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Preface  
 
 
The actual course presented in this document concerns the Mechanical 

Strength of Materials 2 (Résistance des Matériaux 2) which is a 

continuation of the first course of the Mechanical Strength of Materials 1 

titled (Résistance des Matériaux 1) previously seen by students in their 2nd 

year of Mechanical Construction License. This course fully respects the 

entire program given in French language and cited in the canvas of the 3rd 

year of Mechanical Construction License. 

 

We will approach in this course initially a reminder on pure bending of 

symmetrical beams, then we interest to the various methods of calculating 

the deflection of beams, energetic methods, combined loadings analysis, 

and the study of hyperstatic structures. This constitutes the main objective 

of our course.  
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General introduction  
 

This course constitutes a solid support for 3rd year License students in Mechanical Engineering 

branch, specialty Mechanical Construction, especially in terms of calculating the strength of 

materials, particularly with regard to the calculation of the mechanical resistance and the sizing of 

static or hyperstatic beams subjected to pure, unsymmetrical or combined bending. 

 

In the Chapter I, we have presented a reminder concerning the calculation of the pure beam bending.  

Calculation of inertia moment, trenchant force or shear force and bending moment along the beam are 

presented in detail in this course. In addition, bending moment variations for beams subjected to 

uniformly and non uniformly distributed load are given in this document in order to calculate the 

tensile stresses in the beam, and then extract the maximal value of this stress. This maximum stress is 

compared to the yield stress of the beam material to see if this beam will be fractured or not. Finally, 

the calculation with demonstration of the tangential or the shear stress which is due to the shear force 

is show in this document.    

 

In the Chapter II, different methods of the calculation of the beam deflection have been shown, we 

can cite for example: double-integration method, superposition method and moment area method. 

Several examples have been presented to better understand each method separately.  

 

Chapter III is interested in the study and calculation of the elastic strain energy of different 

structures subjected to traction, compression, shearing, bending and torsion loadings. The knowledge 

of the elastic strain energy or the elastic strain-energy density and the strain energy verification 

criterion has two advantages; the first advantage is that we can calculate exactly the necessary strain 

energy to deform elastically a part and the second advantage is that this knowledge allows us to know 

whether or not our part will undergo plastic deformation after it absorbs impact energy.  

A material that has a very high resilience modulus is more resistant to impact and does not deform 

plastically, also it absorbs and stores more elastic energy. On the other hand, a material that has a 

very high toughness modulus will need very high energy to make it break 

Using the Castigliano theorem based on calculation of the derivative of the total elastic strain energy, 

we can calculate the displacement, rotation or the deflection at a given point of a bar, shaft or beam. 
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Chapter IV concerns the study of the unsymmetrical beams or the beams subjected to an 

unsymmetrical load, in other words, the beams which are not solicited in their planes of symmetry. 

Also, beams or shafts can be subjected simultaneously to many combined loadings as traction with 

bending or torsion with bending. In these cases, the use of the Von Mises or Tresca criterions is 

necessary to calculate the equivalent generated stresses in the structure and to verify if this latter can 

withstand the applied loading or not. Moreover, these criterions allow us to size the beam or the shaft 

and to calculate the minimum diameter with which the shaft can not deform plastically or breaks.    

 

Finally, in the Chapter V, we have presented the different methods used to solve the hyperstatic 

system. Hyperstatic system is defined as a system in which its static equilibrium equations are unable 

to find the generated internal forces and their reactions in the structure. The hypestatic system is 

recognized when the number of the unknown actions of the supports is higher than the number of the 

static equilibrium equations of this system.  

 

Also, the end of each chapter is completed by a directed works (DW) in order to allow students to 

apply the theoretical knowledge acquired in the course in the form of exercises. 

In order to give to our students a good learning, and to make them interested to the real problems that 

will encounter in the industry and put them face to face with these problems, several examples of 

industrial applications of SOM (Strength of Materials) were presented to them in this document. 

Finally, this course will provide to our students the basic notions and useful fundamental knowledge 

and information allowing them to choose, calculate and size the beams as best as possible. In 

addition, this module will help students acquire good study skills and competency that they will need 

in the world of work. Also, it aims to give them the fundamental knowledge of engineering 

principles, plus strong practical, theoretical, and transferable skills.   
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Chapter I: Pure bending of symmetrical beams 

1. Introduction  
 

After that the students have seen in their 2nd year of License the basic notions of calculation in 

resistance of materials of structures solicited by different loadings as tensile, compression, buckling, 

shearing, bending, etc; we remind them in this chapter, the principle of calculating of the mechanical 

resistance and sizing of beams in pure and plane bending. 

2. A reminder of the different types of supports 

2.1. Pinned support or fixed joint 
 

Figure I-1 gives a schematization of the pinned support and its reactions. The reaction RAx along the x 

axis and the reaction RAy following the y axis are not zeros. 

 
 

Figure I- 1: Pinned support or fixed joint  [17] 

2.2. Roller and simple supports or mobile joint 
 

Figure I-2 gives a schematic diagram of the roller support and the simple support, and their reactions. 

The reaction RAx along the x axis is zero because the support is free to move along the x axis; while 

the reaction RAy following the y axis is not zero and this for both connections. 

 
 
 
 
 
 
 
 

 
 

 
 
 

Figure I- 2: Roller support or mobile joint  [2] &  [17] 
 

Roller 

Simple (Frictionless 
surface, i.e. Cof=0) 

Beam 
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2.3. Fixed support or embedding  

 
Figure I-3 gives a schematization of the fixed support or the embedding and its reactions and 

moment. The reaction RAx along the x axis and the reaction RAy following the y axis are not zeros. 

Also, the embedding moment MA is not zero either.  

 
 

Figure I- 3: Fixed support or embedding  [17] 

3. A reminder on the calculation of the inertia moment of beam cross section  
 

The following figure shows some types of beam cross sections. Each section has characteristics and a 

specific use for it, for example solid cross sections are more rigid than hollow cross sections; on the 

other hand, the latter are not heavy. 

 

Figure I- 4: Typical cross sections of beams  [3] 
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3.1. Calculation of the inertia moment of the beam cross-sectional area  
 

Figure I-5 presents the beam axes and its cross sectional area.   
 
 
 
 
 
 
 
 
 
 

Figure I- 5: Beam with its symmetrical axes Y & Z and neutral axis X 
 

The inertia moment of the cross plane beam section with respect to the Z axis is defined by the 
following integral: 

 dSyI z
2          (I-1) 

Iz is the inertia moment of the cross-sectional area with respect to the Z axis and also with respect to 
the center of gravity of the cross section of the beam. If a beam made with a linearly elastic material 
is subjected to pure bending, then, the Y and Z axes are principal centroidal axes. Therefore, Iz will be 
equal to Iy. The polar moment of inertia is equal to: 

         yzp III          (I-2) 

Some moments of inertia of some beam cross-sectional areas are indicated in the following table: 
 

Cross-sectional areas Moments of inertia Iz 
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Table I- 1: Inertia moments for some beam cross-sectional areas 
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4. Industrial examples to calculate shearing forces and bending moments 

4.1. Example of a beam bending calculation of an hoisting drum 
 

The example presented in the following figure concerns a hoisting drum; it is composed with a drum 

mounted on a cantilever beam; the drum can lift a heavy load by a cable wrapped on it. Also, an 

equivalent schematic (beam-support-load) of the hoisting drum system is presented in the following 

figure.   

In dynamic, the following system must be sizing using the vibration and fatigue laws, but in static, 

the strength of materials laws should be used and this is exactly what will be presented in this chapter.    

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure I- 6: Cantilever beam of the hoisting drum  [4] 
 

In the above figure, W presents the weight of the load to be lifted; l is the length of the cantilever 

beam. The cross-sectional of the beam is rectangular having a width equal to b; the thickness of this 

cantilever beam is h.  

To dimension this beam, we must search initially the maximum bending moment, then we calculate 

the maximum bending stress and we compare it with the material yield stress of this beam (the detail 

will be seen in section 7 of this chapter). To determine the maximum bending moment or the 

variation of this bending moment along the whole beam, we must already make at the beginning the 

forces and moments equilibrium to calculate the unknown reaction and embedding moment. 

 

W 

l 

h 
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Figure I- 7: Determination of the embedding reaction and moment 
 
Using the above figure (Figure I-7), we can determine the following static equilibrium equations and 

deduce later the unknown embedding reaction Ry and embedding moment Mc:  

mgWRyWRyF Y  00/   

m is the mass of the load,  g is the gravity; 

lWMcWlMcM c  00/  

4.1.1. Calculation of the shearing forces T(x) 
 

a) Rules to determine the shear forces or the trenchant forces T(x) 
 

We call the shear force (T) the internal transverse force and the bending moment (Mf) the internal 

moment. We try to determine these two parameters but at any point located in the longitudinal axis of 

the beam i.e. as a function of x. As a general rule when we cut the beam in two parts at x (Figure I-7), 

the shear force will be equal to the sum of the forces which are found in the section (0-x), the forces 

that are headed toward the upward are positive and the forces directing downward are negative. For 

our example, we obtain a constant T(x) equal to:  

max)(0 TRyxTlx   

If I plot the shear force T(x) as a function of x, I then obtain the following curve: 

 
 
 
 
 
 
 
 
  
 
 

 

Figure I- 8: Variation of the shear force T(x) along the beam 
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4.1.2. Calculation of the bending moment Mf(x) 

 
a) Rules to determine the bending moment Mf(x)   
 
As a general rule, when we cut the beam in two parts at x, the bending moment will be equal to the 

sum of the moments and the forces moments existing in the part (0-x) with respect to x. The positive 

direction that must be followed to calculate the bending moments is that shown in black arrows in the 

figure below: 

 
 
 
 
 
 
 
 
 
 
 

Figure I- 9: Determination method of the bending moment for the cantilever beam 
 
For the previous example, we have:  

)()(0 lxWWlWxMcxRyxMflx   

If I plot the bending moment Mf(x) as a function of x, I then obtain: 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure I- 10: Variation of the bending moment Mf(x) along the beam 
 
The maximum bending moment Mfmax is found in the embedding zone, it is equal to Wl, this tells us 

that the embedding zone is the most dangerous zone, i.e. the zone in which the beam would risk 

breaking in the first place. 
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4.2. Other industrial examples of beams with their equivalent (beam-support-load) 

 
Note to that we apply the same manner used in the latter example to determine shear effort and 

bending moment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure I- 11: Industrial examples of beams solicited in bending  [2] &  [5] 
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5. Uniformly distributed load 
 

A beam loaded with a uniformly distributed load means that it supports a constant linear load along 

its length (i.e. a constant load divided by the length of the beam).  

To better understand, here is an example illustrating the previous definition in the figure below. The 

weight of these different men who sit on the I-shaped beam can be modeled by a linear distributed 

load applied to the entire beam or by a point load applied to the centroid of the beam. 

 
 

 

 
 
 
 
 
 
 
 
 

 
 

Figure I- 12: Illustrative example of uniformly distributed load q  [18] 
 
We show in the following examples of T(x) and Mf(x) calculation for a beam solicited by a constant 

and uniformly distributed load q (N/m): 

 

Example 1: 

 

 

 

 

 

 

 

Static equilibrium equations:  

   qlRRdxxqRRF BA

l

BA 0)(0
0

 

22
0)(0/

0

ql
RqlRA

ql
RlRxdxxqM BBB

l

A    

Their total weight is W in 
Newton 

q=W / L 

or 
W 

A B

l

q(x)= q
RBRA Y 

X 
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Trenchant force: 
 

qx
ql

xTdxxqRxTlx
x

A   2
)()()(0

0

 

 

The shear force diagram is shown in the below figure: 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
Bending moment: 
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The bending moment diagram is shown in the below figure: 
 

 
 

 
 
 
 
 
 
 
 
 

 

The maximum bending moment Mfmax is located at a distance of l/2 from the support A, it is equal to 

ql2/8.

─

T(x) 

x l/2 l 

+ 
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+

8/2ql  

+



 
   
Chapter I: Pure bending of symmetrical beams 

21

Exemple 2: 

 

 

 

 
 

Static equilibrium equations:  

kNRRdxRRdxxqRRF BABABA 1100200)(700
3

1

3

1

   …. eq(1) 

  kNRRxdxRxdxxqM BBBA 5003*207003*)(1*700/
3

1

3

1

 
kNReq A 6050110)1(   

 
Trenchant force: 
 

kNRxTx A 60)(10   

10202010)()(70)(31
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Xx
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The shear force diagram is shown in the below figure: 
 

 
 

Bending moment: 
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The bending moment diagram is shown in the below figure: 
 

 
 

The maximum bending moment Mfmax is located at a distance of 1m from the support A, it is equal to 
60 kN.m. 

A B 
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6. Non uniformly distributed load 
 
A beam solicited by a non-uniformly distributed load means that it supports a variable linear load 

along its length (i.e. a variable load divided by the length of the beam). Uniformly varying load as for 

example triangular distributed load or trapezoidally distributed load can be presented by a linear 

polynomial q(x). Another type of non uniformly distributed load exist which is irregular varying load. 

 

Example 1: 

 

 
 
 
 
 
 
 
 

x
l

q
xq )(  

 
Static equilibrium equations:  
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The equivalent system of our above system is as follows: 
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Trenchant force: 
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The shear force diagram plotted by Matlab  [6] is shown in the below figure: 
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Bending moment: 
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The bending moment diagram plotted by Matlab  [6] is shown in the below figure: 

 
 

 
 
 
 
 
 
 
 
 

 
 

The maximum bending moment Mfmax is located at a distance of 3/l  from the support A, it is equal 

to 2
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Numerical application with RDM6:  
 
Using the RDM6 software  [7], we could plot the variation of the shear force, the bending moment, the 

normal stress due to bending and we can also extract the beam deflection.  

If we take for the previous example, a length l equal to 1m, a radius R of the beam equal to 10 mm 

and a load q equal to 1000 N/m. The distance from the support A where Mfmax is located is equal to 

578,03/ l m; we then obtain with our previous theoretical calculation a maximum bending 

moment equal to:  

2
max

39

1
qlMf   , so after calculation, we find Mf max= 64.15 N.m.  

 
Using formula (I-4) which will be seen later, the maximum stress is given by the following 
relationship:  
 

 
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4/

2/
39
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*
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2
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max R

Rql

I

yMf

z 











 = 40,85 Mpa = 4,085 107 Pa. 

 

Note that this stress is located at the same point of the beam where the maximum bending moment 

was located.  
 

A very good agreement was obtained between the theoretical results and the numerical results 

obtained by the RDM6 finite element software. Here are some results obtained by RDM6. 

 
Variation along the beam of the shear force obtained by RDM6: 
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Variation along the beam of the bending moment obtained by RDM6: 
 

 
 

Variation along the beam of the normal stress obtained by RDM6: 
 

 
 

Deflection of the beam obtained by RDM6: 
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Rapport de calcul RDM6 
 
+-----------------------------+ 
| Flexion d'une poutre droite | 
+-----------------------------+ 
Utilisateur : BELOUFA 
Nom du projet : C:\Users\BELOUFA\Documents\exemplecours rdm2 
Date : 18 septembre 2023 
+---------------------+ 
| Données du problème | 
+---------------------+ 
+-----------+ 
|  Matériau | 
+-----------+ 
Nom du matériau = Acier 
Module de Young = 210000 MPa 
Masse volumique = 8000 kg/m3 
Limite élastique = 250 MPa 
+---------------+ 
|  Noeuds [ m ] | 
+---------------+ 
Noeud  1 :  x =   0.000 
Noeud  2 :  x =   1.000 
+-----------------------+ 
|  Section(s) droite(s) | 
+-----------------------+ 
Noeuds 1 --> 2 
  Rond plein : D = 20.00 (mm) 
  Aire = 3.14 cm2 
  Moment quadratique : Iz = 0.79 cm4 
  Fibre supérieure : vy = 10.00 mm   Wel.z = 0.79 cm3 
  Fibre inférieure : vy = 10.00 mm   Wel.z = 0.79 cm3 
Poids de la structure = 25.13 N (g = 10.00 m/s2) 
+-----------------------+ 
|  Liaison(s) nodale(s) | 
+-----------------------+ 
Noeud  1 : Flèche = 0 
Noeud  2 : Flèche = 0 
+-------------------+ 
|  Cas de charge(s) | 
+-------------------+ 
Charge linéairement répartie : Noeuds = 1 -> 2    pyo = 0.00   pye = -1000.00 N/m 
+-----------+ 
| Résultats | 
+-----------+ 
+---------------------------------+ 
| Déplacements nodaux [ m , rad ] | 
+---------------------------------+ 
Noeud    Flèche     Pente 
  1    0.000000  -0.011789 
  2    0.000000   0.013473 
Dy maximal = 0.00000E+00 m à x = 0.000 m 
Dy minimal = -3.95442E-03 m à x = 0.520 m 
+------------------------------------+ 
| Efforts intérieurs [ N  N.m  MPa ] | 
+------------------------------------+ 
 
Ty = Effort tranchant    Mfz = Moment fléchissant   Sxx = Contrainte normale 
 
Noeud       Ty          Mfz          Sxx 
 
  1      -166.67        -0.00       -0.00 
  2       333.33         0.00        0.00 
 
Moment flechissant maximal = 64.15 N.m à 0.578 m 
Moment flechissant minimal = -0.00 N.m à 1.000 m 
 
Contrainte normale maximale = 81.68 MPa à 0.578 m 
Contrainte normale minimale = -81.68 MPa à 0.578 m 
+---------------------------------+ 
| Action(s) de liaison [ N  N.m ] | 
+---------------------------------+ 
Noeud  1   Fy =   166.67 
Noeud  2   Fy =   333.33 
+----------------------------+ 
| Informations sur le calcul | 
+----------------------------+ 
Pivot minimal =  4.94800842940110E+0003 
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7. Normal tensile and compressive stresses due to the bending moment in a beam 
 

All the definitions and examples shown previously to calculate the variation of the bending moment 

in the beam are useful now to determine the variation of the mechanical stress along the beam. The 

knowledge of the variation of the mechanical stress in the beam is necessary to find the dangerous 

section in the beam which corresponding to the maximum bending moment or the maximum stress; 

this latter is compared to the yield stress of the material or to the material allowable stress in order to 

see if the beam will be fractured or not. If we notice that the beam does not resist to the loading that 

we have applied to it, then, many solutions can be deployed as: resize the beam again, change it form, 

use another resistant material, decrease the loading magnitude or change the place where this loading 

is applied, add more supports, etc.    

The figure below shows the normal tensile and compressive stresses generated in a beam subjected to 

bending. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure I- 13: Normal tensile and compressive stresses in a beam loaded in bending around the Z 

axis 
 

Note that the axis of the neutral axis always passes through the axis of the gravity center or through 

the centroid of the cross-sectional area; ymax is the farthest distance from the neutral fiber axis (Figure 

I- 13). 
 

The normal stress for any variable x and y is given by following formula (formula which will be 

demonstrated later in the Chapter II):  
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),(
zI

yxMf
yx


                               (I-3) 

The maximum normal stress due to bending is equal to:  

                   maxmax
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                    (I-4) 

 

CG (y) 

Y 

dS  

Y 

Z 

MfZ 

MfZ 

Compressed 
zone 

Tensioned 
zone 

Neutral fiber 
The stress  is zero in this 

fiber 

Compressive 
stress 

Tensile stress 

X 
Z 

Y 



 
   
Chapter I: Pure bending of symmetrical beams 

29

If we take our example illustrated previously in paragraph 4.1 or in the below figure, we obtained a 

maximum bending moment Mfmax equal to Wl, thus the inertia moment of the beam cross-sectional is 

equal to 12/3bhI z  . Thus, since the bending takes place around the Z axis, and according to the 

arrangement of the beam presented in the figure below, the distance ymax will then be equal for our 

case to h/2. 

 
 
 
 
 
 
 
 
 

Figure I- 14: The deflected shape of a cantilever beam with it cross-sectional 
 
Let us now apply the formula (I-4); we obtain a maximum stress equal to: 
 

 
6

2max bh

Wl
 in N/m2 ou Pa. 

The calculated maximum stress will be compared either to the yield stress Y of the beam material or 

to the admissible or allowable stress of the beam material which is calculated by the following 

formula: 

Cs
Y

adm


                                 (I-5) 

With Cs is the safety factor or coefficient. Cs is between 2 and 4 for normal constructions and it is     

≥ 10 for constructions which would endanger the lives of people. 

If max > adm , then the beam will break or will undergo plastic deformation, otherwise, the beam will 

undergo elastic deformation.  

We give in the below table (Table I-2), some essential mechanical properties (including the yield 

elastic limit Y) for some metallic materials: 

 

 
 
 
 
 
 
 
 

 

Table I- 2: Properties of common engineering materials at 20°C  [3] &  [8]  [3] 

Beam cross-sectional 

   b 
 h 

   Y 

  Z 

Z 

X 

Y 

U (MPa) 

Yield and ultimate Stress 

Y (MPa) 

100-500 

70-550 

200  [9] 

140-620 

200-1700 

760-900

2000 
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8. Tangential stress or shear stress due to the shear force in a beam 
 
Due to the bending moment Mfz, a shear force T(x) (Figure I- 15) and a normal stress   will be 

created. FN being the normal force corresponding to the x axis, due to the normal stress   acting on 

the near face; FF = FN+dFN is due to the normal  stress  d  acting on the far face; and dFB is 

the force due to the shear stress   acting on the bottom face. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I- 15: Shear stresses in the beam  [10] 
 

The normal force FN can be calculated by: 

 
2/2/

   
h

y

h

y

N dybdSF       (I-6) 

As we have indicated in the equation (I-3), zIyMf /. ), equation (I-6) can be written as: 
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The force dFB  due to the shear stress   is given by:  

dxbdSdFB  '          (I-9) 
The forces equilibrium gives: 

    NBNNBNFBN dFdFdFFdFFFdFFF  000         (I-10) 

Substituting (I-8) and (I-9) in (I-10), we can obtain: 
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Table I- 3: Mean and maximal shear stresses for circular and rectangular cross-sectional of 
beams  
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Directed works No. 1 “Pure bending of symmetrical beams” 
 

Exercise N°1 
 

The beam presented below is supported at its both ends A and B and it is subjected to bending by two 

forces Fr1 = 284 N and Fr2 = 852 N.  

1) Calculate the vertical reactions at the supports A and B.  

2) Plot the variation of the shear force over the entire length of the beam.  

3) Plot the variation of the bending moment along the beam and determine the maximum value of the 

bending moment. 

 

 

 
 
 
 
 
 
Exercise N°2 
 
The beam shown in the figure below is mounted on a lathe machine, the material of the beam is steel 

with a circular section (diameter d=15 cm), the linear weight of the beam is 137 daN/m, the length of 

the beam is L = 2m, the practical strength or allowable stress of the steel is adm=200 MPa. The beam 

to be machined can be modeled as a beam placed on two supports A and B and stressed by its own 

weight which is uniformly distributed over its entire length.  

1) Plot the variation of the shear force over the entire length of the beam.  

2) Plot the variation of the bending moment along the beam and determine the maximum value of the 

bending moment. Calculate the maximum bending stress. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

A B 

Fr1 

Fr2 

60 mm 140 mm 60 mm 

A B

2 m

q= 137daN/m
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Exercise N°3 
 
The device shown in the figure below makes it possible to bend a hollow tube (3), the bending force 

F applied by the bending head (7) is provided by a hydraulic cylinder, the tube is placed on two 

rollers (4) and (5). The yield stress of the tube material is Y =340 N/mm² or MPa.  

1) Determine the maximum shear force in the tube.  

2) Calculate the average shear stress in the middle of the tube, the dimensions of the tube section are 

shown in the figure below.  

3) Calculate the maximum normal stress generated at the tube as a function of the bending force.  

4) Then determine the effort required to bend the tube. 

 

 

 

P.S: Dimensions are 
given in mm. 
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Exercise N°4 
 
A tower crane jib is made up of two IPN type beams. The weight P of each beam is equal to 0.5 tones 

and the load to be lifted Q weighs is 2 tones, the material of the beams is steel with an elastic limit   

y = 800 MPa. The safety coefficient Cs is equal to 2.  

1) Calculate the moment of inertia I of the section of the IPN beam.  

2) Determine the maximum bending moment in each beam.  

3) Calculate the maximum stress, do you think these beams will hold this weight Q. 

 
 
 
 
 

 

Q
P 

Q/2 

Q/2 

P 

P 

L=20m 

h1=b1=5 mm 
h=b=200 mm 
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Chapter II: Deflection of symmetrical beams for pure bending 

1. Demonstration of the normal stress calculation in flexure 
 

The engineer is interested not only in the stresses caused by loads on a beam but also in the deflection 

produced by these loads. It is sometimes mentioned that you should not exceed a certain value of the 

maximum deflection. In the figure below (Figure II- 1), before the deformation of the beam, all the 

top, neutral and bottom surfaces are equal, but when we apply a constant moment on the beam, the 

highest compressed surface mp will bend downward with a distance less than that of the neutral 

surface nn' (the latter will not undergo any deformation), and the tense surface m'p' will bend 

downward with a distance greater than that of the neutral surface nn', this will give the appearance of 

an angle d . Therefore, r is the radius of curvature of the neutral fiber. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure II- 1: Normal stress in flexure  
 
nn' =SS1 = initial length before deformation.  

S’S1 is the elongation of the fiber along the X axis which is located at a distance of y from the neutral 

axis. 

S1 S’ S 

O  
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n n' 

d
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Before 
deformation 

After 
deformation 
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We have:  
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Referring to the below figure, we have: 
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Figure II- 2: Normal force in flexure Erreur ! Source du renvoi introuvable. 
 

Since the moment of the normal and the tensile forces about the neutral axis is zero, then, their sum is 

equal to zero (the sum is represented by the integral form): 
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The bending moment Mf is equal to: 
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2. Deflection of beams with constant cross-section 
 

The below figure shows the deformed shape of a beam subjected to bending.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure II- 3: Deflection of a beam 

 

We take note that dxds  . Indeed, in practice we only tolerate very small deflections, so the 

curvature of the beam must remain almost flat and the angle d will be too small, we will then have: 

dx

dy
tg                   (II-11) 

y is the deflection of the beam at x point.  
 
Knowing that:  

  dxdrrdxrdsddtg //1//                (II-12) 

Let us substitute  in the last equation:  
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We know from the equation (II-8) that: 
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Let's compare the two previous equations, we can write the following differential equation:  
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When, y(x) represents the variation along x-axis of the deflected beam. 
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2.1. Double-integration method of the beam deflected differential equation 

 
The calculation procedure of the beam deflection formula and the maximum beam deflection using 

the integration method is presented in this paragraph. Below is an example that will show the 

calculation of the beam deflection using this method. 
 

Example 1: 
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The maximum deflection fmax is the optimum of the previous function y(x), it is equal to: 
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Note:  

 

EIz represents the bending rigidity or the bending stiffness (modulus of elasticity or Young's modulus 

multiplied by the surface moment of inertia of the cross section of the beam), so if E or Iz increases, 

we will have a low deformation and a low deflection f.  

 

The slope of the deformation of the beam at x=l/2 is zero because (dy/dx) at l/2 =0 and therefore the 

maximum deflection fmax is at l/2.  

 

The maximum angle is found at the supports A and B, it is equal to: 
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2.2. Method of superposition 
 

When we have a beam subjected to many loads (forces, moments, uniformly load, etc), the final slope 

or deflection at any point on this beam is equal to the sum of different deflections or slopes calculated 

separately for each load. 

Example:  
 
We want to determine by the superposition method the resultant of the maximum deflection of the 

steel console beam presented in the below figure: The profile has a mass m of 120 kg/m, which gives 

a weight W equal to 120kg *5m*g = 6000N for 5m (the gravity g is taken 10 m/s2); therefore a 

uniformly distributed load of 6000/5=1200N/m will be applied to the beam, the final load q will be 

equal to 1200 N/m. Another force equal to 4000N is applied inversely to the distributed load q at a 

distance of 3m from the embedding point.  
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For 53  x  : 
 

Indeed, the bending moment between 3 and 5m is zero, but the deflection in this zone is not zero so 

the beam remains straight. The slope of this straight line is constant and it is equal to that obtained for 
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After superposition, the total maximum deflection will be equal to:   

EIEIEI
yyyxy

MaxMaxMaxMax

217507200093750
)5()5()5()( 2

21





  

If E= 200 x 109 Pa and I=113 x 10-6 m4, so:  

410.6,9)5( 
Max

y m 96,0 mm 

  



 
  
Chapter II: Deflection of symmetrical beams for pure bending 

 

44

2.3. Method of moment area 
 
Mathematical method based on the integration of a differential equation can determine the deflection 

y(x) and the slope )(x  of a beam at any given point. In this section we will see how with geometric 

properties of the elastic curve of the bending moment, we can determine the deflection and slope of a 

beam at a specific point. This latter method is called method of moment area. Figure II-4 gives more 

detail about this theorem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure II- 4: Moment area theorem 
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From the above figure, we like to measure the deflection yC or yD corresponding respectively to the C 

and D points, we know that: 
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In the last Mf diagram and for the bending moment area comprised between C and D points Figure II-

4, we have: 
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    CDCD /                                     (II-20) 
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ACD represents the area of the bending moment comprised between C and D points (see Figure II-4). 

From the above figure, we can plot: 

 

 

 

 

 
 

Figure II- 5: Moment area theorem 
 

The intersection point between the two tangents at the C and D points (FigureII-5) presents the 

gravity center of the area ADC of the bending moment diagram Mf comprised between C and D. 

CDCDd   /  is a small angle, so, we can write approximately: 
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Where XD is the distance between the D point and the CG point of the ADC moment area (Figure II-4 

& Figure II-5).  Replacing the equation (II-22) in the equation (II-23), we can find: 
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So, CDt /  will be equal to: 
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Now, we have understanding the calculation procedure of the distance t, we can calculate the 
deflection yD at D point (Figure II-6) referring to the areas (ABA and ADA) and with the help of the tB/A 
and tD/A calculated respectively at the B and D point. We have chosen the B point because the 
deflection yB is equal to zero in this point which is the roller support B.  
 

 

 

 

 

 
Figure II- 6: The deflection at the D point 

 

Firstly, we calculate tB/A using the two tangents at B and A points presented in the below figure 
(Figure II-7). 
 
 
 
 
 
 
 
 

 
 

Figure II- 7: The distance tB/A 
tB/A is equal to: 
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Where XB is the distance between the B point and the CG point of the ABA moment area (Figure II-8).  

 
 

 

 

 

 

 

Figure II- 8: XB and the moment area ABA 
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Secondly, we calculate tD/A using the two tangents at D and A points presented in the below figure 
(Figure II-9). 
 
 
 
 
 
 
 
 
 
 
 

Figure II- 9: The distance tD/A 
tD/A is equal to: 
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Where XD is the distance between the D point and the CG point of the ADA moment area             
(Figure II-10).  
 
 

 

 

 

 
 

Figure II- 10: XD and the moment area ADA 
 

Using the following figure to calculate geometrically yD. 

 
 
 
 

 

 

 

 

Figure II- 11: Geometrical calculation of the deflection yD 
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Note that we can make the same previous manner to calculate the deflection yC at C point. 

tD/A 

A 
B 

Mf(x) 

x 
XD 

CG of ADA

D Area 
ADA 

yD

tD/A

LD



 
  
Chapter II: Deflection of symmetrical beams for pure bending 

 

48

Example:  
 

In this example, we try to calculate the maximum deflection of a cantilever beam (see the below 

figure) using the two methods studied previously (method of the double-integration and method of 

the moment area).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Double-integration method: 
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Moment area method: 
 

Using the two tangents on the A and B points, the angle BAB  /  because 0A at x=0; the total 

bending moment area ABA and the distance XB which represents the distance between the B point and 
the gravity center of the area ABA, we can find: 
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Knowing that: Mfmax=-Pl ; so, ABA=(Mfmax.l)/2=-Pl2/2 ; XB=2l/3, then: 
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We found the same fmax with two methods.  

The moment area method has the advantage that is faster than the other methods. 
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Directed works No. 2 “Deflection of symmetrical beams for pure bending” 
 

Exercise N°1 
 

The beam shown in the figure below is mounted on a lathe machine, the material of the beam is steel 

with a circular section (diameter d=15 cm), the linear weight of the beam is 137 daN/m, the length of 

the beam is l = 2m, the Young's modulus of the beam E=200 GPa. The beam to be machined can be 

modeled as a beam placed on two supports A and B and solicited by its own weight which is 

uniformly distributed over its entire length. Using the results of the DW N°1 series:  

 

1) Determine the beam deflection equation y(x) by the method of integration of the differential 

equation.  

2) Deduce the maximum deflection of the beam.  

3) What will be equal the value of this maximum deflection if we choose a diameter of 10 mm, what 

can you conclude ? 

 
 
 
 
 
 
 
 
Exercise N°2 
 

A robot arm exerts a moment M=50000 daN.mm on the free end of an embedded beam (see the 

figure below), the beam has a diameter d=75 mm, its length l is 500 mm. 

1) Determine the equation of the deformation of the beam y(x) by the double-integration method and 

the moment area method. 

2) Deduce the maximum deflection of the beam by the two methods knowing that the Young's 

modulus of the beam E=200 GPa. 
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Exercise N°3 

 
An electrical contact relay is made from a blade (AB), parallelepiped (90 x 10 x 0.6mm), made of 

brass and embedded in A. The operation is carried out in C by an electromagnet placed at the distance 

h from the blade (the electromagnet is at rest). If the gap of the contacts at B is e = 3 mm, determine 

the necessary force that the electromagnet must exert to establish contact.  

From what values of h the contact is possible? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E Brass = 100 GPa. 
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Chapter III: Energetic methods for elastic systems 
1. Introduction 
 

When a beam is subjected to several loads as bending, torsion, traction or compression, several 
shearing and normal stresses will be generated at any internal point in this beam (Figure III- 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure III- 1: Stresses generated in a beam subject to different loads 
 

The stress and the strain symmetrical tensors are equals to:  
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In the elastic zone of the beam material, the stresses function strains (Hooke's law) are given by: 
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Where E is the elasticity or the Young's modulus of the beam material and   is the Poisson's ratio. 
(III-2) can be written in the matrix form as: 
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The elastic behavior law (the Hooke's law) of the isotropic material can be simplified to: 

 C        (III-4) 

C  is the matrix of the material elastic constants.  

From the equation (III-2), we can express the strains function stresses, so, the strain-stress relations 

are given by: 
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For the isotropic linear elastic material, the elastic shear modulus is equal to: 
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Equation (III-5) can be written: 
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Normal stresses produce volume changes and shear stresses produce a change in shape (distortion). 
The relation  xyxy  2  can be written xyxy   , where xy  is the shearing stress, xy  is the shear 

strain or the shear deformation and xy is the angular strain. So, (III-7) relations can be expressed as: 
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       (III-8) 

2. General relation of the elastic strain energy 
2.1. Work of axial loading 

The below figure show the axial strain induced by the application of an axial force in a rod; the 
objective is to show how we calculate the axial elastic strain work or energy of this rod.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure III- 2: Generated work and stress versus strain for axially loaded rod 
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In the above figure, after the application of the force F, the rod deforms axially along the X axis by a 

value of ux. The global translation work in Joule or N.m is equal to:  

          xxx duFuFW ..         (III-9) 

If we have a torque load T applied around the X axis (Figure III- 2) which generates an angle x , then 

the rotation work is equal to:  

       xTW .                                                           (III-10) 

When we differentiate the (III-9), we obtain: 

                                                                          xduFdW .                                                         (III-11) 

In the elastic part xuEF '.  where 'E  is the rod stiffness in N/m. 

(III-11) becomes: 

                                                                    

x

xxx

xx

xx

uFW

uuEuEW

duuEW

duuEdW

.
2

1

'
2

1
'

2

1

.'

.'

2










                                       (III-12) 

Note that if E (Young's modulus in N/m2) is constant and if the rod cross-section area decreases from 
A to dydz, therefore, the applied force also decreases from F to Fi with the same proportionality rate 

of the decrease of this area; but the stress xx  remains exactly the same. Moreover, the extension 

decreases from ux to dux with the same proportionality rate that exists between L and dx, but the 

deformation xx  remains constant. In addition, for an infinitesimal volume dV (Figure III- 2), the 

work of the elementary force Fx will be equal: 

                                                                        xx duFdW .
2

1
                                                       (III-13) 

We know that: 

                                                        dydzF
dydz

F

A

F
xxx

x
xx .                                          (III-14) 

Also: 

                                                           dxdu
dx

du

L

u
xxx

xx
xx                                            (III-15) 

Replacing equations (III-14) and (III-15) in the equation (III-13), we can find: 
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We know that for a tensile loading, the Hooke's law will be equal in the elastic zone: 

                 xxxx E                                                           (III-17)  

Where E is the elastic tensile modulus, then the equation (III-16) can be written as: 

                                                                        dVEdW xx
2.

2

1                                                     (III-18) 

2.2. Work of shear loading 
 

In the following figure, the shear force Ty generates the shearing stress xy  and produces a shape 

change in the below infinitesimal volume. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure III- 3: Generated work for shear loading  
 
As we have demonstrated latter, the work of the elementary shear force Ty is written in the form of: 
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We know that: 
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T
xyy
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xy .                                               (III-20) 

Also: 
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y
xyxy   22                                (III-21) 

Replacing equations (III-20) and (III-21) in the equation (III-19), we can find: 
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We know that for a tensile loading, the Hooke's law will be equal in the elastic zone: 

        xyxyxy  2                                                      (III-23)  

Where   is the elastic shear modulus, then the equation (III-22) can be written as: 

                                                                     dVdW xy
2.

2

1                                                        (III-24) 

We can also write (III-24) as: 

                                                                     dVdW xy
2.2                                                         (III-25) 

2.3. Strain energy 

The total elementary strain energy dU in Joule is equal to the sum of all the elementary axial and 

shear works which are generated in the three directions (X, Y and Z). dU will be equal to: 

                                                                        



6

1i
idWdU                                                          (III-26) 

We can write the previous relation as: 

                                               yzxzxyzzyyxx dWdWdWdWdWdWdU                            (III-27) 

xxdW , yydW  and zzdW  represent the elementary works respectively along the X, Y and Z axes.  

xydW , xzdW  and yzdW  represent the elementary works in the three directions X, Y and Z axes.  

                              dVdU yzyzxzxzxyxyzzzzyyyyxxxx  ......
2

1
                  (III-28) 

                            dVdU yzyzxzxzxyxyzzzzyyyyxxxx  .2.2.2...
2

1
              (III-29) 

                                 dVdU yzyzxzxzxyxyzzzzyyyyxxxx 



   ......
2

1
            (III-30) 

The total elastic strain energy U for a volume V can be written as: 

                                  



  dVU yzyzxzxzxyxyzzzzyyyyxxxx  ......
2

1
           (III-31) 

The strain-energy density u in Joule/m3 or N/m2 is defined as the total elastic strain energy U in Joule 

divided by the structure volume in m3: 

                                                                         
DV

dU
u                                                                  (III-32) 

Using the two equations (III-28) and (III-30), we find the strain-energy density u: 

                                      yzyzxzxzxyxyzzzzyyyyxxxxu  ......
2

1
                   (III-33) 

                                        yzyzxzxzxyxyzzzzyyyyxxxxu  ......
2

1
                 (III-34) 
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The unit of u is N/m2. Using the equation (III-8), the strain-energy density u can be expressed only in 

function of stresses as: 

  

 

 

Using the equation (III-2), the strain-energy density u can be expressed only in function of strains as: 

  

 

 
Note that in a structural element or machine part with a nonuniform stress distribution, the 

determination of the strain-energy density u is necessary. 

3. Elastic strain energy in traction or compression 

The below figure show the behavior law for a bar material subjected to a tensile test. The elastic zone 

is limited by the yield stress Y and the yield strain Y.  

 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure III- 4: Tensile test and elastic zone 
 
Using the equations (III-1) and (III-5), the symmetrical tensors of the stress and the strain are equals 

in the case of a tensile test to:  

                                     


















000

000

00xx
  , 




















xxzz

xxyy

xx







00

00

00

                      (III-37) 

Replacing the components of the previous tensors in the equation (III-3) of the strain-energy density 

u, we find: 

                                                                           xxxxu  .
2

1
                                                        (III-38) 
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The elastic strain-energy density u represents the area under the elastic straight-line of the stress-

strain diagram (Figure III- 4) corresponding to the values of xx  and xx . 

(III-38) can be also written as: 

                                                                V
E

VU xx
xxxx

2

2

1
..

2

1 
                                              (III-39) 

U is the elastic strain energy in Joule and V is the volume of the bar. 

The maximum elastic strain-energy density signifies that a material can store or absorb energy 

without yielding or without undergoing plastic deformation is given by the following relationship: 

                                                                          YYYu  .
2

1
                                                        (III-40) 

Where Y  and Y  represent respectively the material yield stress and yield strain, uY is called also the 

yield elastic strain-energy density and is equal to the total area of the elastic zone (Figure III- 4). The 

latter is also known under the name the modulus of resilience. The capacity of a structure to 

withstand an impact load without being permanently deformed clearly depends upon the resilience of 

the material used. 

(III-40) can be also written as: 

                                                               V
E

VU Y
YYY

2

2

1
..

2

1 
                                               (III-41) 

UY is the yield strain energy; the strain energy verification criterion allows us to know the energy U 

which can be applied without having a risk to deform plastically a mechanical part. The strain energy 

criterion is given by: 

                                                                          YUUFs                                                          (III-42) 

Where, Fs is the safety factor used to avoid permanent deformation. We can see in the (III-39) 

equation, that there is no linearity between U and Y . For this reason; the safety factor Fs is applied 

to the strain-energy U and not to the stress. 
 

Example 1:  
 

In this example we like to calculate the required maximum yield stress Y  that a rod material should 

have in order to does not undergo a permanent deformation and that after the application of an axial 

force of magnitude F equal to 33.74 kN, the elastic modulus of the material is E=200 GPa, the 

diameter of the cross-section area of this rod is d=20mm and its length L=1.5m, the Fs factor of 

safety is equal to 5.  
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Let's calculate firstly, the area of the rod cross-section: 

24
22
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The strain energy generated by the force F is equal to:  
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As was indicated in the (III-42) equation, to have more safety, the value of the strain-energy U must 

be majored by the safety factor Fs: 
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Then, Y must be superior to: 
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So, we must use a material with a yield stress Y  higher than 240 MPa as not to have a permanent 

deformation of the rod material after the application of the force F of 33.74 kN. 

 

Example 2:  
 
In this example we like to calculate the strain energy for a rod when it will be submitted to stress xx  

equal to 300 MPa, (E=200 GPa, A=90 square mm and L=3m): 
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After the application of this stress, the value of the  

compression L  is: 
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3.1 Toughness modulus and resilience modulus   
 

a) Resilience modulus 
 

The modulus of resilience is equal to the total area of the elastic zone (Figure III- 5) which represents 

the elastic strain-energy density uY, it represents the capacity of a structure to withstand an impact 

load without being permanently deformed. Resilience modulus or uY gives also an index for the 

ability of materials to absorb or store energy without permanent deformation. In the below figure, it is 

clear that the material B is more resilient and resist plus to the plastic deformation (more storage and 

absorption of energy) than the material A.  

 

 

 

 

 

 

 

 

 

 
 

 

Figure III- 5: Modulus of resilience 
 

b) Toughness modulus 
 

The toughness is equal to the area under the entire stress-strain diagram ( 
 

Figure III- 6), it is defined as the ability of a material to absorb energy up to fracture or as the energy 

per unit volume required to cause the material to rupture. It is clear that the toughness of a material is 

related to its ductility as well as to its ultimate strength U  and that the capacity of a structure to 

withstand an impact load depends upon the toughness of the material used. As before, material B is 

more resistant to impacts than material A. 

 

 

 

 

 

 

 

 

 

 
 

 

Figure III- 6: Modulus of toughness 
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3.2 Castigliano theorem to calculate displacement  

The Castigliano theorem allows calculating the displacements uxi, uyi or uzi in a point i respectively 

along the three axes X, Y or Z of the structure. It is defined as the derivative of the total elastic strain 

energy with respect to the force Fi applied in this point i: 

i

Total

xi F

U
u




                                                            (III-43) 

Referring to the figure (Figure III- 4) and knowing that  E , the elastic strain energy in the case of 

traction or compression loading is equal after indices simplification to: 
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Example 3:  
 
The bar shown in the figure is embedded at 1. Let E be the Young's modulus of the material. The area 

of the cross section is 3A between the points 1 and 2 and A between the points 2 and 3. This bar 

carries in 2 a force with components (F2, 0, 0) and in 3 a force with components (F3, 0, 0)  [15]. 
 

 
 

Let calculate:  
 
1. The expression of the normal force N(x): 
 

3232223

3212

3232/

)(2

)(0

00

FFFFFRxNxNLxL

FFRxNxNLx

FFRxFFRxF x





 

Then: 

3212 FFN   and 323 FN   
 

2. The total elastic strain energy TotalU : 
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3. The displacements 2xu and 3xu  respectively in the points 2 and 3: 
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4. The flexibility and the stiffness matrices of this bar: 
 
Flexibility matrix  C : 
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Rigidity matrix  K : 
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4. Elastic strain energy in bending  
 

In the case of a bending loading that will held in the XY plane and around the Z axis, we have the 

bending strain energy due to the normal tensile and compressive stresses generated by the bending 

moments Mfz and the shear strain energy induced by the shear forces Ty. The shear strain energy is 

neglected compared to the bending strain energy. The bending and shear elastic strain energy is equal 

to:                                                           
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Example 1:  
 

The following beam of length L and constant section (quadratic moment: Iz) is supported at 1 and 3 
on a simple support. The beam is made with steel having a Young's modulus E. It carries in its center 
(middle point 2) a force with components (0, F, 0). 

 
 
 
 
 
 
 
We neglect the influence of the shear force: Bernoulli model. Let calculate:  
 

1. The expression of the bending moment Mfz(x): 
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2. The total elastic strain energy TotalU : 
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3. The deflection in point 2: 
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 23

48
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z u
L

EI
F The bending rigidity is equal to

3

48

L

EI z ; it depends proportionally to E and Iz 

and inversely to L. 
 

 4. Comparison of the deflection of the point 2 calculated with Castigliano theorem with the 
deflection calculated by the double-integration method: 
 

Using the double-integration method seen in the Chapter II, the deflection y(x) for this example is 
equal to: 









 x

FL
x

F

EI
xy

z 434

1
)(

2
3

1  

Now, the maximum deflection fmax is located in the center of the beam, and then fmax is equal to: 

max2

3

1max 48
)2/( fu

EI

FL
Lyf y

z

    

We find the same expression obtained by the Castigliano theorem  

2
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5. Elastic strain energy in torsion 
 

5.1 Torsion rigidity and shearing stress induced by torsion 
 

The twist angle   must be less than 1° over a shaft length equal to 20 times the shaft diameter. The 
example presented in the below figure shows a shaft of diameter d, radius R and length L subjected to 
a torque Mt. 
  
 

 

 

 

 

 

Figure III- 7: Torsion loading and its generated shearing stress  
 

We know that: 
                                                                dsrrdM t  )(                                                        (III-47) 
 

)(r  is the shear stress at a point on the cross-section area A which is located at a radius r from the 
center of this area A. ds is a small area of the total area A. Thus, )(r  is equal to: 
 

                                       
dx

d
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After integration we can write: 

RFk
L

I
M tt

p
t 


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

.                                    (III-50) 

kt is the torsional rigidity in N.m, it is equal to:  

L

I
K P

tors





                                               (III-51)  

The elastic shear modulus   is equal to: 

  
)1(2 




 E
                                               (III-52) 

The polar inertia moment Ip is calculated by the following formula:  

                                                              
2
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 44
2 Rd
dsrI p


                                              (III-53) 

The twist angle   in radians is calculated like this:  

   
p

t

I

LM



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5.2 Torsion strain energy  
 

We know that from equation (III-48):  

                                                                     
dx

d
rr

 )(                                                      (III-55) 

And from equation (III-49), we have:  
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Substituting (III-56) into (III-55), we obtain: 
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The torsional strain energy is given by:  
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           (III-59) 

The deformation energy stored in a shaft with a length L can also be equal to: 

                                   2.
2

1 t
Torsion kU                                                       (III-60) 

5.3 Castigliano theorem to calculate rotation 
 

The Castigliano theorem allows calculating the rotations xi , yi  or zi  in a point i respectively 

around the three axes X, Y or Z of the structure. It is defined as the derivative of the total elastic strain 
energy with respect to the moment Mi applied in this point i: 

 

i

Total

xi M

U




                                                            (III-61) 

Example 1:  
 
We consider the x-axis shaft shown in the below figure. Let   be the transverse modulus of elasticity 

of the shaft material. The torsion constant is pI  between the points 1 and 2 and pI3  between the 

points 2 and 3. The point 1 is embedded; the points 2 and 3 carry a respective torque intensities C2 
and C3 (see the below figure). Let calculate: 
 

 

pI,  pI3,  
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1. The expression of the torsion torque Mt(x): 
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2. The total elastic strain energy TotalU : 
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3. The rotations 2x  and 3x  respectively in the points 2 and 3: 
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4. The flexibility and the stiffness matrices of this shaft: 
 

Flexibility matrix  C : 
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Rigidity matrix  K : 
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6. General expression of elastic strain energy  
 
In the case of a combined loadings, the global elastic strain energy for all the loadings (traction, 

compression, shearing, bending and torsion) is equal to:   
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Directed works No. 3 “Energetic methods for elastic systems” 

Exercise N°1 
 

The beam shown in the figure below is embedded at 1. Let E be the Young's modulus of the material. 

The area of the cross section is 2A between points 1 and 2 and A between points 2 and 3. The beam 

carries in 3 a force with components (F, 0, 0).  

 

1) Determine the expression for the normal force N(x).  

2) If E=200 GPa, A=40mm², L=200 mm and the force F=100 N, then calculate the elastic strain 

energy and the displacement u3. 
 

Exercise N°2 
 

Two beams with circular and rectangular cross-sections embedded on their left ends respectively 

undergo an extension on their right ends by forces with a magnitude of 3F and 2F.  

1) If F= 70daN, the length l=2m and the Young's modulus of the material of the two beams E= 210 

GPa, calculate the strain energy that the two beams will undergo as well as the displacement of their 

right ends. 

 
  
 
 
 
 
 
 

Exercise N°3 
 
For the example of a bar shown in the below figure, establish the expression of the total strain energy 

Total
DéfE  and calculate the displacement 4u if F2 = 20kN ; F3 = 20daN ; F4 = 20N ; l   = 2m ; E = 300 

GPa ; A = 10 cm².  

 

2F h 

b 

l 

(h*b=50*10) mm² 3F 

l 

Rayon R=50 mm 

2 3 4 

F4 F3 F2 

E 2E 

2A 2A 
E/2   ;    A 

1 

l l 2 l 
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Exercise N°4 
 
The beam below of length L and of constant circular cross section with a diameter d, the beam is 

embedded at the left point 1. It is made of steel with Young's modulus E. It carries at 2 a torque 

around the z axis with components (0, 0, C). By neglecting the influence of the shear force (according 

to the Bernoulli model):  

1) Determine the expression for the bending moment Mf(x).  

2) Calculate the elastic strain energy knowing that E=200000 MPa, d=30mm, L=0.2 m and the torque 

C=100 N.m and thus calculate the rotation 2 . 

 
Exercise N°5 
 
The beam presented in the below figure has a length L and a constant circular cross section with a 

diameter d, the beam is embedded at the left point 1. It is made of steel with Young's modulus E. It 

carries at 2 a torque with components (0, 0, C ) and a force of components (0, F, 0). Neglecting the 

influence of the shear force, determine:  

1) The expression for the bending moment Mf(x).  

2) The elastic strain energy knowing that E=200000 MPa, d=30mm, L=0.2 m, F=50 N and the torque 

C=100 N.m.  

3) Using Castigliano's theorem, determine the deflection of the beam at the point 2. 
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Chapter IV: Combined loadings analysis  

1. Introduction 
 

In the below figure, we present a typical combined shaft loadings (traction, torsion, symmetrical and 
unsymmetrical bending) applied at the same time on a shaft.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure IV- 1: Typical combined shaft loadings  [16] 
 

Example:  
 
A shaft of a turbine rotates with a certain rotation speed and with a certain torque which can generate 
in the event of an anomaly the twisting of the rotating elements, this shaft carries a compressor 
upstream and a turbine downstream, their weights generate the bending of the shaft, the air sucked in 
and compressed by the compressor causes the traction of the shaft. Therefore, the shaft 
simultaneously undergoes a combined solicitation of traction, bending and torsion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure IV- 2: Compressor-turbine assembly  [18] 
 
 

Air suction which 
generates an axial 

force 

Compressor Wheel 

Turbine 
Wheel 

Exhaust Gas 

Shaft  

Weight of the 
compressor 

Weight of the 
turbine 

Torsion 
Torque  
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2. Unsymmetrical bending 
 

In plane or symmetrical bending, the loads are applied in the planes of symmetry (xy or xz plane) of 

the beam. This results that the beam being deformed in a single y or z direction of the symmetrical 

plane, also called the bending plane or the deflection plane. In this part we will study the non-

symmetrical beams and the case of symmetrical beams not loaded in their symmetrical plane; the 

resulting bending is called unsymmetrical bending. 

The below figure shows different symmetrical planes in the cross-sections of different beams: 
 
 
 
 
 
 
 
 
 
 
 
 

Figure IV- 3: Different planes of symmetry in beams  
 
Note that if we apply a force in one of the symmetrical plane presented in the below figure, we will 

have a symmetrical bending. Otherwise, if we apply a force in a plane different to the symmetrical 

plane or we apply simultaneously two forces in two symmetrical planes, we will have an 

unsymmetrical bending.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure IV- 4: Symmetrical and unsymmetrical planes and loadings 

 

Two symmetrical 
planes 

One symmetrical 
plane 

No symmetrical 
plane 

(b) Unsymmetrical bending (a) Symmetrical bending 
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The following figure presents the bending moments generated in a beam which has a flexure in the 

two planes.   

 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure IV- 5: Flexure in two planes 

 

In the above figure, the normal stress due to the unsymmetrical bending is calculated for the A point 

by the following relationship: 

                                                               A
z

z
A

y

y

Axx y
I

Mf
z

I

Mf
                                                  (IV-1) 

zMf  is the bending moment around the z axis. 

yMf  is the bending moment around the y axis. 

Iz and Iy are the inertia moments of the beam cross-section respectively with reference to z and y axes. 
 
The maximum normal stress caused by an unsymmetrical bending or that is located in unsymmetrical 

beam is given by the following formula: 

                                                         max
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y
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maxy or maxz are the farthest distances from the new neutral plane generated by the unsymmetrical 

bending.   
 

2.1 Neutral plan and deflection in unsymmetrical bending  

The neutral plan corresponds to the plan in which the stresses are equal to zero. At any point (y,z) 

located in the neutral plan (Figure IV- 6), we can write:  
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Figure IV- 7: Neutral plan 
 
 
The   angle is found between the z axis and the plan of the applying force.  

The   angle is found between the z axis and the neutral plan. 

The A and C points are the farthest points from the neutral plan, in these points we found the 

maximum stress of traction or compression.  
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Example:   
 
The below beam is subjected by a force applied on a plane inclined with respect to the plane of 

symmetry xz by an angle of 70°. The width of the beam is b=10 mm and its thickness h is equal to   

30 mm. Determine:  
 

1) The inertia moments of the beam cross-section Iz and Iy respectively with reference to z and y axes.  

2) The maximum bending moments Mfy max and Mfz max.  

3) The maximum tensile stress.  

4) The angle   of the neutral plane with respect to the z axis and the coordinates of the farthest point 

from this plane. 

 
 
 
 
 
 
 
 
 
 
 

1) Iz and Iy  

484
33

10.25,222500
12

30.10

12
mmm

bh
Iz   

494
33

10.5,22500
12

10.30

12
mmm

hb
Iy   

 

2) Mfy max and Mfz max  
 

NFFy 97,93sin    ;  NFFz 2.34cos    

mNlFyMf zMax .97,93*   

mNlFzMf yMax .2,34*   

  mNMfMfMf yMaxzMaxMax .10022   

We can calculate Mf max directly also by: 

mNlFMfMax .100*   

mNMfMf MaxzMax .97,9370sin*100sin    

mNMfMf MaxyMax .2,3470cos*100cos    

 

 
 

x 

z y 

l=1m

= 70°  F=100N 
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3) Maximum tensile stress:  
 

In the calculation, we take the absolute value of the maximum bending moments  

2
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yMax

Max  

MPaPaMax  13110.31,1 8   

The maximum compressive stress is equal to -131 MPa.  
 

 

4) The angle   of the neutral plane in relation to the z axis and the coordinates of the point 

furthest from this plane:  
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

F=100N 



Neutral Plane 

Positive angle  

Negative angle  

B: Farthest point which will incur 
the maximum compressive stress  

-131 MPa 

A: Farthest point which 
will incur the maximum 

tensile stress      
+131 MPa

The coordinates of point A are (z=5, y=15) mm 
The coordinates of point B are (z=-5, y=-15) mm 
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3. Tensile with bending loading 

 
We can simply apply an inclined force at the end of the beam and in the plane (xy). This force will be 

broken down into two forces Fx which generates traction and Fy which generates bending. The below 

beam will then be subjected to the tensile and bending loadings, the maximum stress generated will 

be equal to the sum of the maximum stress due to the bending and the maximum stress due to the 

traction. 

 
 
 

 
 
 
 
 

Figure IV- 8: Beam subjected to traction and bending loading 
 
The maximum stress will be equal to: 
 

                                        
64

  with  
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The neutral plan in this case is at a distance equal to v' from the axis of the beam, the stress is zero 

in this neutral plane (see the below figure). 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure IV- 9: Neutral plane in the tensile-flexure type loading  [2] 
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4. Torsion with bending loading 
 

The shaft presented in the below figure is supported by two supports A and B, it is solicited by 

flexure and torsion, the motor generates a motor torque C which causes a torque in the shaft, the 

weight P of the beam generates its bending. 

 
 
 
 
 
 
 
 
 

Figure IV- 10: Shaft subjected to torsion and bending loading 
 

The motor power is equal:  

                                                                 .CPu    with 60/ 2 N                                        (IV-5) 

Pu is the power motor in Watt. 

C is the motor torque in N.m. 

 is the rotation angular speed of the motor in rad/s. 

N is the rotation speed of the motor in rpm. 

 

When we design a shaft we must respect several criteria: mechanical resistance criterion, rigidity or 

deformation criterion, critical speed criterion, fatigue criterion, etc. Thus, it is necessary to avoid 

unbalancing the shaft and misalignment of the axes. Sometimes, we are forced to optimize the mass 

of the shaft to reduce the cost of its manufacturing. 

The resistance calculation makes it possible to size the shaft by determining the appropriate diameter 

of the shaft to avoid possible breakage. If the diameter of the shaft is imposed, then we only check the 

mechanical strength of the shaft. 
 

Whatever the method of calculating the mechanical resistance of the shaft, we must follow the 

following steps: 
 

1. Calculation of the support reactions.  

2. Determine in the vertical and horizontal planes the distribution of the bending moments Mfz 

and Mfy and the torsion moment Mt along the shaft.  

3. Add the vertical and horizontal bending moment diagrams to draw the resulting bending 

moment Mf diagram. We thus determine the maximum value of the resulting bending moment 

and the dangerous section of the shaft. 

P

Support A Support B 

L 

x

z 

y

C=Mt 

Motor 
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4. Calculate the maximum equivalent moment Mi such that: 

                                                                          2

max
2

max tMMfMi                                                     (IV-6) 

5. Determine the distribution of axial loads and their maximum value. 

6. Calculate then the maximum normal stress max xx due to the bending by the following 

relationship: 

            
)2/(max

max 
z

xx I

dMf
  ; 

64

 4d
I z


                                       (IV-7) 

7. Calculate then the maximum tangential stress max  xz  due to the torsion using the following 

relationship: 

          
)2/(max

max  
p

t
xz I

dM
  ;   

32

 
2

4d
II zp


                          (IV-8) 

8. Finally, we use either the Von Mises or Tresca criteria to calculate the minimum diameter of 

the shaft or to check the mechanical strength of the shaft. 

 

The Von Mises criterion is generally written like this: 

                                   2222222 26 eqxzyzxyxxzzzzyyyyxx                  (IV-9)       

                                                                           admeq                                                              (IV-10) 

The simplified Von Mises criterion according to our case is: 

                                                                           admxzxx   2
max 

2
max 3                                     (IV-11) 

The Tresca criterion indicates that: 

                                                                            admxzxx   2
max 

2
max 4                                     (IV-12) 

When the traction force is equal to zero, the minimum diameter d of the shaft can be calculated by the 

following relationship: 

                                                                                   3
32

adm

Mi
d


                                                 (IV-13)
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Example: Combination of flexure and torsion  [13] 
 

A speed reducer is made up of two straight toothed gears and two shafts; the assembly is driven by a 

motor with a power of 15 kW and rotates at a speed of 1000 rpm. 

The driving shaft connected to the motor is placed on two bearings A and B and carries the pinion 1 

which has a pitch diameter d1 = 70 mm, while the receiving shaft is supported by two bearings C and 

D and carries the toothed wheel 2 having a pitch diameter d2 = 210 mm, the yield stress of the two 

shafts is Y = 800 MPa, the safety factor Cs is equal to 2. 

 

1) Knowing that the pressure angle  = 20°, determine the tangential and radial forces Ft and Fr 

exerted on the contact teethes of the two gears,  

2) Calculate the reactions at the supports C and D.  

3) Plot the diagrams of the bending moments Mf and the twisting or torsional moment Mt along the 

shaft, thus, determine their maximum moments.  

4) Determine the minimum diameter of the receiver shaft using the Tresca criterion. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gear 2 

140 mm 260 mm

Motor 

A B

z 

y 

x 
Pinion 1 

C D
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Solution: 

1) Knowing that the pressure angle  = 20°, determine the tangential and radial forces Ft and 

Fr exerted on the contact teethes of the two gears,  

CP   ; C is the motor torque (N.m), P =15 kW et  is the angular speed in rad/s. The rotation 
speed N is equal to 1000 rpm, and then  is equal:  

rad/s 66.104
60

2


N  

31.143
66,104

15000



P

C  N.m 

The tangential force Ft applied at the contact of the pinion 1 tooth with the tooth of the gear wheel 2 
is calculated by: 

  /2  
2

* 1
1 dCF

d
FC tt  ; the pinion 1 have a diameter  d1 = 70 mm 

Then, Ft = 4094.57 N 
The pressure angle  = 20°, the radial force Fr will be equal:  

N 3.1490 *tgαFF tr   

2) Calculus of the C and D support reactions.  
 

RCx , RDx  
 
 
 
 
 
 
 
 

  00 tDxCx FRRF  …….eq(1)       

NRRFM DxDxtC 1.1433
4,0

14,0*57,4094
4,0*14.0*0/      

eq(1) NRFR DxtCx 47.26611.143357.4094   

 

RCy , RDy  
 
 
 
 
 
 
 
 

  00 rDyCy FRRF  …….eq(2)         

NRRFM DyDyrC 6.521
4.0

14.0*3.1490
4.0*14.0*0/      

eq(2) NRFR DyrCy 7.9681.14333.1490   

RCx RDx 

Ft 
140 mm 260 mm

C D 

RCy RDy 

Fr 
140 mm 260 mm

C D 
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3) Plot the diagrams of the bending moments Mf and the twisting moment Mt along the shaft, 

thus, determine their maximum moments.  

Diagrams of Mfx et Mfy: 

 
Mf x max= RCx x 0.14 
 

 
 
 
 
 
 
 
 
 
 
 
 
Mf y max= RCy x 0.14 
 
 
 
 
 
 
 
 
 
 
 
 
 

 2
max

2
maxmax yx MfMfMf  396.5 N.m 

 
The torsion moment Mt is equal:  

2
2d

FM tt  = 4094.57x0.105 = 429.93 N.m  

 
 
 
 
 
 
 
 
 
 
 
 

140 mm 260 mm

Mt 

z 

Mt max = 429.93 N.m 

140 mm 260 mm

Mfx 

z 

Mf x max = 372.6 N.m 

140 mm 260 mm

Mfy 

z 

Mf y max = 135.6 N.m 
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4) Déterminer le diamètre minimal de l’arbre récepteur en utilisant le critère de Tresca.  
 

The allowable stress adm  or the practical resistance pR  of the shaft is equal to CsY / ; Cs is the 

safety coefficient equal to 2 and Y  is the shaft material yield stress equal to 800 MPa. Then, the 

admissible stress or the allowable stress adm  is equal to 400 MPa. 

 

The Tresca criterion is admzxzz   2
max  

2
max  4  

 

 
64/.

2/.
4

max
m 

d

dMf
axzz 

   ; 
32/.

2/.
4

max
m 

d

dM t
axzx 

   

 

3
2

max
2

max

32





 


 t

adm

MMfd


 

 

d 24.6 mm 

 



 
  
Chapter IV: Combined loadings analysis 

84

Directed works No. 4 “Combined loadings analysis” 
 

Exercise N°1 
 

The below beam is subjected by a force applied on a plane inclined with respect to the plane of 

symmetry xz by an angle of 50°. The width of the beam is b=30 mm and its thickness h is equal to    

60 mm. Determine:  

 

1) The inertia moments of the beam cross-section Iz and Iy respectively with reference to z and y axes.  

2) The maximum bending moments Mfymax and Mfzmax.  

3) The maximum tensile stress.  

4) The angle   of the neutral plane with respect to the z axis and the coordinates of the farthest point 

from this plane. 

 
 
 
 
 
 
 
 
 

 

Exercise N°2 
 

The stranded cable below is used to maintain a lifting system which is not shown in the below figure, 

the cable weighs 1650 kg, the cable is considered to have a circular section with a diameter d=15 cm, 

the length of the cable is 12 m, With the help of a tensioner, the cable is stretched by a tensile force 

equal to 10 kN.  

 

1) Calculate the maximum stress generated in the cable. 

 
 
 
 
 
 
 
 
 
 
 
 

x 

z y 

l=5m

= 50°  F=100N 
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Exercise N°3 

 
A motor with a power of 1.5 kW rotates with an angular speed of 3000 rpm, the motor turns a shaft 

mounted on two simple supports A and B (see the below figure), the shaft carries a toothed wheel 

which weighs 10 kg and rotates with the same speed as the motor. The material of the shaft is steel, 

its allowable stress adm =400 MPa.  

 

1) Draw the bending and twisting moment diagrams and deduce the diameter of the shaft. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.7m 0.3m 

Support B 
Support A 

Motor 
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Chapter V: Solution of hyperstatic structures 

1. Introduction  
A system, or a beam, is said to be hyperstatic whenever the reactions exerted by the connections 
cannot be calculated from the fundamental equations of static F=0 & M=0. The reactions can only 
be determined after writing other equations obtained from the deformations of the system. Several 
methods are then used to solve hyperstatic systems. 

2. Example of hyperstatic systems: 
 

Example 1:  
 

The following figure concerns a bridge used for loading merchandises. The maximum allowable load 
is Fmax. A circular cross-section profile was used for the three bars and a rectangular profile was used 
for the beam that carries the load. The system has 3 supports, so it is considered as hyperstatic 
system.   
 

 

 

 

 

 

 

 

 

 

Figure V- 1: Beam system for carrying loads [5] 
 

In the following example, the action of the air on the wing is schematized by a distributed load q. The 
airplane wing AC is embedded in the airplane cabin and supported by an undeformable bar BD. The 
embedding moment at the point C and the actions exerted by the two supports B and C make this 
wing hyperstatic. 
 

 

 

 

 

 

 

 

 

Figure V- 2: Hyperstatic wing [2] 
 

Rod cross-section used for 
the 3 bars (1, 2 and 3) 

Beam cross-section  
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Example 2:  

 

We like to calculate for the following Example 2 the embedding moment MA at the A point and the 

reactions RA and RB respectively at the embedding point A and in the support point B. 

 
 
 
 
 
 
 

 

Figure V- 3: Cantilever beam supported by an additional B support at the right extremity 
 
The unknown moment and reactions are presented in the following figure: 
 
 
 
 
 
 
 
 
 
 

Figure V- 4: Unknown moment and reactions 
 
Using the static equilibrium equations, we have: 

FRRFRRF BABAY   00/   

  0
2

0/

L
FLRMM BAA  

So, we have 2 equations and 3 unknowns (MA, RA and RB), the previous system of equations cannot be 

solved, it is called hyperstatic system. To solve the previous equation, we should use the calculation 

methods of the beam curvature seen previously as the integration method, the superposition method, 

the energetic method; we can use also other method as the force method, etc. 

 

 

F 

A B 

L/2 L/2 

X 

Y 

MA 

RA 

F 

A 
B 

L/2 L/2 

X 

Y 
RB 
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3. Degree of hyperstaticity  
 
The degree of hyperstaticity N is defined as: 

                                                                   SUN                                                                       (V-1) 

U is the number of unknowns 

S is the number of the static equilibrium equations  

To classify a structure if it is isostatic, labily or hyperstatic in the most of cases is enough count and 

evaluate the following difference: 

N – S < 0          Hypestatic system 

N – S = 0          Isostatic system 

N – S > 0          Labile system 

The second equation can implies lability and/or isostatic condition, in this case is necessary a deeper 

study of the structure to understand which category belongs the structure. 

 
Examples: 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure V- 5: Degree of hyperstaticity N for some systems 
 
 
 
 
 
 
 
 

N=3-3=0  
Isostatic system 

N=4-3=1  
Hyperstatic system 

N=5-3=2  
Hyperstatic system 
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4. Solution of hyperstatic structures 
4.1. Integration method to obtain the beam curvature equation and to resolve the hyperstatic 
system 
 

The fundaments of the method is based on the calculation using the integration method the deflection 
at the support when the unknown reaction was applied and then we make this deflection zero and we 
will deduce its value. 
Let calculate the unknown reactions and moment for the previous hyperstatic system shown in the 
Figure V- 3. We remove the support B and we calculate firstly, the deflection of the B point as is 
indicated in the following Figure V- 6: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure V- 6: The deflection of the hyperstatic cantilever beam 
 

Static equilibrium equations:  
 

Using the static equilibrium equations, we have obtained: 
FRRFRRF BABAY   00/   

2
0

2
0/

L
FLRM

L
FLRMM BABAA   

 

Bending moments: 
 

AA MxRxMfLx  )(2/0 1  

  





 






 

22
)(2/ 2

L
FMxFR

L
xFMxRxMfLxL AAAA  

Beam deflection by integration method: 
 

   
zEI

xMf

dx

xyd


2

2

…..eq(1) 

 
)(  that,Knowing x

dx

xdy   

      dx
EI

xMf
x

EI

xMf

dx

xd
eq

zz


)(
)1( 

 

And then, dxxxy   )()(   

X 

Y 

MA 

RA 

F 

A 
B 

L/2 L/2 

RB 

yB 
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For 2/0 Lx  , we have: 

     dxMxR
EI

dx
EI

xMf
x AA

zz

1)(1
1   

  





  1

2
1 2

11
CxMxR

EI
x AA

z

   







   21

23
11 2

1

6

11
 )()( CxCxMxR

EI
dxxxy AA

z

  

1C  and 2C  are constants to be determined by the boundary conditions.  

We know that in the embedding point A, we have: 

00)0( 21  Cy  

00)0( 11  C  

  





  xMxR

EI
x AA

z

2
1 2

11  







  23

1 2

1

6

11
)( xMxR

EI
xy AA

z

 

For LxL 2/ , we have: 

    













  dx

L
FMxFR

EI
dx

EI

xMf
x AA

zz 2

1)(2
2   

    














  3

2
2 22

11
Cx

L
FMxFR

EI
x AA

z

   

  














   43

23
22 22

1

6

11
 )()( CxCx

L
FMxFR

EI
dxxxy AA

z

  

3C  and 4C  are constants to be determined by the boundary conditions.  

In x=L/2, we have: 

   2/2/ 21 LL    and    2/2/ 21 LyLy   

 

If    2/2/ 21 LL   , then we have: 
 

      














 






  321

2

24

1

2
2/

4

1

2
2/ C

L

L
FMLFR

EI

L
LMLR

EI

L
L AA

z
AA

z

  

8

2

3

L
FC   

    














 

822

11 2
2

2

L
Fx

L
FMxFR

EI
x AA

z

  
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If    2/2/ 21 LyLy  , then we have: 

 

  














 







 

4

3
23

2
23

1

1628

1

48

11
                                                 

)2/(
8

1

48

11
)2/(

C
L

FL
L

FMLFR
EI

LyLMLR
EI

Ly

AA
z

AA
z

 

48

3

4

L
FC   

  














 

48822

1

6

11
)(

32
23

2

L
Fx

L
Fx

L
FMxFR

EI
xy AA

z

 

In fact, in reality 0)(2  ByLy  because we have a support B at x=L, then: 

 

323

32
23

2

24

1

3

1

0
48822

1

6

11
)(

FLLMLR

L
FL

L
FL

L
FMLFR

EI
Ly

AA

AA
z


















 

  

Now, we have three equations with three unknowns AR , BR  and AM .  






















323

24

1

3

1
2

FLLMLR

L
FLRM

FRR

AA

BA

BA

 

 

The solution of the above system of equations gives: 

FLM A 16

3
  

FM
L

FR AA 16

113

8

1
  

FRFM
L

FR AAB 16

51

2

1
  

 

We can now replace the obtained values of the reactions AR  and BR  and the moment AM  in the 

bending moment equations )(1 xMf  and )(2 xMf  to plot the bending moment diagram along the beam, 

and in the deflection equations )(1 xy  and )(2 xy  to schematize the beam curvature.   
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Bending moment diagram: 
 

 LxFMxRxMfLx AA 311)16/()(2/0 1   

   LxF
L

FMxFRxMfLxL AA 55)16/(
2

)(2/ 2 





   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The maximum bending moment Mfmax is located at the embedding zone and is equal to FL
16

3
 . 

 

Curvature of the beam deflection: 
 

 2323
1 911
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1
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z
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23
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1

6
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LxLLxx
EI

F

L
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L
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L
FMxFR

EI
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z

AA
z


















 

 

We can use Matlab [6] or SigmaPlot 14.0 to plot the previous deflection equations )(1 xy  and )(2 xy . 
 

Matlab Program: 
 
ezplot('11*x^3-9*x^2') 

ezplot('-5*x^3+15*x^2-12*x+2') 

Or  
x=-200:0.2:+200 
y1=11*x.^3-9*x.^2 

y2=-5*x.^3+15*x.^2-12*x+2 

plotyy(x,y1,x,y2,'plot');

Mf(x) 

x L/2 +

FL
16

3
  

+ L 

FL
32

5
  

- 
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The curves of )(1 xy  and )(2 xy are presented in the same below graph: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

We interest only to x varies from 0 to L. Consequently, the curvature of the beam deflection will have 
the following shape with a minimal deflection located at x=0.553L. 
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4.2. Energetic method to calculate the deflection and to resolve the hyperstatic system  

 
Like before, we remove the support B. 
 

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 

Static equilibrium equations:  
 

Using the static equilibrium equations, we have obtained: 
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The total elastic strain energy of bending TotalU : 
 

If we neglect the energy due to the shearing, the bending elastic strain energy is equal in general to: 
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The deflection yB at the B point calculated by the energetic method: 
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In fact, in reality 0By  because we have a support B at x=L, then: 
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From the previous static equilibrium equations, we have:  
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With the energetic method, we obtain the same three unknowns AR , BR  and AM  previously 

calculated with the integration method. We can now replace the obtained values of the reactions AR  

and BR  and the moment AM  in the bending moment equations )(1 xMf  and )(2 xMf  to plot the 

bending moment diagram along the beam. 
 

Bending moment diagram: 
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4.3. Numerical calculation of the previous hyperstatic example and comparison of the 

numerical results with the several theoretical results obtained previously 

 

If we take in the following example F=100000 N and L=1m; the beam has a radius R=50 mm and 
was made of steel with a Young's modulus E equal to 210 GPa. 
 
 
 
 
 
 
 
 
 
 
a) Theoretical calculus of the unknowns MA, RA, RB, the maximum bending Mfmax and the 
minimal deflection of the beam ymin.   
 
With the help of the two previous theoretical methods, we know that: 
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As it was indicated precedently, the minimal deflection ymin is located at x=0.553L=0.553m, we can 

calculate ymin using the following equation 
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Digital Application (App): 

6109.4 zI m4 and 4
2min 10042.9)553.0(  yy m=-0.9042mm. 

 

b) Numerical results (obtained by RDM6) of the unknowns MA, RA, RB, the maximum bending 
Mfmax and the minimal deflection of the beam ymin.   
 
Using the RDM6 software  [7], we could plot the variation of the bending moment and the beam 

deflection (see the below figures). A very good agreement was found between the theoretical results 

and the numerical results obtained by the RDM6 finite element software.  
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A schematic of the hyperstatic beam:  
 

 
 

In node A we have 68750AR N and in node B we have 31250BR N. 
 

Variation along the beam of the bending moment obtained by RDM6: 
 

 
 

Deflection of the beam obtained by RDM6: 
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4.4. Superposition method to resolve the hyperstatic system  
 

We like to calculate the unknowns moment and reactions of the following hyperstatic beam using the 

superposition method. 

 
 
 
 
 
 
 
 
 
 

Figure V- 7: Hyperstatic cantilever beam subjected by a uniformly distributed load 
 
Static equilibrium equations:  
 
Using the static equilibrium equations, we have obtained: 
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Bending moments: 
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The following figure shows the application of the superposition theorem in order to obtain the 

deflection at the A point when we remove the A support.  

 
 
 
 
 
 
 

Figure V- 8: Calculation of point A deflection using the superposition procedure 
 

The total deflection of the A point (Figure V- 8) is equal to: 
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Using the previous static equilibrium equations, we can deduce RB and MB as:  
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The maximum bending moment Mfmax is located at the embedding zone and is equal to 
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4.5. Initial parameters method to resolve the hyperstatic system  

 
The beam presented in the following figure is solicited by a non uniformly distributed load, we use 

the initial parameters method to calculate the reaction RA and the maximum bending moment Mfmax.  

 
 

Figure V- 9: Hyperstatic cantilever beam subjected by a non uniformly distributed load 
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The equations of the deformed beam: 
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Directed works No. 5 “Solution of hyperstatic systems” 
 

Exercise N°1 

The beam presented below is embedded at its both ends A and B, it is subjected to a force F applied 

in its gravity center. 

1) Using the integration method and the energetic method, determine the vertical reactions and the 

embedding moments at the supports A and B.  

2) Plot the variation of the bending moment along the beam and determine the maximum value of the 

bending moment. 

3) Determine the minimal deflection of the beam. 

 
 
 
 
 
 
 
 
 
 
Exercise N°2 

Using the superposition method, determine the unknowns reactions and embedding moment of the 

following hyperstatic beam. 

 
 

 

 

 

Exercise N°3 

Using any method you know of solving hyperstatic systems, calculate the unknowns reactions of the 

following hyperstatic beam. 
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Appendices 
 
A1-Area inertia moment  [5] 
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A2-Reactions, moments and deflection  [14] 
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A3-Beam deflections and slopes  [12] 
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A4-Materials properties  [12] 
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