XX max

relationship:

4
O-XX max = fmax (d / 2) ; IZ = 72: d
1 64

z

(IV-7)

7. Calculate then the maximum tangential stress 7 due to the torsion using the following

Xz max

relationship:

M@ xd
)

Xz max > Tp
Ip

r (IV-8)

8. Finally, we use either the Von Mises or Tresca criteria to calculate the minimum diameter of

the shaft or to check the mechanical strength of the shaft.

The Von Mises criterion is generally written like this:

(axx -0, )2 + (O'yy -0, )2 +(o. -0 )+ 6(0'fy + sz +o’, )= 2ofq (IV-9)

o, <0 (IV-10)

adm

The simplified Von Mises criterion according to our case is:

\/(Gfr max + 3sz max ) < O-adm (IV'I 1)
The Tresca criterion indicates that:
\/(O-)fx max + 4732 max ) < Gadm (IV-IZ)

When the traction force is equal to zero, the minimum diameter d of the shaft can be calculated by the

following relationship:

32Mi

7O 4gm

d>3

(IV-13)
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Example: Combination of flexure and torsion [13]

A speed reducer is made up of two straight toothed gears and two shafts; the assembly is driven by a
motor with a power of 15 kW and rotates at a speed of 1000 rpm.

The driving shaft connected to the motor is placed on two bearings A and B and carries the pinion 1
which has a pitch diameter d; = 70 mm, while the receiving shaft is supported by two bearings C and
D and carries the toothed wheel 2 having a pitch diameter d> = 210 mm, the yield stress of the two

shafts is o, = 800 MPa, the safety factor Cs is equal to 2.

1) Knowing that the pressure angle o = 20°, determine the tangential and radial forces F; and F,
exerted on the contact teethes of the two gears,

2) Calculate the reactions at the supports C and D.

3) Plot the diagrams of the bending moments M and the twisting or torsional moment M; along the
shaft, thus, determine their maximum moments.

4) Determine the minimum diameter of the receiver shaft using the Tresca criterion.

I—»Z
< X

Motor-.- _\Jr ........ _ ________________________ _ _______ /P inion 1

> |
W |
Q
o
=t
b

140 m 260 mm

A
—N
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Solution:
1) Knowing that the pressure angle a = 20°, determine the tangential and radial forces F; and
Fr exerted on the contact teethes of the two gears,

P=Cw ; C is the motor torque (N.m), P =15 kW et wis the angular speed in rad/s. The rotation
speed N is equal to 1000 rpm, and then @ is equal:

0= 2LN =104.66 rad/s
60

P 15000

® 104,66
The tangential force F; applied at the contact of the pinion 1 tooth with the tooth of the gear wheel 2
is calculated by:

C=F, *%:Ft =2C/d, ;the pinion 1 have a diameter d; =70 mm

=143.31 N.m

Then, F;=4094.57 N
The pressure angle o = 20°, the radial force F,. will be equal:

F. =F*goa=1490.3N

2) Calculus of the C and D support reactions.

Mm
R(jx RDx
A A
C D
lFt
140 mm | 260 mm
< =|<
YF=0=Rqy+Rp —F, =0 ....... eq(l)
%
Y M,=0=F *0.14=R, *04=R,, = 4094577018 _ 143318

3

eq(1)= R., = F, — R, =4094.57—1433.1=2661.47TN

Rey. Rpy
Rey Rpy
A A
C D
S KoY Te
140 mm | ' 260 mm
< ;|<

DF=0=>Ry +Rp —F, =0 ...... eq(2)

~1490.3*0.14

> M,=0=F *0.14=R,*04 =R, = =521.6N

¢q(2)= Ry, = F, = R, =1490.3-1433.1 = 968.7N
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3) Plot the diagrams of the bending moments M and the twisting moment M; along the shaft,
thus, determine their maximum moments.

Diagrams of Mf, et Mfy:

Mf s max= Ry X 0.14
Mf, a

Mf s mar=372.6 N.m

z
140 mm 260 mm
Mf 'y ma=Rey x 0.14
Mf,
A
Mfy max=135.6 N.m
z
140 mm E 260 mm
Mfmax = \/fozmax + Mfyzmax = 396.5 N.m
The torsion moment M, is equal:
M,=F, x %: 4094.57x0.105 =429.93 N.m
M, A
Minaex=42993 Nm | ____________
z
140 mm E 260 mm
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4) Déterminer le diamétre minimal de ’arbre récepteur en utilisant le critére de Tresca.

The allowable stress o, or the practical resistance R, of the shaft is equal to o, /Cs; Cs is the

safety coefficient equal to 2 and o, is the shaft material yield stress equal to 800 MPa. Then, the

admissible stress or the allowable stress o, is equal to 400 MPa.

2 2

The Tresca criterion is \/ o

zz max + 4sz max < O-adm

My 12 M, di2

O 2z max =T 4. 5 Tox max =T 4 A
r.d” /64 r.d” /32
a> \/L[ M2 M
T X Gadm
d >24.6 mm
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Directed works No. 4 “Combined loadings analysis”

Exercise N°1

The below beam is subjected by a force applied on a plane inclined with respect to the plane of

symmetry xz by an angle of 50°. The width of the beam is b=30 mm and its thickness h is equal to

60 mm. Determine:

1) The inertia moments of the beam cross-section /; and I, respectively with reference to z and y axes.
2) The maximum bending moments Mf,,.x and Mf. 4.

3) The maximum tensile stress.

4) The angle a of the neutral plane with respect to the z axis and the coordinates of the farthest point

from this plane.

V4

17

/=5m R,

A

~
~
N

N

n .
Z
<
—

=100N

Exercise N°2

The stranded cable below is used to maintain a lifting system which is not shown in the below figure,
the cable weighs 1650 kg, the cable is considered to have a circular section with a diameter d=15 cm,
the length of the cable is 12 m, With the help of a tensioner, the cable is stretched by a tensile force
equal to 10 kN.

1) Calculate the maximum stress generated in the cable.
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Exercise N°3

A motor with a power of 1.5 kW rotates with an angular speed of 3000 rpm, the motor turns a shaft
mounted on two simple supports A and B (see the below figure), the shaft carries a toothed wheel

which weighs 10 kg and rotates with the same speed as the motor. The material of the shaft is steel,

its allowable stress o, =400 MPa.

1) Draw the bending and twisting moment diagrams and deduce the diameter of the shaft.

Support B
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Solution of hyperstatic structures

86

Chapter V: Solution of hyperstatic structures



Chapter V: Solution of hyperstatic structures

1. Introduction

A system, or a beam, is said to be hyperstatic whenever the reactions exerted by the connections
cannot be calculated from the fundamental equations of static 2F=0 & 2M=0. The reactions can only
be determined after writing other equations obtained from the deformations of the system. Several
methods are then used to solve hyperstatic systems.

2. Example of hyperstatic systems:

Example 1:

The following figure concerns a bridge used for loading merchandises. The maximum allowable load
1S Fax. A circular cross-section profile was used for the three bars and a rectangular profile was used
for the beam that carries the load. The system has 3 supports, so it is considered as hyperstatic
system.

! 25a -
= 2 ] Rod cross-section used for
-lh—ul- 2d -t the 3 bars (1, 2 and 3)
A A‘ fJi
[ 75 | “y

g }

k- o ,I};

|:|Lg..g.]

o 0

o I 2 A
A I””m |I w i Beam cross-section
. z
F Sa L A +

BR— Ll
S 7

Figure V- 1: Beam system for carrying loads [5]

In the following example, the action of the air on the wing is schematized by a distributed load ¢g. The
airplane wing AC is embedded in the airplane cabin and supported by an undeformable bar BD. The
embedding moment at the point C and the actions exerted by the two supports B and C make this
wing hyperstatic.

¢=110daN.m™

I I A

3140 Q__- 2310 it
5 450 ‘

[ )
Y

Figure V- 2: Hyperstatic wing [2]
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Example 2:

We like to calculate for the following Example 2 the embedding moment A, at the A point and the
reactions R4 and Rp respectively at the embedding point A and in the support point B.

Y
F
A l B X

L2 L/2

ANNNNNN\N

Figure V- 3: Cantilever beam supported by an additional B support at the right extremity

The unknown moment and reactions are presented in the following figure:

ARA RB y

G
S

A

‘ B

L/2 L/2

ANNNN

My

Figure V- 4: Unknown moment and reactions
Using the static equilibrium equations, we have:
Y F,=0=>R,+R,~F=0=R,+R,=F

L
dYM, =0=>M, +RBL—FE:O

So, we have 2 equations and 3 unknowns (M, R4 and Rp), the previous system of equations cannot be
solved, it is called hyperstatic system. To solve the previous equation, we should use the calculation
methods of the beam curvature seen previously as the integration method, the superposition method,

the energetic method; we can use also other method as the force method, etc.
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3. Degree of hyperstaticity

The degree of hyperstaticity N is defined as:
N=U-S (V-1)
U is the number of unknowns
S is the number of the static equilibrium equations
To classify a structure if it is isostatic, labily or hyperstatic in the most of cases is enough count and
evaluate the following difference:
N-S<0 =  Hypestatic system
N-S§S=0 = Isostatic system
N-S§>0 = Labile system
The second equation can implies lability and/or isostatic condition, in this case is necessary a deeper

study of the structure to understand which category belongs the structure.

Examples:

& E 5
v A A
R TR T
 1l5m . 1.5m > «—LSm . 15m «—Llom . 15m |
N=3-3=0 N=4-3=1 N=5-3=2
Isostatic system Hyperstatic system Hyperstatic system

Figure V- 5: Degree of hyperstaticity N for some systems
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4. Solution of hyperstatic structures

4.1. Integration method to obtain the beam curvature equation and to resolve the hyperstatic
system

The fundaments of the method is based on the calculation using the integration method the deflection
at the support when the unknown reaction was applied and then we make this deflection zero and we
will deduce its value.

Let calculate the unknown reactions and moment for the previous hyperstatic system shown in the

Figure V- 3. We remove the support B and we calculate firstly, the deflection of the B point as is
indicated in the following Figure V- 6:

Figure V- 6: The deflection of the hyperstatic cantilever beam
Static equilibrium equations:
Using the static equilibrium equations, we have obtained:
Y F,=0=>R,+R,-F=0=R,+R; =F

> M, :O:>MA+RBL—F§:O:>MA+RBL:F§

Bending moments:
O<x<L/2=Mfi(x)=R,x-M,
L/2<x<L=Mf,(x)=R,x-M, —F(x—gj = (R, —F)x—(MA —F£j

2
Beam deflection by integration method:

d’y(x) _ Mf(x)

» El. .....eq(l)
Knowing that, d);,_(x) =0(x)
X
eq(l) - de(x) — Mf(x) — 9(x)= IMf(X) I
dx EI. EI.

And then, y(x) = [ 6(x) dx
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For 0<x<L/2,we have:

M, 1
0, (x) = I gll(zx)dx = El I(RAx—MA )dx

zﬁl(x):ﬁ(%Rsz —MAx+C1)

:yl(x)=jel<x>dx=§(%

R X’ —%Msz +Cx+ Czj

C, and C, are constants to be determined by the boundary conditions.
We know that in the embedding point A, we have:

»0)=0=C, =0

6,(0)=0=C, =0

1 (1
= 01()(7)2 E(ERAXZ —MA)CJ

= y,(x) zﬁ(éRAf —%Mszj

For L/2 < x < L,we have:

0,(x)= | le;](zx)dx = Ell | [(RA —F)x- (MA - F%ﬂdx

0, ()= (l(RA e —[MA _ngﬁq]

TEL\2

= y,(x) = jeg (x)dx = ﬁ[%(zg —F)x’ —%(MA —F%sz +Cyx + 04]

C, and C, are constants to be determined by the boundary conditions.

In x=L/2, we have:

6,(L/2)=6,(L/2)and y,(L/2)=y,(L/2)
If 6,(L/2)=6,(L/2), then we have:

L (1 L (1 LY 2
:>491(L/2):E(ZRAL—MAJ=GZ(L/z)zg(—(RA—F)L—(MA—FEJ+ZC3]

4
2
= C, :—FL—
8
1 (1 L L
jeZ(x):E_[z[E(RA —F)x2 _[MA —FEJX—FKJ
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If y,(L/2)=y,(L/2), then we have:

1 (1 1
=y (L/2)=—| —R,I’—=M [} |=y,(L/2)=
y1( ) E]Z(48 A 3 4 j yz( )
3
L i(RA ~F)I —l(MA —F£jL2 —FL—+C4

EI_| 48 8 2 16
3
:>C4=+FL—
48

2 3
= y,(x) :L[l(RA —F)x’? —%(MA —F%)xz —F%x+F%j

In fact, in reality y,(L) =y, = 0 because we have a support B at x=L, then:

1 (1 1 L L L
= y,(L) :E(E(RA ~-F)I —E(MA —FEJLZ —F?L+F4—8] =0

z

= 1RAL3 -M, L= Lpp
3 24

Now, we have three equations with three unknownsR,, R, and M ,.

R,+R,=F
= MA+RBL:F§

1 1
~R,L’-M [’ =—FL
3 24

The solution of the above system of equations gives:

3

M,=+—FL
16
R, =lF+iMA =+£F
8 L 16
R, :lF—lMA =F-R, =+iF
2 L 16

We can now replace the obtained values of the reactions R, and R, and the moment M , in the
bending moment equations Mf,(x) and Mf,(x) to plot the bending moment diagram along the beam,

and in the deflection equations y,(x) and y,(x) to schematize the beam curvature.
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Bending moment diagram:

0<x<L/2=Mf(x)=R,x—M, =(F/16)(11x-3L)

L/2<x<L=Mf,(x)=(R,-F) —(MA —F§j= (F/16)(~5x+5L)

Mftx)

The maximum bending moment Mf,. is located at the embedding zone and is equal to + %FL .

Curvature of the beam deflection:

1, 1

1 2 F 3 2
IR M | = (11 —9L
(@) EIZ(6 Ty ij 96EI (11 -5x*)

z

1 (1 1 L I’ L
¥)=—| —(R, —F)’——| M, - F= x> - F=—x+F=—
¥2(x) 512[6( = F) 2( 4 2j 8 48)

= (-5x® 41507 —120%x+20)
96EI

We can use Matlab [6] or SigmaPlot 14.0 to plot the previous deflection equations y,(x) and y,(x).

Matlab Program:

ezplot('1 1#x/3-9%x/2")
ezplot(-5*x"3+15%x/2-12%x+2")

Or
x=-200:0.2:+200
y1=11*%x./13-9%x."2

y2=-5%X A3+15%x.2-12%x+2
plotyy(x,y1,x,y2,'plot");
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The curves of y,(x) and y,(x)are presented in the same below graph:

— y_7(x)
— )
=
<
>
=
g 01
<
<
> .
T T T T T
-200 -100 0 100 200
X
Zoom
1 —®
— v,

S

<

>

=

A

-]

X

= 01

0,0 0,2 0,4 0,6 0,8 1,0 1,2
X

We interest only to x varies from 0 to L. Consequently, the curvature of the beam deflection will have
the following shape with a minimal deflection located at x=0.553L.

0 -4
]
N
>
=
=
«<
<
=
>
— 0K
i — &
T T T T
0,0 0,2 0,4 0,6 0,8 1,0
X
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4.2. Energetic method to calculate the deflection and to resolve the hyperstatic system

Like before, we remove the support B.

ARA RB

B :
M, L2 L2
AR v
X
A~
7
My 7

Static equilibrium equations:

Using the static equilibrium equations, we have obtained:
Y F,=0=>R,+R,~F=0=R,+R,=F

XM, =0=>M, +RBL—F§=O:>MA +RBL=F§
Bending moments:

O<x<L/2=Mf(x)=R,x—M |, =(F_RB)X+L(RB _gj

L/2<x<L=Mf,(x)=R,x-M, —F(x—%} = (R, —F)x—(MA —F%j

=—Ryx+R,L=R,(L—-x)
The total elastic strain energy of bending U™ :

If we neglect the energy due to the shearing, the bending elastic strain energy is equal in general to:

2
[ Bending _ % I %dx, then:

1 L/2 L
y =—[ [ Mfpax+ | Mfzzdxj

2E‘]z 0 L/2
1 L/2 F 2 L ,
yha — F-R LR, ——1|| d -R R.L) d
2EI .(.;{( B))H‘ ( B 2)} X+L_[2( pX T Ky ) X
3
U = 481‘E] (8R2 —5FR, + F?)
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The deflection yg at the B point calculated by the energetic method:

aUtota/ L3
- = 16R, — 5F
Y5 = ToR, T 48E1 6z, -sr)

z

In fact, in reality y, =0 because we have a support B at x=L, then:

L3
Yy =0= g (16R, —5F)
= (16R, —5F)=0
= R, :+iF

16

From the previous static equilibrium equations, we have:
5 11
R, +R,=F=>R, =F-R,=F-—F=—F
4 4 ? 16 16
=R, = +£F
16

MA+RBL:F£:>MA =F£—RBL:lFL—iFL:iFL
2 2 2 16 16

M, =+ FL
16

With the energetic method, we obtain the same three unknowns R,, R, and M , previously
calculated with the integration method. We can now replace the obtained values of the reactions R,
and R, and the moment M , in the bending moment equations Mf (x) and Mf,(x) to plot the

bending moment diagram along the beam.

Bending moment diagram:

0<x<L/2= Mf(x)=R,x—M, =(F/16)(11x-3L)

L/2<x<L= Mf,(x)=(R, —F)x—(MA —F%) = (F /16)(=5x +5L)
Mf(x)
+iFL
32
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4.3. Numerical calculation of the previous hyperstatic example and comparison of the

numerical results with the several theoretical results obtained previously

If we take in the following example F=100000 N and L=1m; the beam has a radius R=50 mm and
was made of steel with a Young's modulus £ equal to 210 GPa.

ARA RB’ y

F
N S R
‘ L2 4

L2
>

ANNAN

M,y

\4
A

a) Theoretical calculus of the unknowns Mpa, Ra, Rg, the maximum bending Mf.x and the
minimal deflection of the beam Y.

With the help of the two previous theoretical methods, we know that:

M, = +%FL =18750 N.m.

R, =1r+3m, -+l p — 68750 N,
8 L 16
1.1 5
R,=—F—-—M,=F-R, =+—F =31250N.
20 L 16
3

Mf, .. = +EFL =18750 N.m.

max

As it was indicated precedently, the minimal deflection y,,;, is located at x=0.553L=0.553m, we can

calculate y,,;, using the following equation

aR*

F
xX)=——|=5x> +15Lx* =121 x +2L° ) with I_ =
y2(x) 96EIZ( ) ’

Digital Application (App):
I.=49x10°m*and y . =,(0.553)=-9.042x10~* m=-0.9042mm.

b) Numerical results (obtained by RDM6) of the unknowns Ma, Ra, Rg, the maximum bending
Mfmax and the minimal deflection of the beam Y.

Using the RDM6 software [7], we could plot the variation of the bending moment and the beam
deflection (see the below figures). A very good agreement was found between the theoretical results

and the numerical results obtained by the RDM6 finite element software.
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A schematic of the hyperstatic beam:

Fichler Unités Afficher Modéliser

DEEEELGO0 BEREESSSE R [

In node A we have R, = 68750 N and in node B we have R, =31250N.

Variation along the beam of the bending moment obtained by RDMG6:

Fichier Unitds Afficher Modéliser Résultats Optimiser Outils

DEEEELGON BEREESSSE R [

(] HEa] [

Deflection of the beam obtained by RDMG6:

Fichier LUnités Affi Maodéliser Résultats Optimiser Chtils

NEEEE BOR ERarSaEE R
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4.4. Superposition method to resolve the hyperstatic system

We like to calculate the unknowns moment and reactions of the following hyperstatic beam using the

superposition method.

Y
‘? ;
gl
A l T J k. T i L i ::,- X
H
7@;7 E
Rad q ,Rs
i k| ¥ r L ¥ ,l"f
A |- ! \, HF} Mg
N

Figure V- 7: Hyperstatic cantilever beam subjected by a uniformly distributed load

Static equilibrium equations:

Using the static equilibrium equations, we have obtained:
Y F,=0=>R,+R,—qgL=0=R,+R, =qL
L r
DM, =0=>M, tRL-q—=0=>M,+R,L=q—
Bending moments:
O<x<L:Mf(x):RAx—%x2 zgxz - R x
The following figure shows the application of the superposition theorem in order to obtain the

deflection at the A point when we remove the A support.

jl...-q

. 7 q
Pt/ 7
y4=0] patal a= 22

BE/

q

d
— AT

PR B

B
MRS

Figure V- 8: Calculation of point A deflection using the superposition procedure
The total deflection of the A point (Figure V- 8) is equal to:
R, gL
3EI. 8EI

z z

Ya=ViatVos =

In reality y, = 0 because we have a support at the A point, then y, =0

R, gL 0 g 3L

3EI. S8EI. 108

y,=0=
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Using the previous static equilibrium equations, we can deduce Rp and M3 as:

3qL
R,+R;=qL=R,=qL-R, :qL_%

Bending moment diagram:

0<x<L:>Mf(x):RAx—%x20r Mf(x):%x2 - R ,x

= Mf(x) =L —?"ITL
Fy
A ¥ l ¥ i i AR
. Eg
T . |
g -
Mrll. | 2
.4Mf2:+qé
A1 |
3L/8 (] ] ‘ Y
0 i | |
D
_-9ql®
ARNETT

2
The maximum bending moment Mf,,, is located at the embedding zone and is equal to + 9
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4.5. Initial parameters method to resolve the hyperstatic system

The beam presented in the following figure is solicited by a non uniformly distributed load, we use

the initial parameters method to calculate the reaction R4 and the maximum bending moment Mf,,,..

Figure V- 9: Hyperstatic cantilever beam subjected by a non uniformly distributed load

g ="Tx

Bending moments:

0<x<L= Mf(x) =RAX—KJEq(x)dx]x§:l

0

= Mf(x)= RAx—l:[ji%xdexg} = RAx—ix3

The equations of the deformed beam:

1 q
EI O(x) = EI 6, + | Mf (x)dx =EI 6, + — R ,x* — ——x*
0(x) = E16, + [ Mf (x)dx =ELO, + R ,x* = '

_ _ 1 3 q 5
EIy(x) = ELy, + [ EI.6(x)dx = EI_y, HELO + R =
The boundary conditions are: y(L)=6(L) =0 and y(0)=y, =0

L
O(L)=0= EI_6, +lRAL2 -4 p R, =1
2 24 IL(g
1 q ;4 q
Ly=0=El.§,L+—R, [’ ———L 0, =
yL) R T T 0 " 120EL
gL q 3
=>Mf(x)=—x——-Xx
/@) 107 6L
. L . ql’
Mf, .. 1s located at x = —and 1s equal to .
’ 5 155
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Directed works No. 5 “Solution of hyperstatic systems”

Exercise N°1

The beam presented below is embedded at its both ends A and B, it is subjected to a force F applied

in its gravity center.

1) Using the integration method and the energetic method, determine the vertical reactions and the
embedding moments at the supports A and B.

2) Plot the variation of the bending moment along the beam and determine the maximum value of the
bending moment.

3) Determine the minimal deflection of the beam.

3

Exercise N°2

Using the superposition method, determine the unknowns reactions and embedding moment of the

following hyperstatic beam.

¥ YW WV Y Y Y ¥V Y ¥ ¥YNX

i
3
5o

Exercise N°3

Using any method you know of solving hyperstatic systems, calculate the unknowns reactions of the

following hyperstatic beam.

Al N | (s

*iJU2=1DDﬂmmEﬂUQ=1DGGmmL"

J‘ g =100 daN.m™!

AL ¢ ¢ Yy * L Yp

FAN 0

' U2=1m - 2=1m

2 T =
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Appendices

Al-Area inertia moment [5]

;BB ;bR
A M 12 i N 36
- h Beb Ly B b
ol ¢ I = B | I, =
A% BT T 277 48
Y 2 Y 3
Y- Wy:b-k | B Wy:b-h
=" b & 6 - h - 24
2 2
h-b 5 heb
W, = _z W, =
z 6 €—3h z >4
2 e ;P bl by by
A ¥ 4g B +b,
$ P 9 i
1- // Ih _K Bl Al bt
- 7. 12 2b + by
| 5
by a2 b
- - 3 B+by
« RN 1, =01098-(r,* —1n*)—0,283.5,2. 42 21
3 m{ b4 R o1
P‘i i
B Ezi_ra2+ra-rl-+ri2
Y- iz 7 HE
d
Fom fom B ly=l=—-(d" —d;")
¥ z G4 & 64
Td |- _ T 4 g4
Wy:Wz: ) Wy_32d(d ;")
32
b
3 bi
Iyzjzg}r'd -k - 3 BB bR
8 A i 12
E_dz 5 A1 A
y "z : % W, = 1
* # 1. y &h
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A2-Reactions, moments and deflection [14]
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A3-Beam deflections and slopes [12]
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A4-Materials properties [12]

Steel
Structural (ASTM-A36) 7860 400 250 145 200 T2 11.7 21
High-strength-low-alloy
ASTM-AT09 Grade 345 7860 450 345 200 77.2 11.7 21
ASTM-A913 Crade 450 7860 550 4350 200 i) 11.7 17
ASTM-A992 Grade 345 7860 450 345 200 T2 11.7 21
Quenched & tempered
690

ASTM-AT09 Grade 690

Cast Iron
Cray Cast Tron
4.5% C, ASTM A-48 7200
Malleable Cast Iron
2% C, 1% 5i,
ASTM A-47

12.1 0.5

T

(88 Cu, 8Sn, 47Zn)

Manganese hronze 8360 21.6 20
(63 Cu, 25 Zn, 6 Al, 3 Mn, 3 Fe)

Aluminum bronze 8330 16.2 6

(81 Cu, 4 Ni, 4 Fe, 11 Al)
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Magnesium Alloys
Alloy AZS0 (Forging) 1800 | 345 160|250 45 16 25.2
Alloy AZ31 (Extrusion) 1770 255

& o

130|200 45 16 252

Monel Alloy 400(Ni-Cu)
Cold-worked 8830 675 585
Annealed 8530 550 220

180 139
180 13.9

B &
518

Western hemlock
Shagbark hickory
Redwood

Plastics

Nylon, type 6/6, 1140 144 50
(molding compound)

Polycarbonate 1200 122 110

Polyester, PBT 1340 135 150

- (therm 0] lasl:lc)

Granite (Avg, values) 2770 7.2

Marble (Avg. values) 2770 10.8 k
Sandstone (Avg. values) 2300 9.0

Class, 98% silica 2190 80
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