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General Introduction

Nowadays, monitoring sensitive areas using Wireless Sensor Networks (WSNs) is
considered a highly promising research field. The miniature nature of sensor nodes,
which makes them easily concealable, has led to the extensive use of these networks
for securing strategic sites.

In this work, we employ a WSN to monitor a fenced sensitive site, such as an oil
or nuclear facility or any other critical building (governmental or otherwise). Our
monitoring approach involves deploying sensor nodes along the perimeter of the
site. These nodes, called Sentinel Nodes (SSNs), are responsible for generating an
alert whenever they detect an intrusion. These alerts must then be relayed to the
sink node using Relay Nodes (RNs). The sink node is responsible for transmitting
the alerts to a decision center via a high-speed connection (internet, cellular, or
satellite).

On one hand, the miniature aspect of the nodes means they have scarce resources
in terms of energy, processing power, storage, communication range, and data rate.
On the other hand, the critical nature of the surveillance application discussed in
this work requires that alerts be delivered in a timely manner to ensure the security
of the monitored site. Therefore, routing the alerts to the sink node must involve
the minimal number of hops to conserve energy and reduce end-to-end latency in
the WSN.

The proposed multi-objective optimization solution is a near-optimal determinis-
tic deployment of the WSN nodes. This deployment should be done at minimal cost
(minimal number of deployed RNs) and minimal Network Diameter (ND), under
the following constraints: full coverage of the site’s borders using SSNs and ensure
connectivity (at least one path from each SSN to the sink node).

This thesis focuses on enhancing the performance of Variable Neighborhood
Search (VNS) for relay node deployment in WSNs through the application of ma-
chine learning techniques. Specifically, it explores how integrating Reinforcement
Learning (RL) with combinatorial optimization can lead to intelligent systems capa-
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LIST OF ALGORITHMS

ble of learning from experience and adapting to new situations, while still providing
optimal or near-optimal solutions. The proposed solution has been compared to
Basic VNS (BVNS). The experimental results are very encouraging.

The structure of the thesis is as follows:
Chapter I introduces WSNs, detailing their components, architecture, and the chal-
lenges and constraints influencing their design. The subsequent chapter II delve into
the combination of meta heuristics and machine learning problem for multi objec-
tive optimization problems. Finally, the chapter III of the thesis presents a novel
approach integrating meta-heuristic algorithms with reinforcement learning tech-
niques to solve the deployment problem in WSNs, aiming to optimize the placement
of sensor and relay nodes for improved network efficiency.
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Chapter I
Overview of Wireless Sensor Networks

I.1 Introduction
Wireless Sensor Networks (WSNs) have emerged as a transformative technology,
revolutionizing the way we collect, process, and disseminate data in various domains.

WSNs are composed of a large number of small, low-power, and low-cost sen-
sor nodes that communicate wirelessly to monitor and collect data from the envi-
ronment. These nodes, composed of sensors, processors and transceivers, obtain
information on the environment such as temperature, pressure, humidity or pollu-
tant, and send this information to a base station. The latter sends the info to a
wired network or activates an alarm or an action, depending on the type of data
monitored.

The deployment of sensor nodes is challenging as it significantly impacts energy,
a scarce resource in WSNs. Finding the optimal deployment is crucial since improper
placement can greatly affect energy efficiency, potentially reducing the overall ef-
fectiveness and longevity of the network. Energy efficiency is critical since sensor
nodes often rely on limited energy sources, such as batteries. Ensuring the longevity
and effectiveness of WSNs requires careful consideration of energy matters.

The applications of WSNs are vast and diverse, ranging from environmental
monitoring, structural health monitoring, and disaster management to smart homes,
agriculture, and healthcare, or tracing human and animal movement in forests and
borders. WSNs have the potential to revolutionize living standards, safety, and the
environment while being more economically beneficial.

This chapter will provide an overview of WSNs including their architecture,
types, applications, constraints and challenges, energy harvesting sources, and their
deployment.
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I.2 Components of Wireless Sensor Networks
WSNs consist of vital components that collaborate to facilitate sensing, data gath-
ering, and communication across diverse applications. Familiarizing oneself with
these components is crucial for comprehending the complexities involved in design-
ing, deploying, and operating WSNs. This section explores the essential elements
that form the foundation of a standard WSN architecture [26].

I.2.1 Sensor nodes
A sensor node is composed of four basic components: a sensing unit, a processing
unit, and a transceiver unit, as shown in Figure I.1. It may also include addi-
tional components depending on the application, such as a location-finding system,
a power generator, and a mobilizer. In our project, we have deployed two types of
nodes: sentinel sensor nodes and relay nodes. Sentinel sensor nodes are equipped
with sensing units to monitor the perimeter, while relay nodes primarily serve to
forward data between sensor nodes and the central processing unit, ensuring robust
communication throughout the network.

Figure I.1: A basic working model of WSN

I.2.1.1 Sensing unit

Sensing units are usually comprised of two sub-units as shown in Figure I.2: sensors
and analogue to digital converter (ADC) which is responsible on converting the

14



CHAPTER I. OVERVIEW OF WIRELESS SENSOR NETWORKS

analogue signals produced by the sensors.

Figure I.2: The components of a sensor node

I.2.1.2 Processing unit

typically in the form of a micro-controller or microprocessor, serves as the computa-
tional brain of the sensor node. It executes algorithms for data processing, decision-
making, and communication protocols, often optimized for energy efficiency due to
the resource-constrained nature of WSNs, the processing unit is usually associated
with a small storage unit as shown in the Figure I.2.

I.2.1.3 Communication unit

Sensor nodes are equipped with wireless communication interfaces. These interfaces
may support various communication standards such as Zigbee, Bluetooth Low En-
ergy (BLE), Wi-Fi, or proprietary protocols, depending on factors like data rate,
range, and power consumption requirements.

Each sensor node has a communication range (Rc) and a sensing range (Rs).
Figure I.3 shows the areas defined by these two spans. Communication range (Rc)
is the range in which the sensor node can communicate with other nodes. As for the
Sensing Range (Rs), it is the range in which the sensor node can detect the event.
Usually in WSNs applications,the Communication range is larger than the Sensing
range [45].
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Figure I.3: Communication range and Sensing range

I.2.1.4 Mobilizer (optional)

The mobilizer component of a sensor node, which includes actuators or motors, is
designed to enable physical movement or positional adjustments of the node. This
capability is particularly vital in applications where the network’s configuration
needs to be dynamically restructured. For instance, in a surveillance system, mo-
bile sensor nodes can reposition themselves to enhance coverage or avoid obstacles,
thereby ensuring optimal monitoring of the area. The ability to move allows the net-
work to adapt to changing environmental conditions and operational requirements,
significantly improving the flexibility and robustness of the sensor network [18].

I.2.1.5 Power Management Unit

The power management unit of a sensor node plays a crucial role in maintaining
efficient energy usage and prolonging the node’s operational life. This unit typi-
cally incorporates power conditioning circuits, responsible for regulating voltage and
managing power distribution within the node. By ensuring stable power supply and
suitable voltage for the node’s components, these circuits prevent damage and en-
hance performance. Additionally, the power management unit employs sleep/wake
scheduling techniques to conserve energy. By transitioning the node into a low-
power sleep mode when not actively engaged in sensing or communication tasks,
these techniques significantly reduce energy consumption, thereby extending bat-
tery life and overall operational period of the sensor node [18].

Furthermore, energy harvesting techniques can be considered a viable solution
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for power management. These techniques can provide a continuous power supply,
reducing the dependency on batteries and further prolonging the operational life
of the sensor node. Integrating energy harvesting with power management not
only enhances sustainability but also ensures uninterrupted operation in remote or
inaccessible locations.

Energy harvesting techniques consist of obtaining energy from external resources
such as solar, wind, and heat, involves converting this energy into electrical energy,
which can be either stored or used immediately. They directly extract energy from
the environment, offering an alternative power source in situations where connecting
devices to a power grid is undesirable or impractical due to cost or logistical con-
straints. The components utilized in energy harvesting systems may vary depending
on the energy source.

I.2.1.5.1 Energy Harvesting sources
In [30, 11], different types of energy that can be harvested are discussed. Figure I.4

depict some of the energy sources that can be used. A brief overview for some of
the mentioned energy harvesting sources and energy harvesters are listed below:

Figure I.4: Sources of energy that can be used [74].
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Solar Energy Harvesting Solar energy harvesting is one of the most common
energy harvesting techniques utilized in WSNs. It is a sustainable, clean and safe
method of harvesting energy. The solar energy harvesting industry is growing rapidly
and the costs for PV-cells have dropped significantly over the last 30 years while the
availability has increased. Even though the technology has come a long way, there
are still challenges to overcome in terms of maximizing the energy output from the
solar irradiance [55].

Thermal Energy Harvesting Thermoelectric energy harvesting utilizes ther-
moelectric power generators (TEGs), composed of a thermopile made of two different
conductors, typically semiconductors, forming a thermocouple. This setup is placed
between hot and cold plates, creating a temperature difference. According to the
Seebeck effect, this temperature disparity induces an electrical voltage between the
junctions of the thermocouple, generating heat flow through the generator. This
process converts thermal energy into electrical power, which is proportional to the
temperature difference. As long as the temperature gradient persists, continuous
energy harvesting occurs.

Mechanical Energy Harvesting Describes the process of converting me-
chanical energy into electricity through various means such as vibrations, mechanical
stress, pressure, strain on the sensor’s surface, high-pressure motors, waste rotational
movements, fluids, and force. The principle behind mechanical energy harvesting
involves converting the energy from the displacements and oscillations of a spring-
mounted mass component inside the harvester into electrical energy. Mechanical
energy harvesting can be categorized into three types: piezoelectric, electrostatic,
and electromagnetic [11].

Wind Energy Harvesting Wind energy harvesting involves converting air-
flow (e.g., wind) energy into electrical energy. This is achieved by using a properly
sized wind turbine to harness the linear motion of the wind and generate electrical
energy. There are miniature wind turbines capable of producing sufficient energy to
power WSN nodes [11].

I.2.2 Base Station (Sink)
Sink nodes in WSNs as shown in Figure I.5 serve as centralized points where data
gathered from multiple sensor nodes are aggregated before being transmitted to
external systems. These specialized nodes have higher energy reserves and com-
putational capacity compared to regular sensor nodes. They play a critical role in
minimizing propagation latency and conserving overall network energy usage.
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Figure I.5: Sink Node

The optimal placement of sink nodes within a WSN is a significant consideration
because it directly impacts the efficiency and performance of the entire system.
Researchers often explore strategies to determine the best positions for sink nodes,
taking into account factors like distance from sensor nodes, energy conservation, and
network coverage. Additionally, there exist various types of sink nodes, including
fixed (static) and mobile sinks as illustrated in Figure I.6, each offering unique
benefits depending on specific application requirements [45].

I.3 Types of Wireless Sensor Networks
There are several types of WSNs as depicted in Figure I.7, generally differing based
on the application domain. Depending on their deployment environment, they face
various constraints and challenges [59].

I.3.1 Terrestrial WSN
Terrestrial Wireless Sensor Networks typically comprise a large number of low-cost
nodes, ranging from hundreds to thousands, deployed on land within a specified
area, often in an ad-hoc manner (e.g., nodes dropped from an airplane). In these
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Figure I.6: Sensor nodes with mobile sink node architecture

networks, sensor nodes must efficiently transmit data back to a base station, espe-
cially in dense environments. Due to limited and usually non-rechargeable battery
power, terrestrial sensor nodes may utilize secondary power sources like solar cells to
prolong their operation. Energy conservation strategies include multi-hop optimal
routing, limited transmission range, in-network data aggregation, and low duty-
cycle operations. Terrestrial WSNs find applications in environmental sensing and
monitoring, industrial monitoring, and surface explorations [58].

I.3.2 Underground WSN
Underground WSNs consist of sensor nodes deployed in caves, mines, or under-
ground areas to monitor subterranean conditions. To transmit information from
these underground nodes to the base station, additional sink nodes are positioned
above ground. These networks are more expensive than terrestrial WSNs because
they require specialized equipment to ensure reliable communication through soil,
rocks, and water. Wireless communication poses a challenge in such environments
due to high attenuation and signal loss. Additionally, it is challenging to recharge
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Figure I.7: Types of WSNs

or replace the batteries of nodes buried underground, highlighting the importance of
designing energy-efficient communication protocols to prolong their lifespan. Under-
ground WSNs find applications in agriculture monitoring, landscape management,
underground monitoring of soil, water, or minerals, and military border monitor-
ing [58].

I.3.3 Underwater WSN
Underwater WSNs are comprised of sensors deployed underwater, typically in ocean
environments. Due to their high cost, only a limited number of nodes are de-
ployed, and autonomous underwater vehicles are utilized to explore or gather data
from them. Underwater wireless communication relies on acoustic waves, which
pose several challenges such as limited bandwidth, long propagation delay, high la-
tency, and signal fading. These nodes must self-configure and adapt to the extreme
conditions of the ocean environment. Equipped with limited, non-rechargeable bat-
teries, energy-efficient underwater communication and networking techniques are
essential. Applications of underwater WSNs include pollution monitoring, undersea
surveillance and exploration, disaster prevention and monitoring, seismic monitor-
ing, equipment monitoring, and underwater robotics [58].
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I.3.4 Multi-media WSN
The setup involves low-cost sensor nodes equipped with cameras and microphones,
deployed according to a pre-planned strategy to ensure comprehensive coverage.
These multimedia sensor devices are capable of storing, processing, and retrieving
various types of multimedia data, including video, audio, and images. They must ad-
dress numerous challenges such as high bandwidth requirements, significant energy
consumption, quality of service (QoS) provision, data processing and compression
techniques, and cross-layer design.

Developing transmission techniques that support high bandwidth while main-
taining low energy consumption is essential for delivering multimedia content such
as video streams. Although QoS provision is challenging in multimedia WSNs due
to variable link capacity and delay, achieving a certain level of QoS is crucial for
reliable content delivery. Multimedia WSNs enhance existing WSN applications
such as tracking and monitoring by providing richer data streams for analysis and
decision-making [58].

I.3.5 Mobile WSN
Mobile WSNs are composed of sensor nodes that have mobility capabilities, en-
abling them to move around and interact with the physical environment. These
mobile nodes can reposition and organize themselves within the network while also
sensing, computing, and communicating. Unlike static WSNs, which use fixed rout-
ing, mobile WSNs require dynamic routing algorithms to accommodate the mobility
of nodes.

Mobile WSNs encounter various challenges, including deployment, mobility man-
agement, localization with mobility, navigation and control of mobile nodes, main-
taining adequate sensing coverage, minimizing energy consumption during move-
ment, ensuring network connectivity, and managing data distribution.

Primary applications of mobile WSNs include environmental and habitat mon-
itoring, underwater surveillance, military surveillance, target tracking, and search
and rescue operations. Compared to static nodes, mobile sensor nodes can achieve
higher degrees of coverage and connectivity due to their ability to move within the
environment [58].

I.4 Applications of Wireless Sensor Networks
WSN has a wide range of applications ranging from home automation to commercial
industrial applications [26]. Some of the important applications of WSN are given
in Figure I.8:
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Figure I.8: WSNs applications [54].

I.4.1 Military applications
The military area is not always the simplest the first field of human pastime that
used WSNs, however, it is also considered to have the initiation of sensor network
research. The main subcategories of the military applications of WSNs are battle-
field surveillance, combat monitoring and intruder detection in fenced areas such as
prisons and military barracks.

I.4.2 Health applications
In healthcare, WSNs play a crucial role in remote patient monitoring, assisted living
systems as shown in Figure I.9. WSN-enabled devices can continuously monitor vital
signs, detect falls, and provide timely alerts in case of emergencies, improving patient
care and safety.
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Figure I.9: Subcategories of WSNs based Health Applications and the types of
sensors used

I.4.3 Environmental applications
WSNs are extensively used for environmental monitoring in areas such as agricul-
ture, forestry, and wildlife conservation. They can monitor parameters like temper-
ature, humidity, soil moisture, and air quality, enabling real-time data collection for
research and decision-making.

I.4.4 Urban applications
WSNs can be used to solve the various urban problems, for example, coordination
of the specialised vehicles like ambulance, fire tenders, rescue vehicles, police auto-
mobiles, logistics of public transportation, traffic management, monitoring chemi-
cal/physical environmental parameters, building security and many other.

I.4.5 Smart Cities
WSNs play a vital role in transforming traditional cities into intelligent, connected,
and sustainable “smart cities” through continuous monitoring and analysis of various
facets of urban living. These technologies enable smart cities to optimize resources,
reduce costs, and enhance the overall well being of citizens.

I.4.6 Industrial Automation
WSNs are deployed in industrial environments for condition monitoring, predic-
tive maintenance, and process optimization. They enable real-time monitoring of
equipment health, temperature, pressure, and other parameters, helping industries
enhance operational efficiency and reduce downtime. Figure I.10 shows the indus-
trial applications of WSNs and the types of the sensors used by them.
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Figure I.10: WSNs based Industrial Applications and the types of sensors used by
them.

I.5 Routing Structure inWireless Sensor Networks
The sensor nodes are usually scattered in the field as shown in Figure I.1. These
sensor has the capabilities to collect the data and send it back to the sink and the
end user. The sink or the end user may communicate with the decision making unit
node using Internet or Satellite. The routing protocols define how the nodes will
communicate with each other and how the information will be scattered through
the network. There are many ways to classify the routing protocols of WSN. The
basic classification of routing protocols is illustrated in Figure I.11.

Figure I.11: Basic classification of routing protocols

I.5.1 Node centric routing protocols
Node centric protocols use numeric identifiers to specify the destination node, which
is not the expected type of communication in Wireless Sensor Networks (WSNs). An
example of such a protocol is Low Energy Adaptive Clustering Hierarchy (LEACH) [63].
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Low Energy Adaptive Clustering Hierarchy (LEACH): LEACH is a
routing protocol that aims to distribute energy equally among all sensor nodes in
the network. It creates several clusters of sensor nodes, with one node designated
as the cluster head that acts as the routing node for all other nodes in the cluster.

Unlike other routing protocols where the cluster head is selected before com-
munication starts, LEACH applies randomization to select the cluster head from a
group of nodes. This temporary selection of the cluster head from several nodes
makes the protocol more long-lasting as the battery of a single node is not burdened
for long. Sensor nodes elect themselves as the cluster head based on a probability
criteria defined by the protocol. However, if there is any problem with the cluster
head, the communication fails, and there is a higher chance that the battery dies
earlier than the other nodes in the cluster.

I.5.2 Data Centric routing protocols
In wireless sensor networks, the data or information sensed is often more valuable
than the nodes themselves. Data-centric routing techniques focus on transmitting
information based on specific attributes rather than collecting data from particular
nodes. In these techniques, the sink node queries specific regions to gather data with
specific characteristics, requiring a naming scheme based on attributes to describe
the data features. An example of a data-centric routing protocol is Sensor Protocols
for Information via Negotiation (SPIN) [63].

Sensor protocols for information via negotiation (SPIN) SPIN aims to
address deficiencies like flooding and gossiping present in other protocols by empha-
sizing the sharing of metadata (descriptors about the data) rather than the actual
data sensed by the node. As shown in Figure I.12 the protocol involves three mes-
sages: ADV, REQ, and DATA. Nodes broadcast an ADV packet to announce they
have data, including attributes of the data. Nodes interested in this data send REQ
messages, and upon receiving them, the advertising node sends the data. This pro-
cess continues as nodes share data based on interest, forming a network model that
promotes efficient resource usage.

I.5.3 Source Initiated Routing Protocols
Source-initiated protocols in WSNs are those where the path setup generation orig-
inates from the source node. In contrast, destination-initiated protocols are those
where the path setup generation originates from the destination node. In most
WSNs, the sensed data or information is more valuable than the actual node itself.
Therefore, data-centric routing techniques focus on transmitting information based
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Figure I.12: SPIN Routing Protocol

on specific attributes rather than collecting data from particular nodes. In data-
centric routing, the sink node queries specific regions to gather data with specific
characteristics, requiring a naming scheme based on attributes to describe the data
features [63].

I.5.4 Destination Initiated Routing Protocols
Destination-initiated protocols in WSNs are those where the path setup generation
originates from the destination node. An example of a destination-initiated protocol
is Directed Diffusion (DD) [63].

Directed Diffusion (DD) Directed diffusion is a data-centric routing tech-
nique that focuses on information gathering and disseminating it efficiently. This
routing protocol is energy-efficient, leading to an increased network lifetime. In
Directed Diffusion, all communication occurs node-to-node, eliminating the need
for addressing within the protocol. Directed Diffusion involves a two-phase process
where interest messages are initially flooded to find sources, and sources reply with
exploratory data messages to establish paths towards the sink node. The subsequent
transmission of data along these reinforced paths constitutes the second phase of
the protocol. To address issues like energy imbalance and network partitioning due
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to hotspot formation, an extension called Source Routing Directed Diffusion (SR-
DD) selects paths based on residual energy in nodes, ensuring more uniform energy
utilization and avoiding hotspots.

I.6 WSNs: Constraints and Challenges
Ideally in the deployment of sensor nodes is that the deployed network can respond to
all the design constraints that guarantee a long lifespan of the network. In literature,
most deployment methods focus on specific criteria such as as connectivity, coverage,
overlap, number of nodes and consumption of energy [26, 6]

I.6.1 Constraints
I.6.1.1 Coverage

Among the significant factors in deploying a sensor network, coverage stands out
as a key metric of Quality of Service (QoS). Coverage can be either complete or
partial, depending on the application’s requirements. It can be achieved through
single-node monitoring as shown in Figure I.13 (referred to as 1-coverage) or by
multiple sensor nodes as shown in Figure I.14 (known as k-coverage). In the realm
of WSNs, coverage is typically categorized into three types: area coverage, point
(target) coverage, and barrier coverage.

I.6.1.1.1 Zone coverage

Surface coverage, also known as area coverage, is a crucial aspect in the de-
ployment of sensor networks. Its primary goal is to monitor a specific geographical
zone, termed the area of interest, ensuring that every point within this region is ef-
fectively covered by a subset of sensor nodes as depicted in Figure I.15. The choice
between total or partial coverage depends on the specific needs and objectives of
the application being deployed. Achieving optimal surface coverage is essential for
maximizing the efficiency and effectiveness of the sensor network in capturing and
transmitting relevant data from the monitored area.

I.6.1.1.2 Target Coverage

Target coverage, also known as point coverage, is a type of coverage used to
monitor specific points of interest within a capture field whose geographic position
is known. Each specific point must be covered by at least one sensor node. Exam-
ples of monitoring points of interest include military applications such as monitoring
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Figure I.13: 1-Coverage

enemy bases. Target coverage is particularly useful when the focus is on detecting
and tracking specific objects or events rather than simply observing a general area.

I.6.1.1.3 Border Coverage

Border coverage is a strategy used to cover a specific portion of the area of in-
terest. Sensor nodes are not tasked with monitoring events within the considered
zone; rather, the focus is solely on covering the perimeter of this region to detect
intruders attempting to breach it. This type of coverage is recognized as a suitable
model for applications like monitoring international borders or detecting the spread
of hazardous chemicals around a facility, for instance.

I.6.1.2 Connectivity

Two sensor nodes are considered connected if and only if they can communicate di-
rectly (single-hop connectivity) or indirectly (multi-hop connectivity). In WSNs, the
network is deemed connected if there exists at least one path between the sink and
every sensor node within the designated area. Considering connectivity is essential
for effectively monitoring a given region. Merely ensuring coverage is not sufficient;
sensor nodes must be capable of immediately reporting any detected events to the
sink. There are two types of network connectivity: complete connectivity and in-

29



CHAPTER I. OVERVIEW OF WIRELESS SENSOR NETWORKS

Figure I.14: K-coverage (K=2)

termittent connectivity. Complete network connectivity can also be categorized as
simple (1-connectivity) if there is a single path from any sensor node to the sink, or
multiple (m-connectivity) if multiple disjoint paths exist between any node and the
sink.

I.6.1.3 Latency and Hop count

Latency is a comprehensive metric of network performance. It represents the time
required for a node to transmit a data packet to the sink. This time, expressed in
terms of slots, includes the waiting time necessary before the transmitting node can
send the packet and the time required for the packet to reach the sink. It is worth
noting that latency depends on the depth of a node in the routing tree.

The number of hops is an important design and performance criterion in WSNs.
It is defined as the number of intermediate nodes through which packets must pass
between the source node and the destination node.

Finally, we emphasize that a path with a minimal number of hops does not
guarantee optimal latency, and a faster path (with low latency) does not imply a
path with a minimal number of hops.
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Figure I.15: Zone Coverage

I.6.1.4 Energy

One of the significant constraints in WSNs is the requirement for low-power op-
eration, as each node is powered by a limited battery. Typically, a sensor node
consumes its energy in three primary operations: sensing, communication (trans-
mission and reception), and data processing.

I.6.1.4.1 Sensing

The energy consumed during the capture phase varies depending on the observed
phenomenon. Sporadic capture consumes less energy than constant detection.

I.6.1.4.2 Communication

The energy consumed in this phase is the highest among the three consumption
phases. This consumption is defined by the size of the data to be communicated and
the transmission distance, as well as the signal power. When the transmission power
is high, the signal will have a longer range, resulting in higher energy consumption.
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I.6.1.4.3 Data processing

This phase consumes less energy than communication. In fact, the energy re-
quired to transmit 1 KB over a range of 100 m is approximately equal to that
needed to execute 3 million instructions at a speed of 100 million instructions per
second. Therefore, sometimes it is preferable to process the data locally, especially
if they are scalar in nature (such as temperature, humidity).

I.6.1.5 Number of Nodes

The number of nodes deployed in a WSN plays a crucial role in determining the net-
work’s cost, performance, and coverage capabilities. Optimal deployment strategies
need to consider the trade-off between increasing the number of nodes for improved
coverage, latency and minimizing the number of nodes to conserve energy and reduce
deployment costs.

I.6.1.6 Overlap

In reality, the sensing range of a node resembles a circle, not a square. Therefore,
if we aim to avoid overlap between the sensing ranges of nodes, the network would
end up with points that are not covered by the network at all. As a result, to
increase coverage of the region of interest, we might accept slight overlap between
nodes. This means there will be points within the area of interest where data will
be collected by more than one node. Thus, its important to find a balance between
overlap and coverage in a WSN [45].

I.6.2 Challenges
There are several challenges that face the progress of WSNs. Among these are the
following [53]:

1. Scalability Intelligent sensor networks primarily consist of stationary nodes,
with network sizes expected to reach tens of thousands of nodes or more.
Scalability is a critical concern in designing these networks, as performance
improvements should ideally scale proportionally with network size. Algo-
rithms and protocols for WSNs must factor in communication costs relative
to network size.

2. Energy consumption WSNs are commonly deployed in remote and inac-
cessible areas like deserts, forests, or military zones, where nodes rely on
batteries with limited lifespans since recharging them isn’t always feasible.
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Consequently, minimizing power consumption becomes crucial. Various pro-
tocols and schemes have been proposed to address this challenge, focusing on
energy-efficient Medium Access Control (MAC) protocols, data aggregation,
topology management, data compression, and intelligent battery usage. Addi-
tionally, designing electronic devices and chips with lower power consumption
is a key consideration in WSN design.

3. Self-Organization In hostile environments where WSNs are deployed, self-
organization is essential for ensuring network resilience. Nodes may fail due
to harsh conditions or battery depletion, necessitating periodic reconfiguration
of the network to maintain functionality. The network must adapt to these
changes, enabling continued operation and potentially accommodating new
nodes. Even if individual nodes become disconnected, it’s imperative that the
majority of the network remains operational.

4. Cost One of the important issues that WSNs faces is the cost of deploying
such networks. The expenses of wireless controllers is significantly influenced
by the required memory size. Usually for WSNs designers, having access to
variety of chips or wireless micro-controllers with optimized memory sizes is
crucial to cater to different application needs. Larger applications such as
gateway devices and third-party network layer development necessitate even
larger memory sizes, sometimes exceeding 250 KB. This highlights the impor-
tance of offering a range of memory options to meet diverse application needs
in the development of wireless sensor networks.

5. Interference and Environment Interference from nearby wireless networks
like Bluetooth or wireless LANs is a common concern for wireless sensor net-
works (WSNs). For instance, WSNs based on standards like IEEE 802.15.4
or Zigbee often employ automatic repeat capabilities, which can mitigate the
impact of Interference from Bluetooth. Similarly, WSNs with occasional trans-
missions and Bluetooth’s frequency hopping feature generally have a low prob-
ability of frame collision. Collision avoidance schemes are utilized by wireless
Local Area Networks (WLANs) to listen for clear radio-frequency (RF) chan-
nels before transmitting data. However, in heavily trafficked WLAN envi-
ronments, the continuous interference may limit RF channel availability for
WSNs. In such cases, it’s advisable to set the WSN on a different channel.
The RF environment can also be affected by surrounding building structures,
which introduce high levels of attenuation and multi-path fading. Addition-
ally, the movement of people or equipment significantly influences signal levels
at specific locations. To mitigate the effects of complex building structures,
additional router nodes in a mesh network can be strategically installed to
bypass obstacles.
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6. Security WSNs face several security challenges due to the characteristics of
the wireless communication medium. These challenges include eavesdropping,
man-in-the-middle attacks, spoofing, and distributed denial of service (DDoS)
attacks. Security concerns in WSNs can be more significant than those in
traditional ad hoc wireless networks because computational and energy con-
sumption limitations often hinder the implementation of robust security solu-
tions. As a result, advancements in the design of security mechanisms in WSNs
are crucial to protect confidentiality, availability, and integrity, ensuring the
proper operation of these systems. Addressing these challenges is essential to
safeguard sensitive data and maintain the functionality of WSNs in various
applications.

I.7 WSNs Deployment methods
WSNs facilitate numerous challenging tasks. However, they encounter various chal-
lenges, such as localization, which is a fundamental issue. Indeed, deployment sig-
nificantly impacts other functionalities like coverage, connectivity, energy efficiency,
and lifespan. In this section, we provide a comprehensive analysis of different de-
ployment techniques, highlighting the key factors and objectives influencing the
deployment phase.

I.7.1 Deployment techniques
The deployment of sensor nodes in a region of interest is the initial phase of con-
structing a WSN. Generally, There are three types of deployment as shown in Fig-
ure fig:deployment-methods: Deterministic deployment, Random deployment and
Hybrid deployment. The deployment type is influenced by major factors such as the
deployment area, the type of sensor nodes and the application domain.

I.7.1.1 Deterministic deployment

As illustrated in Figure I.17 This approach is used in accessible and non-hostile
areas, where sensor nodes can be placed in fixed and known positions according to
a predefined method. This type of deployment minimizes the number of required
nodes and maximizes the coverage of the detection area.

I.7.1.2 Random deployment

In the case of random deployment as shown in Figure I.18, the deployment region are
usually hostile and inaccessible. Sensor nodes are deployed via a drone or aircraft,
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Figure I.16: Deployment methods

Figure I.17: Deterministic deployment example [20].

resulting in a random distribution of nodes. This type of deployment leads to sub-
optimal performance. For instance, this type of deployment does not guarantee
network connectivity and coverage.

I.7.1.3 Hybrid deployment

Refers to a combination of deterministic and random deployment methods. In this
approach, sensor nodes are placed in a non-deterministic (random) manner within
predetermined deployment zones, which are created in a deterministic manner. This
means that while the overall layout or structure of the deployment zones is prede-
termined, the specific placement of sensor nodes within those zones is random. This
hybrid approach aims to leverage the benefits of both deterministic and random
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Figure I.18: Random deployment example [20].

deployment techniques.

I.7.2 Nodes placement strategies
Node placement strategies are all deterministic and vary based on one or multiple
objectives that need to be achieved (maximizing coverage, maximizing the number
of neighbors of a node, etc.). These methods are classified into two groups based
on the approach used: force based approach, grid-based approach and geometric
algorithmic approach.

I.7.2.1 Force-based approach

According to [20] The force-based deployment strategy relies on sensor mobility,
using virtual repulsive and attractive forces. Sensors are compelled to move away
from or towards each other to achieve complete coverage. Sensors continue to move
until reaching an equilibrium state, where the repulsive and attractive forces balance
each other out and eventually cancel each other.
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I.7.2.2 Grid-based approach

The grid based strategy offers a deterministic deployment wherein the region of
interest get discretized and the positions of sensor nodes are fixed according to
a model that maintains a certain distance between nodes, dependant on the Rs
(Sensing Range) and the Rc (Communication Range). This can take the form of a
triangular network, hexagonal network or square grid.

Each sensor node occupies a cell (mesh), and coverage can be controlled by ad-
justing the inter-nodes distance d (the distance between two adjacent sensor nodes).
To achieve complete coverage, the inter-node distance must be d <

√
3 with r being

the Sensing Radius [20]

I.7.2.2.1 Triangular grid

Figure I.19 illustrates that each node has a maximum number of 6 neighbors
and a minimum of 2. In terms of connectivity, this type of strategy ensures up to 6-
connectivity. However, when it comes to coverage, this model only ensures coverage
if d <

√
3 ∗Rs, where d is the inter-node distance (resulting in an equilateral trian-

gle) and Rs is the sensing radius. Note that Rc ≥ d, where Rc is the communication
range of the nodes.

The minimum number of sensor nodes in this model is 2
√
3

9
∗ 1

Rs2
[23]. The

triangular model is the most cost-effective among all types of grid-based strategies.
Additionally, it provides the smallest overlapping area.

Figure I.19: Triangular model
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I.7.2.2.2 Squared grid

In this kind of strategies, the area of interest is divided into squared cells, as
illustrated in Figure I.20. The nodes are located either at the corners of the cell or
at the center of the cell, We would like to remind that this is the strategy we uti-
lized in the proposed solution within this thesis. In such an architecture, as stated
in [23], complete coverage and connectivity are guaranteed if the inter-node distance
is d ≤

√
2×Rs and Rc ≥ d

The minimum number of sensor nodes is calculated as: 1

2
× 1

Rs2

Figure I.20: Squared model

I.7.2.2.3 Hexagonal grid

This kind of strategies is considered the most costly model compared to the tri-
angular and square grid because it has the largest overlapping area. The hexagonal
model guarantees total coverage and connectivity for d ≤ Rs and Rc ≥ d. As shown
in Figure I.21, the nodes are placed at the vertices of the hexagon.

The minimum number of sensor nodes is calculated as [23]: 4
√
3

9
× 1

Rs2
In addition to the type of grid, the size of the grid also plays an important role.

It should be chosen based on the network density. For a highly dense network,
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smaller grids help reduce coverage gaps, thus providing better results. On the other
hand, in a sparsely populated network, a larger grid size is preferable as it prevents
overlap in sensor detection ranges, thereby ensuring full utilization of their detection
capabilities.

Figure I.21: Hexagonal model

I.7.2.3 geometric algorithmic approach

In this kind of strategies, the most used approaches are:

I.7.2.3.1 Vornoï diagram

The Voronoï diagram is a method of partitioning the area into a certain number
of polygons based on distances from a specific discrete set of nodes, as illustrated in
Figure I.22. Each node occupies only one polygon and is closer to any point within
that polygon than to any other node in neighboring polygons. These polygons
can be obtained by drawing the perpendicular bisector of each pair of neighboring
nodes. Consequently, the edges of the polygons are equidistant from neighboring
nodes. Due to these Voronoï polygons, nodes can determine coverage gaps. They
then move to reduce or eliminate these gaps while maximizing the coverage rate of
the considered area.

I.7.2.3.2 Delaunay triangulation

Delaunay triangulation is closely related to the Voronoï diagram. Delaunay tri-
angulation is a method for creating a triangular mesh from a set of points, ensuring

39



CHAPTER I. OVERVIEW OF WIRELESS SENSOR NETWORKS

Figure I.22: Vornoï diagram in a plane [25].

that no point lies inside the circumcircle of any triangle formed by the points. This
creates a triangulation that maximizes the minimum angle of all the triangles, re-
sulting in more uniformly shaped triangles as shown in Figure I.23.

I.8 Sensitive fenced Areas
Nowadays, the use of WSNs for monitoring sensitive areas is considered as a highly
promising research area and a hot topic in literature. In fact, the miniature size of
sensor nodes, which allows them to be easily concealed, has facilitated their extensive
use in securing strategic sites. These surveillance applications can be found in various
scenarios, for instance intrusion detection systems, traffic surveillance as shown in
Figure I.24.

I.8.1 Applications and Deployment
In these sensitive fenced areas, WSNs are deployed along the perimeter to detect and
respond to any unauthorized intrusion attempts. The nodes used in these networks,
known as Sentinel Sensor Nodes (SSNs), are strategically placed along the fence line
or boundary of the site. Upon detecting an intrusion, these nodes generate an alert,
which is then relayed to a central sink node using Relay Nodes (RNs). The sink
node subsequently transmits the alerts to a decision-making center via high-speed
communication links, such as the internet, cellular networks, or satellite connections.
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Figure I.23: Delaunay triangluation [6].

For example, in a military base, the WSN can detect and report unauthorized
entry attempts or breaches, providing real-time situational awareness to security
personnel. In prisons, WSNs can monitor the perimeter for any escape attempts or
suspicious activities, ensuring a swift response to potential security threats. Simi-
larly, at nuclear facilities, these networks can monitor critical areas for any signs of
intrusion, ensuring the safety and security of sensitive materials.

I.8.2 Design and Implementation Considerations
The design and implementation of WSNs in sensitive fenced areas involve several
key considerations:

1. Node Placement and Density: The nodes must be placed to ensure com-
plete coverage of the perimeter with minimal gaps. The density of the nodes
should be sufficient to provide overlapping coverage areas, ensuring redun-
dancy in case of node failure [2, 75].

2. Energy Efficiency: Since sensor nodes are typically battery-powered, energy
efficiency is crucial. Techniques such as duty cycling as shown in Figure I.25,
where nodes alternate between active and sleep states, can help conserve en-
ergy and extend the network’s operational lifespan [40].
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Figure I.24: Fenced military area [69].

3. Robust Communication Protocols: The communication protocols used
must be robust and resilient to ensure reliable transmission of alerts. This
involves implementing fault-tolerant routing algorithms that can adapt to node
failures and ensure that alerts reach the sink node [2, 56].

4. Security and Encryption: The data transmitted by the sensor nodes must
be secure to prevent interception and tampering. Encryption techniques should
be employed to protect the integrity and confidentiality of the data [72].

5. Scalability and Flexibility: The network should be scalable to accommo-
date additional nodes as needed and flexible enough to adapt to changing
security requirements or environmental conditions [40, 56].

By addressing these considerations, WSNs can effectively enhance the surveil-
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Figure I.25: Randomly deployed WSN based surveillance model [69].

lance and security measures in sensitive fenced areas, providing real-time monitoring
and rapid response capabilities. The deployment of WSNs in these environments
not only improves security but also reduces the need for extensive human patrols,
thereby lowering operational costs and increasing overall efficiency.

In conclusion, the use of WSNs in sensitive fenced areas represents a signifi-
cant advancement in surveillance technology. With their ability to provide con-
tinuous, real-time monitoring, these networks play a crucial role in safeguarding
critical infrastructure and strategic sites against unauthorized intrusions and poten-
tial security threats. As research and development in this field continue to evolve,
the capabilities and applications of WSNs in sensitive fenced areas are expected to
expand, offering even greater levels of security and situational awareness.

I.9 Conclusion
WSNs are a continuously evolving research domain with a multitude of application
contexts. In this Chapter, we delved into the realm of WSNs and surveillance
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systems, exploring various aspects and considerations associated with them. In
the first part of this Chapter, we introduced Wireless Sensor Networks (WSNs) by
describing their architecture, characteristics, constraints and challenges influencing
their design, as well as their applications. In the second part, we highlighted the
various deployment strategies of WSNs in addition to the influence of deterministic
placement of sensor nodes on the performance of these networks, especially in terms
of coverage, connectivity, cost and network lifespan. Furthermore, we explored the
application of WSNs in sensitive fenced areas, highlighting their role in enhancing
surveillance and security measures.

In the next Chapter, we will present a state-of-the-art overview of combinatorial
optimization techniques, both single and multi-objective as well as machine learning
techniques aimed at enhancing the performance criteria of a WSNs dedicated to the
surveillance of sensitive fenced areas, through appropriate node placement.
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Chapter II
Machine Learning based Meta-Heuristics
to Solve Combinatorial Optimization
Problems

II.1 Introduction
The intersection between Machine Learning (ML) techniques and combinatorial op-
timization methods is an exciting domain which becomes increasingly common. Ma-
chine learning has revolutionized many fields, including computer vision, natural
language processing, and robotics, by enabling algorithms to learn from data and
improve their performance over time. On the other hand, combinatorial optimiza-
tion techniques have been instrumental in solving complex problems in operations
research, logistics, and scheduling, among others, by finding the best solution among
a finite set of possibilities. In recent years, there has been a growing interest in com-
bining these two powerful approaches to tackle challenging problems that are beyond
the reach of traditional methods. By integrating machine learning techniques with
combinatorial optimization methods, we can develop intelligent systems that can
learn from data and adapt to new situations while still providing optimal or near-
optimal solutions.

This chapter delves into the synergy between machine learning and meta-heuristics,
exploring how these advanced methodologies can be leveraged to solve combinato-
rial optimization problems. redWe begin by reviewing works that use exact and
approximate methods to solve the WSN deployment problem, then we review the
research works where authors utilize ML to solve different problems related to
WSN. Subsequently, we examine Combinatorial Optimization Problems (COPs)
and the complexity issues they present. We then explore how to solve (COPs) us-
ing different optimization approaches, including exact and approximate methods
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(heuristic/meta-heuristic algorithms), followed by a discussion on single-objective
and multi-objective optimization techniques. Finally, we provide an introduction to
ML, focusing on how the Reinforcement Learning (RL) paradigm can be applied to
enhance meta-heuristic algorithms, thereby paving the way for innovative solutions
in combinatorial optimization.

II.2 Literature Review
Numerous researchers have collaborated to enhance the Wireless Sensor Network
(WSN) deployment process, aiming to make them more efficient, reliable, and high-
performing, while simultaneously reducing energy consumption, lowering deploy-
ment costs, and extending the lifespan of nodes and network coverage. To achieve
these objectives, researchers employed either exact or approximate methods, or a
combination of traditional methods (exact and approximate) and intelligence based
methods such as genetic algorithms (GAs).

II.2.1 Optimizing WSN Deployment using Exact and ap-
proximate Methods

Authors in [7] introduced a Multi-objective optimization technique tailored for WSNs
employing a modified Genetic Alogrithm (GA) that emulates the movement of Par-
ticle Swarm Optimization (PSO) particles. The authors aimed to minimize the
number of Relay Nodes (RNs) deployed and the associated communication costs.
A series of simulations were conducted under diverse scenarios, varying parameters
such as the ratio of GA chromosomes to PSO particles, as well as the number and
positioning of sensors. Near-optimal outcomes were attained using a GP90 ratio,
wherein 90% of the 200 chromosomes were generated utilizing GA characteristics,
while the remaining 10% were treated as PSO particles. Notably, this approach
surpassed alternative algorithms including Dijkstra, A-Star, GA, and PSO in terms
of RN usage and communication cost efficiency. The employed method generates
two distinct topology designs. One design emphasizes cost efficiency by minimizing
the number of RNs, while the other prioritizes reduced communication costs despite
requiring more RNs. The selection between the designs depend upon the user’s
preference.

Authors in [60] developed an integer linear programming model to find an op-
timal solution. Additionally, they proposed two approximate methods: a Local
Search (LS) algorithm and a Genetic Algorithm (GA). These methods aim to pro-
vide efficient solutions to the problem, although they may not guarantee optimality.
Through computational experiments, the authors demonstrated that their integer
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linear programming model, implemented using CPLEX, is capable of finding opti-
mal solutions for small and medium-sized instances of the problem. Moreover, they
showed that their proposed methods outperform conventional sensor deployment
patterns. Overall, this study contributed to the literature on WSN deployment by
presenting both exact and approximate methods for addressing the critical coverage
problem, thereby offering insights into optimizing sensor deployment strategies for
improved network performance.

Authors in [68] introduced a novel approach to achieving optimal network cover-
age in a two-dimensional Euclidean area using a GA. The objective is to strategically
place a specified number of sensors to ensure comprehensive coverage. The focus is
on tackling the maximum coverage problem, emphasizing the calculation of the total
area covered by deployed sensor nodes. The proposed algorithm is designed to find
the optimal positions for a given number of sensors, maximizing the coverage of the
sensor area. By utilizing a genetic algorithm, the research aimed to enhance network
coverage efficiency, particularly when the number of sensors is limited. The results
of the study indicate that the proposed method effectively maximizes the coverage
of the sensor area, showcasing its potential to address the challenges associated with
optimal coverage in WSNs.

Authors in [69] addressed the problem associated with the deployment of WSNs
for surveillance applications. Walid TOUIL proposed a Basic Variable Neighborhood
Search algorithm (BVNS) meta-heuristic, with the greedy algorithm used to find
initial solution of the problem. The author also used The weighted sum method
to solve the multi objective problem. The obtained results, in terms of number of
RNs deployed, hop count and latency, were very encouraging compared to an exact
method.

II.2.2 Machine Learning Algorithms for Addressing WSNs
Challenges

This section of the literature review discusses various machine learning (ML) tech-
niques that can be utilized to address the diverse problems and challenges encoun-
tered in WSNs.

Researchers in [3] introduced a data compression algorithm with error bound
guarantee for WSNs using compressing neural networks. The proposed algorithm
minimizes data congestion and reduces energy consumption by exploring spatio-
temporal correlations among data samples. The adaptive rate-distortion feature
balances the compressed data size (data rate) with the required error bound guar-
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antee (distortion level). This compression relieves the strain on energy and band-
width resources while collecting WSN data within tolerable error margins, thereby
increasing the scale of WSNs. The algorithm is evaluated using real-world datasets
and compared with conventional methods for temporal and spatial data compres-
sion. The experimental validation reveals that the proposed algorithm outperforms
several existing WSN data compression methods in terms of compression efficiency
and signal reconstruction. Moreover, an energy analysis shows that compressing the
data can reduce the energy expenditure, and hence expand the service lifespan by
several folds.

Authors in [8] presented a novel tree-based data aggregation approach for peri-
odic sensor networks, leveraging correlation matrix and polynomial regression tech-
niques. The proposed approach involves aggregating data at two sensor levels, where
each sensor node generates a polynomial function of the captured data and transmits
the coefficients of regression along with the polynomial function to the aggregator
and sink levels. By utilizing similarity functions and correlation matrices, the ap-
proach aims to efficiently aggregate data while maintaining accuracy and reducing
energy consumption.

Authors in [62] introduced QL-MAC, a novel energy-preserving Medium Access
Control (MAC) protocol derived from Q-learning. This protocol aims to extend the
network lifetime by iteratively tweaking MAC parameters through a trial-and-error
process, ultimately converging to a low-energy state. QL-MAC offers flexibility and
adaptability to varying network conditions without the need for predetermining the
system model. It provides a self-adaptive protocol capable of adjusting to topolog-
ical and external changes, ensuring optimal performance under dynamic environ-
ments. By dynamically altering radio sleeping and active periods based on traffic
predictions and the transmission state of neighboring nodes, QL-MAC significantly
reduces energy consumption while maintaining satisfactory network performance.
Experimental validation demonstrates the protocol’s efficacy in off-the-shelf devices,
supplemented by large-scale simulations, showcasing its potential to address energy
efficiency challenges in high-density communication scenarios in Wireless Sensor
Networks (WSNs).

The authors in [39] proposed a novel approach to enhance the sustainability
of WSN nodes by extending their lifetimes. The authors aimed to optimize the
collection interval and transmission interval for each task using machine learning
techniques. Initially, they employed the wrapper method to determine the optimal
combination of nodes required to perform each task efficiently. Subsequently, Sim-
ulated Annealing (SA) is applied to identify the values of these parameters that
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minimize power consumption without compromising the WSN’s performance signif-
icantly. To validate the effectiveness of their method, the authors conducted two
sets of experiments, demonstrating a reduction in energy consumption using their
framework. By leveraging supervised learning techniques, the proposed approach
offers a promising solution to extend the lifespan of WSN nodes while maintaining
optimal network performance.

The authors [13] investigated the effectiveness of machine learning algorithms
in localizing nodes in large-scale Wireless Sensor Networks (WSNs). Unlike tradi-
tional methods that used iterative triangulation, the study approached localization
as a regression problem rather than a classification one. The authors proposed
novel feature vector definitions and evaluated the impacts of various network pa-
rameters, such as network size, anchor node population, transmitted signal power,
and wireless channel quality, on localization accuracy. They compared random and
grid placements of anchor nodes, finding that machine learning models, specifically
multivariate regression and Support Vector Machine (SVM) regression with a radial
basis function (RBF) kernel, offered promising accuracy. The results highlighted
that these machine learning-based methods mitigated the error propagation com-
mon in traditional approaches, demonstrating significant potential for improving
localization in WSNs.

II.3 Introduction to Combinatorial optimization

True optimization is the
revolutionary contribution of
modern research to decision
processes

George Dantzig

Combinatorial optimization is a branch of mathematical optimization that has
applications in artificial intelligence, applied mathematics, software engineering, and
many other domains. Optimization problems are usually divided in two categories.
Those with continuous variables and those with discrete variables which are called
combinatorial. When working with continuous problems we are generally looking
for a set of real numbers or even a function. In the combinatorial problems, we are
looking for an object from a finite or possibly infinite set, typically an integer set,
permutation or graph, those candidate objects are called feasible solutions while the
optimal one is called an optimal solution. In our work we focus mainly on discrete
optimization or combinatorial optimization problems and the process of finding an
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optimal solutions in a well defined discrete space. Today, combinatorial optimiza-
tion finds widespread application in the study of algorithms, and it holds particular
relevance in our case for optimizing WSN nodes deployment. For example, consider
following problem.

Problem 1 The traveling salesman problem (TSP) has kept researches busy for
the last 100 years by its simple formulation, important applications and interest-
ing connections to other combinatorial problems. An article related to the traveling
salesman problem was treated by the Irish mathematician Sir William Rowan Hamil-
ton in the 1800s and later an article was published by the British mathematician
Thomas Penyngton Kirkman in 1855.

The salesman wishes to make a tour visiting each city exactly once and finishing
at the city he starts from. A tour is a closed path that visits every city exactly
once. There is a integer cost Cij to travel from city i to j and the salesman wishes
to make the tour with a minimal cost. The total solution’s cost becomes the sum of
individual costs along the edges of the tour. The travel costs are symmetric in the
sense that traveling from city i to city j costs just as much as traveling from city j to
city i. The Traveling Salesman Problem (TSP) can be formulated mathematically
as follows:

Let G = (V,E) be an undirected graph, where V is the set of vertices (cities)
and E is the set of edges (roads) connecting the vertices. Each edge eij has a non-
negative weight cij, representing the cost (or distance) to travel from city i to city
j. This is closely related to the Hamiltonian circuit of the graph as illustrated in
Figure II.1. If there are n cities to visit, the number of possible solutions or tours in
finite. To be precise it becomes (n− 1)!. Hence an algorithm can easily be designed
that systematically examines all tours in order to find the shortest tour.

Figure II.1: Hamiltonian Cycle [6].
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Formally, the TSP can be represented as an optimization problem:

Minimize :
∑

(i,j)∈E

cij · xij

Subject to:

• Each city must be visited exactly once:
∑

j ̸=i xij = 1, ∀i ∈ V

• Each city must leave exactly once:
∑

i ̸=j xij = 1, ∀j ∈ V

• Sub-tour elimination constraints to prevent loops:

–
∑

(i,j)∈S xij ≤ |S| − 1, ∀S ⊂ V, S ̸= ∅

• Binary constraint on decision variables: xij ∈ {0, 1}, ∀(i, j) ∈ E

– xij is a binary decision variable, indicating whether the edge eij is in-
cluded in the tour (1 if included, 0 otherwise).

– Constraints 1 and 2 ensure that each city is visited and left exactly once.
– Constraint 3 prevents the formation of subtours, ensuring that the tour

is connected and does not contain loops.
– Constraint 4 enforces the binary nature of the decision variables.

Problem 2 The Knapsack problem The classical binary knapsack problem (de-
noted by 0-1 KP) is one of the most linear integer programming belonging to the
combinatorial optimization family. There are several applications that can be mod-
eled as 0-1 KPs, such as cargo loading. Let us consider a simple example: suppose
a traveller has a travelling bag (knapsack) that takes a maximum of c kg of items.
The traveller has n items (1, 2, 3, ..., n), their weights are wi and they have values
associated of pi. In this case, the traveller should place the items so that it maxi-
mizes the value of the knapsack while note exceeding the maximum weight of the
bag. The Binary Knapsack Problem can be formulated mathematically as follows:

Let n be the number of items available for selection. Each item i has a weight
wi and a value vi. We also have a knapsack with a capacity W . Mathematically,
the Binary Knapsack Problem can be formulated as an optimization problem:

Maximize :
n∑

i=1

vi · xi (II.1)

Subject to:
n∑

i=1

wi · xi ≤ W,

xi ∈ {0, 1} for i = 1, 2, . . . , n

(II.2)
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Where:

• xi is a binary decision variable representing whether item i is selected (1 if
selected, 0 otherwise).

• The objective function maximizes the total value of the selected items.

• The constraint ensures that the total weight of the selected items does not
exceed the capacity W of the knapsack.

• wi and vi represent the weight and value of item i, respectively.

This formulation defines the Binary Knapsack Problem as a mixed-integer linear
programming (MILP) problem, which can be solved using optimization techniques
such as integer programming solvers or dynamic programming algorithms.

II.3.1 Computational Complexity
Most of these problems are referred to as NP-hard problems because depending
on the size of the problem and the number of objectives to optimize, there are no
algorithms that provide an exact solution in polynomial time.

Figure II.2: Complexity classes labeled from Easy to Hard scale [69].
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• The class P consists of decision problems solvable by deterministic algo-
rithms within polynomial time. It encompasses tasks like searching, element
uniqueness, and determining graph connectivity and acyclicity. These algo-
rithms yield yes or no answers without explicit output statements, forming
the foundation for efficient problem-solving across diverse domains [24].

• The class NP (Non-deterministic Polynomial) represents problems whose
solutions cannot be found in polynomial time. However, they can be verified
in polynomial time [21].

• The class NP-complete: This is a decision problem that belongs to the
NP class, and the best-known resolution algorithm to date is exponential in
the size of the problem in the worst-case scenario [21]. This class represents
problems that can be expressed in the form of a mathematical question whose
answer can only be ”yes” or ”no”. For example, the primality test is a decision
problem that involves answering the following question: given an integer n, is
n prime?

• The class NP-hard: This is a problem whose solution cannot be verified in
polynomial time, and any NP-complete problem can be polynomial reduced
to this problem. NP-hard problems are therefore at least as difficult as NP-
complete problems as shown in Figure II.2. In general, this class is used for
optimization problems for which the solution cannot be verified in polynomial
time. Examples of NP-hard problems include the traveling salesman problem
and the chromatic number of a graph.

The P versus NP problem The P versus NP problem was introduced indepen-
dently in 1971 by Stephen Cook and Leonid Levin. Since that time, extensive efforts
have been made to find a proof for this problem, but no definitive solution has been
discovered thus far it asks whether P is equal to NP or not. In other words, it asks
whether every problem for which a solution can be verified in polynomial time can
also be solved in polynomial time [69].

If P = NP , we could find solutions to search problems as easily as checking
whether those solutions are good as illustrated in Figure II.3. This would essentially
solve all the algorithmic challenges that we face today and computers could solve
almost any task. However because there are problems for which no efficient algorithm
exists, and finding a solution requires an exponential amount of time. In this case,
there would always be a gap between verifying a solution and finding it thus P ̸=
NP [69].
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Figure II.3: The Venn diagram for P, Np, NP-complete and NP-hard set of prob-
lems [24].

II.3.2 Optimization Techniques for Combinatorial Problems
Combinatorial optimization problems present significant complexity, driving the de-
velopment of diverse techniques to navigate their solution space effectively. These
methods include exact approaches ensuring optimality, heuristic methods swiftly
delivering satisfactory solutions, and meta-heuristic methods offering strategic guid-
ance. Additionally, approximation algorithms provide solutions with known quality
bounds. Employing these techniques empowers researchers to tackle real-world chal-
lenges across various domains effectively. Let’s delve deeper into some commonly
utilized techniques.

II.3.2.1 Exact Methods

Exact methods, such as branch and bound and dynamic programming, offer guar-
anteed optimality. Typically applied to smaller-scale problems. They efficiently
explore solution spaces within reasonable time frames. Larger problems pose chal-
lenges, as solving them exactingly could lead to exponential increases in computa-
tional time.

II.3.2.1.1 Branch and Bound Branch and Bound (BB) algorithms are uti-
lized to find optimal solutions for combinatorial, discrete, and general mathematical
optimization problems. Generally, when faced with an NP-Hard problem, a branch
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Figure II.4: Optimization methods classification

and bound algorithm systematically explores the entire search space of potential
solutions and provides an optimal solution.

Branch and bound algorithms are methods for global optimization in non-convex
problems. They are non-heuristic, in the sense that they maintain a provable upper
and lower bound on the (globally) optimal objective value; they terminate with a
certificate proving that the suboptimal point found is ϵ-suboptimal. Branch and
bound algorithms can be (and often are) slow, however. In the worst case they
require effort that grows exponentially with problem size, but in some cases we
are lucky, and the methods converge with much less effort [14]. In these notes we
describe one typical and simple example of branch and bound methods to solve the
knapsack problem stated before.

0/1 Knapsack problem using Branch and Bound Given two arrays v[]
and w[] that represent values and weights associated with n items respectively. Find
out the maximum value subset(Maximum Profit) of v[] such that the sum of the
weights of this subset is smaller than or equal to Knapsack capacity (maximum
weight of the knapsack) W . The branch-and-bound method is based on three main
principles:

1. Separation principle: This involves dividing the problem P into sub-problems
Pi based on a certain criterion. Each sub-problem has its own set of feasible
solutions contained within a vertex of the tree, as shown in Figure II.5. The
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union of the subsets associated with the children of a vertex must be equal
to the set associated with that vertex. The optimal solution is obtained by
calculating the objective function value for all non-empty leaves of the tree [6].

2. Evaluation: This allows defining the optimum for the current subset when
the sub-problem becomes simple and can be solved directly. This method also
helps avoid separating certain vertices of the tree when it is proven that the
set associated with the node in question does not contain candidate solutions
to optimality. This is possible thanks to the knowledge of a lower bound
(respectively an upper bound) for each sub-problem. If we can find a lower
bound (in the case of a minimization problem) greater than the best solution
found so far, we can say that the subset does not contain the optimum [6].

3. Traversal strategy: To choose the next vertex to separate from the set of
vertices in the tree, there are several traversal strategies [6]. These include:

• Depth-first: This strategy favors vertices furthest from the root by ap-
plying more separations to the initial problem.

• Breadth-first: This strategy prioritizes sub-problems obtained with the
fewest separations from the starting problem (i.e., the closest vertices).

• Best-first: This involves exploring sub-problems where the probability of
finding a better solution is highest.

Figure II.5 depict the 0/1 knapsack problem using B&B method. There are
also other similar algorithms, such as Branch and Price (a hybrid of branch and
bound and column generation algorithms), which is used for solving problems with
large solution spaces, and Branch and Cut (a hybrid of branch and bound and
cutting planes algorithms), which is employed to solve mixed-integer programming
problems [19].

II.3.2.1.2 Dynamic programming Dynamic programming is an algorithmic
approach for investigating an optimization problem by breaking it down into smaller,
simpler sub-problems. A key aspect of dynamic programming is the proper struc-
turing of optimization problems into multiple levels and solving them in a sequential
manner, one level at a time. Each level is solved using typical optimization tech-
niques, and the solution obtained helps to define the characteristics of the next
level problem in the sequence. Typically, these levels correspond to distinct time
periods within the overall problem [69]. Dynamic programming is usually used to
solve problems such as the knapsack problem, Hanoi tour and shortest path using
Dijkstra
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Figure II.5: 0/1 knapsack problem using B&B method [27].

Dijkstra’s Algorithm

Dijkstra’s algorithm is a fundamental graph algorithm used to find the shortest
path from a source vertex to all other vertices in a weighted graph with non-negative
edge weights. Unlike the Floyd-Warshall algorithm, Dijkstra’s algorithm is specifi-
cally designed for finding single-source shortest paths. The Dijkstra algorithm 1 is
as follows [73]:

Dijkstra’s algorithm maintains a priority queue Q of vertices ordered by their
current tentative distance from the source vertex. It repeatedly extracts the vertex
with the shortest tentative distance form Q, relaxes all its outgoing edges, and
updates their tentative distances accordingly. continues until all vertices have been
processed, resulting in the shortest path distances stored in the array dist [73].

II.3.2.2 Approximate Methods

II.3.2.2.1 Heuristics

Heuristics, also known as approximate methods were first introduced by G. Polya
in 1945, in order to provide good and feasible solutions in a reasonable or polyno-
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Algorithm 1 Dijkstra’s Algorithm
1: Input: A graph G with V (G) = 1, . . . , n, a source vertex s, and non-negative

edge weights w : E(G)→ R≥0

2: Output: An array dist such that dist[v] contains the length of the shortest
path from source vertex s to vertex v

3: dist[s]← 0
4: Initialize priority queue Q with all vertices, with dist[v] =∞ for all v ̸= s
5: while Q is not empty do
6: u← Extract-Min(Q) {Extract vertex with minimum dist from Q}
7: for each neighbor v of u do
8: if dist[u] + w((u, v)) < dist[v] then
9: dist[v]← dist[u] + w((u, v))

10: Decrease-Key(Q, v, dist[v]) {Update priority queue}
11: end if
12: end for
13: end while
14: return dist

mial time but are not necessarily optimal. These techniques are designed to solve
specific problems and do not explore the entire search space (they are not complete
methods) unlike exact methods. Among these heuristics, we can mention greedy
algorithms.

Greedy Algorithm

Greedy algorithms are used to solve combinatorial optimization problems typ-
ically by going through a sequence of steps, with a set of choices at each step. It
makes a locally optimal choice (solving the sub-problem) in the hope that this choice
will lead to a globally optimal solution. Greedy algorithms do not always provide
optimal solutions, but they do so for many problems such as the coin change problem
and graph coloring problems.

The Figure II.6 below depicts a comparison of the results obtained from the
Greedy algorithm heuristic and an optimal algorithm in finding the shortest path
from node A to node J in a weighted graph:
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Figure II.6: Comparison between Greedy and Exact algorithms [69].

During his master’s thesis [69], Walid TOUIL employed a greedy algorithm as a
precursor to initializing the Variable Neighborhood Search (VNS) algorithm. The
Greedy algorithm demonstrated its efficacy by yielding excellent results in the con-
text of the VNS algorithm.

A* Algorithm

The A* algorithm, originally introduced by Peter E. Hart, Nils John Nilsson,
and Bertram Raphael in 1968 [33], addresses the shortest path problem in a graph
between a source node and a destination node. It serves as an extension of Dijk-
stra’s algorithm, aiming to provide one of the best solutions efficiently. Given a
graph, starting from a source node, the algorithm selects the node that minimizes
the predefined cost until reaching the destination node. This principle is known as
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the ”Best First Search.” A* utilizes a cost estimation function for selecting the next
node to visit, denoted as d(i), such that:

d(i) = g(i) + h(i) (II.3)

Where:

• d(i) represents the estimated total cost of the path.

• g(i) denotes the estimated length of the shortest path from the origin s to
node i.

• h(i) indicates the estimated length of the shortest path from node i to the
destination t.

• If h(i) = 0 for all nodes, then A* is identical to Dijkstra’s algorithm.

II.3.2.2.2 Meta-heuristics

Meta-heuristics represent a class of optimization algorithms designed to tackle
complex combinatorial optimization problems that are otherwise computationally
intractable with exact methods. Unlike exact algorithms that aim for optimality,
metaheuristics provide efficient approximate solutions by navigating through the
solution space using heuristic rules. They serve as powerful problem-solving tools,
offering flexibility and scalability across various domains, from engineering to oper-
ations research and beyond.

At its core, a metaheuristic is a higher-level strategy guiding the exploration of
the solution space. Instead of exhaustively examining all possible solutions, meta-
heuristics iteratively refine a population of candidate solutions, leveraging strategies
inspired by natural phenomena, human behavior, or mathematical principles.

Two prominent categories of metaheuristics are trajectory-based and nature-
inspired metaheuristics. Trajectory-based metaheuristics navigate the solution space
by iteratively refining a single solution, gradually moving towards the optimal or
near-optimal solution. Examples include simulated annealing, and tabu search.
These algorithms adjust the current solution based on a predefined neighborhood
structure, seeking improvements through local search operations.

On the other hand, nature-inspired metaheuristics draw inspiration from nat-
ural phenomena or biological processes to guide the search for optimal solutions.
These algorithms mimic the behavior of complex adaptive systems observed in na-
ture, such as evolutionary processes, swarm behavior, and physical phenomena.
Nature-inspired metaheuristics include genetic algorithms, ant colony optimization
and particle swarm optimization. By harnessing the principles of self-organization,

60



CHAPTER II. MACHINE LEARNING BASED META-HEURISTICS TO
SOLVE COMBINATORIAL OPTIMIZATION PROBLEMS

cooperation, and adaptation observed in natural systems, these algorithms offer ro-
bust and efficient optimization techniques capable of addressing a wide range of
complex problems.

In this section, we delve into the intricacies of trajectory-based and nature-
inspired meta-heuristics, exploring their underlying principles, algorithmic frame-
works, and applications across diverse domains. Through comprehensive analysis
and empirical evaluation, we aim to provide insights into the strengths, weaknesses,
and best practices associated with these powerful optimization techniques.

Simulated Annealing

The combinatorial optimization algorithm Simulated Annealing was indepen-
dently developed by three researchers at IBM, S. Kirkpatrick, C.D. Gelatt, and
M.P. Vecchi in 1983 [42], and by Cerny in 1985 [15]. The inspiration for this method
originates from an analogy with metallurgy, where a process called ”annealing” in-
volves heating a solid to a high temperature and then slowly cooling it to achieve
low-energy states. The objective is to reach a state of quasi-thermodynamic equi-
librium, which corresponds to the solution of the optimization problem.

The method is applied to combinatorial optimization problems. It begins by
generating an initial solution s randomly from the search space with the aim of
minimizing an objective function f , where f(s) represents the energy. Then, it
determines a parameter T that decreases towards 0. At each iteration, the solution
is perturbed to induce a change ∆ in the system’s energy. If this change reduces the
energy of the system, it is applied to the current solution. Otherwise, the solution
is accepted with a probability of exp(∆

T
). The theory demonstrates that simulated

annealing provides an approximate solution to the optimal solution of the problem
more quickly than exhaustive exploration. In practice, it is necessary to use the
appropriate internal parameters of the algorithm to accelerate convergence towards
a pseudo-optimal solution [6].

Tabu Search

The Tabu Search algorithm was proposed by Glover in 1986 [31] and experi-
enced significant success in the 1990s, demonstrating its performance on numerous
combinatorial optimization problems. To this day, it remains one of the most widely
used single-solution metaheuristics. The tabu search pseudo code of the algorithm
2 is given below:

61



CHAPTER II. MACHINE LEARNING BASED META-HEURISTICS TO
SOLVE COMBINATORIAL OPTIMIZATION PROBLEMS

Algorithm 2 Tabu Search (TS)
1: Input: Initial solution s0, stopping criteria
2: Output: Best found solution s′

3: Initialize Tabu lists (TL1, TL2, . . . , TLr)
4: s′ = s
5: repeat
6: Find the best admissible solution s1
7: if f(s1) > f(s′) then
8: s′ = s1
9: else

10: s = s1 and update Tabu list TL
11: end if
12: until stopping criteria

The key feature of this method is the use of memory to record information
associated with the search process, making the search somewhat intelligent. The
idea is to move from the current solution X to another solution Y such that Y is
a neighbor of X. In cases where none of the neighboring solutions improve upon
the current solution, the method accepts the least desirable solution to avoid local
optima. Typically, all neighbors are explored deterministically as in local search,
and the best neighbor replaces the current solution.

When faced with a local optimum, the search continues by selecting the least
unfavorable candidate compared to the current solution. The best neighbor is con-
sidered as the new solution even if it does not improve upon the current solution,
allowing for revisiting previously examined solutions, leading to cycles. To pre-
vent this phenomenon, the method maintains a memory of recently visited solutions
called the Tabu List. This list contains all the movements that have already been
made and are therefore prohibited (taboo). This prevents falling into a cycle of
repetitive movements and escaping from local minima [36].

Genetic Algorithms

Genetic Algorithm (GA) is a class of Evolutionary Algorithm (EA) which gener-
ates solutions to optimization problems using techniques inspired by natural evolu-
tion, such as mutation, selection, and crossover. It is a search algorithm based on the
mechanics of natural selection and natural genetics to solve usually mathematical
optimization of search algorithm in computational algorithm. John Holland firstly
put forward GA in 1975 [34] when he worked on the studies of cellular automata
with his colleagues and his students at the University of Michigan. GA became
popular through his book Adaptation in Natural and Artificial Systems (Holland,
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1975).
GAs are useful when attempting to solve problems that a) are computationally

complex to solve optimally and b) have no trivial heuristic model to approximate a
good solution [66].

The process of Genetic Algorithms There are typically six basic opera-
tions that a GA will utilize during a run. These are: population initialization, fitness
evaluation, parent selection, recombination, mutation and survival selection. A GA
initializes the population, evaluates the fitness of each individual in this population
and then continually loops until some termination condition is met. Termination
conditions are typically that a good enough solution is found, that too many gener-
ations have been iterated over, or that the fitness has not increased in some given
amount of generations. Each loop consists of selecting the parents that will breed in
the population, recombining these parents and producing offspring, sometimes mu-
tating the offspring, evaluating the offspring and finally selecting what individuals
in the population will be removed. Figure II.7 describes the work flow of a GA.

Population At the start of a GA run the population needs to be initialized. A
population is the set of all individuals currently evaluated in the GA, every individual
is represented by chromosomes coded in a determined length of sequence of digits,
letters or other showing ways. A population has a certain size, a larger size has
the drawback of more evaluation time, a smaller size has the drawback of a lacking
diversity. Genetic Algorithm works on two types of spaces alternatively, coding
space (genotype) and solution space (phenotype) [44]. The phenotype describes the
outward appearance of an individual. A transformation exists between genotype and
phenotype, also called mapping, which uses the genotypic information to construct
the phenotype. A chromosome refers to a string of certain length where all the
genetic information of an individual is stored. Each chromosome consists of many
alleles. Alleles are the smallest information units in a chromosome as illustrated in
Figure II.9. In genetic algorithm, an encoding function is use to represent mapping
of the object variables to a string code and mapping of string code to its object
variable is achieve through decoding function [44] as shown in Figure II.8

Fitness In order to represent the quality of the solution another term is bor-
rowed from biological evolution, fitness, which describes how well an individual solves
the underlying problem. Fitness is calculated according to some objective function
for the problem, solutions that solve this problem better typically get a better fit-
ness. Solutions that are valid and conform to the constraints of the problem will
typically have a better fitness than those who do not.
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Figure II.7: Genetic Algorithm Flowchart
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Figure II.8: Encoding-Decoding method

Figure II.9: Genetic algorithm population

Selection After calculating the evaluation of every chromosome, we should
choose the same number of chromosomes as in the previous population to create the
next generation. This selection takes place in accordance with the natural selection
rule that the better parents will have better offspring. Parents are chosen according
to their fitness. Thus the chromosomes which have highest evaluation should have
the most of the chances to be selected to create new offspring. The selection can
be done by many methods, such as roulette wheel selection, Boltzmann selection,
tournament selection, rank selection and some others as shown in Figure II.10 [16,
37].

1. Roulette Wheel Selection: Fitness proportionate selection, introduced
with the development of genetic algorithms, is described in detail by Khalid
Jebari et al [37]. In genetic algorithms, roulette wheel selection is a mecha-
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Figure II.10: Selection operator methods

nism used to select individuals from a population for reproduction based on
their fitness. It mimics the process of spinning a roulette wheel, where each
individual’s likelihood of being selected is proportional to its fitness score rel-
ative to the total fitness of the population. How it works is that for a set of
N elements, each with a fitness F0Fn, it finds the sum of the fitness for each
element in the set and gives each element a chance to be selected with the
individual fitness over the sum of the fitness. In mathematical notation, the
chance, C, that any element X with fitness Fx would have to be chosen is:

C =
Fx∑n
i=1 Fi

(II.4)

To select n parents from the population, the roulette wheel is spun n times.
Each spin corresponds to selecting one parent. As mentioned before, the prob-
ability of selecting each individual as a parent is determined by their fitness
relative to the total fitness of the population, as illustrated in Figure II.11.

2. Stochastic Universal Sampling: The SUS selection method [37], a variant
of the Roulette wheel selection (RWS), aims to mitigate the risk of prema-
ture convergence. Unlike traditional Roulette wheel selection, which typically
selects only one fixed point, SUS incorporates multiple fixed points (usually
as many as desired number of parents) as illustrated in Figure II.12. Conse-
quently, all parents are selected in a single spin of the wheel. Moreover, this
approach promotes the selection of highly fit individuals at least once.

3. Linear Rank Selection: The LRS [37] is also a variant of RWS that tries
to overcome the drawback of premature convergence of the GA to a local
optimum. It is based on the rank of individuals rather than on their fitness.
The rank n is accorded to the best individual whilst the worst individual gets
the rank 1. Thus, based on its rank, each individual i has the probability of
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Figure II.11: Roulette Wheel Selection [70].

being selected given by the expression

p(i) =
rank(i)

n× (n− 1)
(II.5)

4. Exponential Rank Selection: The ERS [37] is based on the same principle
as LRS, but it differs from LRS by the probability of selecting each individual.
For ERS, this probability is given by the expression:

p(i) = 1.0 ∗ exp
(
−range(i)

C

)
(II.6)

with
C =

n ∗ 2 ∗ (n− 1)

6 ∗ (n− 1) + n
(II.7)

5. Tournament Selection: Its principle consists in randomly selecting a set
of k individuals [70]. These individuals are then ranked according to their
relative fitness and the fittest individual is selected for reproduction. The
whole process is repeated n times (number of parents) for the entire population
as illustrated in Figure II.13. Tournament Selection is also extremely popular
in literature as it can even work with negative fitness values.

Crossover Crossover plays a crucial role in genetic algorithms by facilitating
the exchange of genetic information between parent individuals to create offspring.
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Figure II.12: Stochastic Universal Sampling [70].

After the selection phase in GA, which identifies promising individuals as parents,
crossover allows the recombination of their genetic material to generate new so-
lutions. This process aims to diversify the genetic pool and potentially produce
offspring with improved characteristics inherited from the parents. The crossover
methods are of many types as shown in Figure II.14

1. One Point Crossover: One-point crossover [48] operator randomly selects
one crossover point and then copies everything before this point from the first
parent and then everything after the crossover point from the second parent
as shown in Figure II.15.

2. Two Point Crossover: The two-point crossover [28] operator operates sim-
ilarly to the one-point crossover but involves two crossover points instead of
one. In this method, two crossover points are randomly selected along the
chromosome. Then, the genetic material between the two crossover points
is swapped between the parent chromosomes as shown in Figure II.16. This
process results in offspring that inherit genetic material from both parents,
promoting genetic diversity and potentially creating novel solutions. The two-
point crossover operator, while effective, can be scaled to accommodate more
crossover points, known as n-point crossover. This allows for more extensive
genetic exchange between parent chromosomes, potentially leading to further
diversification and exploration of the solution space.

3. Uniform Crossover: The operator decides which parent will contribute how
the gene value in the offspring chromosomes. The crossover operator allows
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Figure II.13: Tournament Selection [70].

the parent chromosomes to be mixed at the gene level rather than the segment
level [76, 48].
Consider the two following parents in the following figure, if the crossover rate
is 0.5%, then half of the genes in the offspring will come from parent1 and half
from parent2 as shown in Figure II.17.

4. Arithmetic Crossover: The arithmetic crossover [48] operator linearly com-
bines two parent chromosome vectors to produce two new offspring according
to the equations:

offspring1 = w × parent1 + (1− w)× parent2

offspring2 = (1− w)× parent1 + w × parent2
(II.8)

Where w is a random weighting factor chosen before each crossover operation.

5. Heuristic Crossover: The heuristic normal distribution crossoverHNDX [76,
48] emphasizes the fitness values of the two parent chromosomes to determine
the direction of the search. This operator generates two potential offspring,
leading to a better search direction. The key idea behind HNDX lies in en-
suring that the offspring produced by the crossover are in the vicinity of the
superior parent or in the direction of the search. By leveraging the principles
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Figure II.14: Crossover methods

Figure II.15: One Point Crossover

of normal distribution, where a generated random number has a higher prob-
ability when closer to its mean, µ, the HNDX operator strategically places
the offspring. In the crossover cycle, if the better parent among the two is
considered as the mean µ of the normal distribution, the resulting offspring
are guaranteed to be in the vicinity of the superior parent according to the
normal distribution. The offspring are created according to the equations:

offspring1 = bestparent+ r × (bestparent− worstparent)

offspring2 = bestparent
(II.9)

Here, r represents a randomly generated factor between 0 and 1.

Mutation A crucial step in genetic algorithms, occurring after the crossover
phase. It introduces random changes to individual chromosomes, typically guided by
a user-defined mutation probability, often set at a low value such as 0.01. By altering
one or more gene values within a chromosome, mutation injects diversity into the
population, potentially leading to the discovery of novel solutions and the escape of
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Figure II.16: Two Point Crossover

Figure II.17: Uniform Crossover

local optimum. These random changes can introduce entirely new genetic material
into the gene pool, expanding the search space and enabling the genetic algorithm
to explore previously uncharted territories, potentially improving the overall quality
of solutions. The mutation operators are of many types as shown in figure II.18:

1. Bit Flip Mutation: The Bit flip Mutation operator simply inverts the value
of the chosen gene, i.e., 0 flips to 1 and 1 flips to 0.

2. Binary Mutation: Also known as Boundary Mutation, this method replaces
the value of the chosen gene with either the upper or lower bound specific to
that gene. This mutation method is applicable only to integer and float genes.

3. Non-uniform Mutation: This method adjusts the mutation probability as
the generation progresses, ensuring that the mutation magnitude decreases
over time. This mutation technique is suitable for integer and float genes.

4. Uniform Mutation: This method involves replacing the chosen gene’s value
with a uniformly random value within the user-defined upper and lower bounds
for that gene. This mutation approach is applicable only to integer and float
genes.
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Figure II.18: Mutation methods

5. Gaussian Mutation: This method adds a unit Gaussian distributed random
value to the selected gene. The resulting gene value is constrained within
the specified upper and lower bounds for that gene. Gaussian Mutation is
utilized to introduce variability in the population and explore the solution
space effectively.

Termination The termination condition defines, when the main evolutionary
loop terminates. Often, the Genetic Algorithm runs for a predefined number of gen-
erations. This can be reasonable in various experimental settings. Time and cost
of fitness function evaluations may restrict the length of the optimization process.
A further useful termination condition is convergence of the optimization process.
When approximating the optimum, the progress of fitness function improvements
may decrease significantly. If no significant process is observed, the evolutionary
process stops. For example, when approximating the optima of continuous opti-
mization problems, the definition of stagnation as repeated fitness difference lower
than 10−8 in multiple successive generations is reasonable.

Summary Genetic Algorithms (GAs) are successful optimization approaches
that allows optimization in difficult solutions spaces. They excel in scenarios where
derivatives and the fitness landscape exhibits regions of poor conditioning, mean-
ing areas where relationship between the input variable and the objective funciton is
complex and unpredictable. In this section, we present an overview of the fundamen-
tals of Genetic algorithms. These Evolutionary algorithms operate on population
of candidate solutions, iteratively refining them towards a optimal solutions. Ge-
netic operators, such as crossover and mutation, play pivotal roles in altering the
solutions within the population. Crossover operators combine the genetic informa-
tion from multiple solutions while mutation introduces randomness to diversify the
search process. It is essential for mutation to possess characteristics such as scala-
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bility, absence of drift, and comprehensive coverage of the solution space. Prior to
evaluation against the fitness function, the genotype or chromosome representation
of a solution must be translated into its corresponding phenotype, i.e., the actual
solution. Selection mechanisms identify the most promising solutions within a pop-
ulation, which serve as parents for the subsequent generation. Equipped with these
foundational concepts, we are poised to implement basic Genetic Algorithms. In the
next section, we present another type of meta-heuristic, the Variable Neighborhood
Search meta-heuristic, which offers an alternative approach to solve optimization
problems.

Variable Neighborhood Search (VNS)

VNS [32] is a meta-heuristic that exhibits systematic change in the neighbor-
hood during the search process. The initial solution is changed each time during
the local search until a local optimum is reached. VNS is based on three major
principles:

• A local optimal solution of one neighborhood structure is not necessary for
that of another neighborhood structure;

• A global optimal solution is a local minimum with respect to all neighborhood
structures;

• Local optimal solutions with respect to different neighborhoods are relatively
close to each other.

Let us assume there are k neighbors structures Nk, k = 1, ..., kmax. The process
starts with the initial solution, we obtain the next solution, from the neighborhood
N(s). Performing local changes in the neighborhood, we can obtain a best solution
from N(s). Researchers in [32], described VNS that performs several local searches
with different neighborhoods until a local optimum is obtained. Below is the general
working pseudo code for VNS:
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Algorithm 3 Variable Neighborhood Search (VNS)
1: Input: Set of neighborhood structures Nk for k = 1, ..., kmax, initial solution s0

2: Output: Best found solution s
3: Initialization: Select the set of neighborhood structures Nk for k = 1, ..., kmax

that will be used in the search.
4: Generate a random initial solution s.
5: Set k = 1.
6: while k ≤ kmax do
7: Shaking: Generate a point ṡ randomly from Nk(s).
8: Local Search: Implement local search method to obtain local optimum s̈

from ṡ.
9: if f(s̈) < f(ṡ) then

10: Set s = s̈ and k = 1.
11: else
12: k = k + 1.
13: end if
14: end while
15: Stop.

The VNS algorithm, depicted in the provided pseudo-code 3, orchestrates a dy-
namic exploration of solution space, aiming to find optimal or near-optimal solutions
to combinatorial optimization problems. The algorithm is structured as follows:

1. The algorithm initiates by selecting a set of neighborhood structures, denoted
as Nk, reflecting different levels of solution perturbation.

2. Subsequently, a random initial solution, s, is generated to kick start the search
process.

3. The algorithm sets k to 1, initializing the exploration index.

4. The execution progresses with the shaking phase, where a new initial solution,
ṡ, is generated by applying a chosen neighborhood structure Nk(s). This phase
aims to inject diversity into the search process.

5. Following the shaking phase, the algorithm undertakes a local search, leverag-
ing various neighborhood structures to refine the solution ṡ into a potentially
better solution, s̈.

6. If the new solution s̈ proves superior to the current solution s, it replaces s as
the new solution, and k is reset to 1. Otherwise, k is incremented and the old
solution will remain as s.
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7. The algorithm iterates through these steps until a predefined stopping criterion
is met, signifying convergence or exhaustion of computational resources.

VNS is a simple and effective metaheuristic approach to solve difficult optimisa-
tion problems. The idea of using more than one neighborhood in the search process
has gained interest among various researchers and has been used in a variety of
applications. Depending on the complexity of the problem and adaptability nature,
VNS has led to several variants of VNS. In the following sections we will discuss
some of the most often used VNS variants that have distinctive characteristics, some
of these variants are:

• Variable Neighborhood Descent

• Reduced Variable Neighborhood Search

• Basic Variable Neighborhood Search

• General Variable Neighborhood Search

• Skewed Variable Neighborhood Search

A. Variable Neighborhood Descent (VND)

VND is a variant of VNS that explores the complete neighborhood and makes
changes in a deterministic manner. Due to this process, VND results in large com-
putation time. A frequent implementation consists of ranking moves by order of
complexity of their application. This is often the same as by size of their neighbor-
hood Ni(s), and returning to the first one each time a direction of descent is found,
and a step made in that direction. Alternatively, a process of experiments is done in
order to find the optimal neighborhoods sequence to implement. The pseudo-code
of the VND is given below:

The VND algorithm, depicted in the provided pseudo-code 4 and Figure II.20.
At its core, VND operates by iteratively exploring various neighborhoods around a
given solution to identify improvements. The process begins with selecting an ini-
tial solution, denoted as s, and an initial neighborhood structure, represented as N1.
The algorithm then iterates through different neighborhoods, indexed by l, seeking
an improved solution. Within each iteration, a candidate solution s′ is generated
within the current neighborhood Nl(s). If this candidate solution s′ offers a better
objective function value than the current solution s, it replaces s as the new solution.
Otherwise, the algorithm moves to the next neighborhood structure, incrementing
l by one. This process continues until a stopping criterion is met, such as reaching
a predefined number of iterations or achieving a satisfactory solution quality. It’s
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Figure II.19: VNS Flowchart
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Figure II.20: VND Flowchart
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Algorithm 4 Variable Neighborhood Descent (VND)
1: Input: Set of neighborhood structures Nk for k = 1, ..., kmax, initial solution s0

2: Output: Best found solution s
3: Select initial neighborhood N1

4: l ← 1
5: repeat
6: s′ ← s
7: for each neighborhood Nl do
8: Find best solution s′ in Nl(s)
9: if f(s′) < f(s) then

10: s← s′

11: l ← 1
12: Break
13: end if
14: end for
15: l ← l + 1
16: until Stopping criteria met

noteworthy that the shaking operation, as depicted in the original pseudocode is
deleted. The VND algorithm’s effectiveness lies in its ability to systematically ex-
plore diverse neighborhoods, enabling it to escape local optima and converge toward
better solutions in optimization problems. The computational time in VND is very
high, and for that reason, it is used in larger size combinatorial problems where
the application uses more computational time. Rong and Kendall [57], investigated
VND for the delay-constrained least cost (DCLC) multicast routing problem, and
showed that VND outperforms other existing algorithms. Some the variants of the
VND algorithm are [50]:

1. Basic Sequential VND

• In Sequential VND, the algorithm explores neighborhoods in a sequential
order, moving from one neighborhood to the next systematically.

• It follows a predetermined sequence of neighborhood structures during
the optimization process.

• The search continues within the same neighborhood until improvements
are no longer achieved before moving to the next neighborhood.

2. Cyclic VND
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• Cyclic VND alternates between different neighborhood structures regard-
less of the achieved improvements, creating a cyclical pattern of neigh-
borhood exploration.

• It does not strictly adhere to a predefined order of neighborhoods, allow-
ing for a more dynamic exploration of the solution space.

• The algorithm changes neighborhoods in a cyclical fashion, providing a
different approach to neighborhood exploration compared to Sequential
VND.

3. Pipe VND

• Pipe VND continues the search within the same neighborhood as im-
provements occur, focusing on refining the current solution within a spe-
cific neighborhood.

• It differs from Sequential and Cyclic VND by maintaining the search
within the current neighborhood until further improvements are no longer
possible.

• Pipe VND offers a more focused approach to optimization by concen-
trating on enhancing the solution within a single neighborhood before
transitioning to a new one.

4. Union-VND

• Also called Multiple Neighborhood Search
• at each iteration, U-VND explores the single neighborhood, obtained as

the union of all predefined lmax neighborhoods, trying to improve the
current incumbent solution [50].

B. Reduced Variable Neighborhood Search (RVNS)

Reduced Variable Neighborhood Search (RVNS) is another variant of VNS. It
is mostly based on the third principal of VNS, a global optimum is the best solution
across all neighborhoods. Hence, in a specific neighborhood a solution is randomly
selected. This random selection constitutes a stochastic search, and it does not use
a local search to improve the solution. Below is the pseudo code for RVNS:
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Algorithm 5 RVNS
1: Input: Set of neighborhood structures Nk for k = 1, ..., kmax, initial solution s0

2: Output: Best found solution s
3: Initialization: Select the set of neighborhood structures Nk for k = 1, ..., kmax

that will be used in the search.
4: Set k = 1.
5: while k ≤ kmax do
6: Shaking: Generate a point ṡ randomly from Nk(s).
7: if f(s̈) < f(ṡ) then
8: Set s = s̈ and k = 1.
9: else

10: k = k + 1.
11: end if
12: end while
13: Stop.

In the RVNS algorithm 5, a set of neighborhoods N1(s), N2(s), . . . , Nkmax(s) is
defined around the current point s. These neighborhoods are typically arranged in
a nested fashion, with each one containing the previous. The algorithm randomly
selects a point within the first neighborhood. If this point yields a better solution
than the current one (i.e., f(ṡ) < f(s)), the search continues within that neighbor-
hood (s = ṡ). Otherwise, the algorithm progresses to the next neighborhood. This
process repeats for all neighborhoods until a stopping condition is met, often de-
termined by a maximum computing time or a maximum number of iterations. The
nested structure of neighborhoods ensures that the algorithm explores smaller, closer
neighborhoods more thoroughly before moving on to larger ones, thus facilitating
an efficient search process [32].

C. Basic Variable Neighborhood Search (BVNS)

Th BVNS in another variant of VND proposed in [32], it is a hybrid of VND
and RVNS. Thus, the BVNS uses a process to find the next optimal solution from
the most fitting neighborhood structure, then the solution is further refined and
improved by using a local search technique. This improved solution is the current
solution from the neighborhood in the iteration. The BVNS provides a good solution
and saves computational time. Algorithm 6 shows how the BVNS works.

We begin by selecting a series of neighborhood structures that define neighbor-
hoods around any given point s in the solution space. Next, we employ local search
techniques to find a local optimum s∗. Then, within the first neighborhood N1(s)
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Algorithm 6 BVNS
1: Input: Select the set of neighborhood structures Nk for k = 1, ..., kmax that will

be used in the search, Initial Solution s0
2: Output: Best found solution s
3: Find an initial solution s;
4: Choose a stopping condition;
5: repeat
6: Shake: Generate a point ṡ at random from the kth neighborhood of s (ṡ ∈

Nk(s));
7: Local search: Improve ṡ using a local search method;
8: if ṡ is better than the incumbent then
9: Set s = ṡ;

10: else
11: Increment k (k = k + 1);
12: end if
13: until stopping condition is met

of s, we randomly select a point ṡ and perform a local search descent from ṡ. This
process is repeated iteratively. This leads to a new local minimum s̈. At this point,
three outcomes are possible [32]:

• If s̈ = s, indicating that the search has returned to the same local minimum,
the procedure continues with the next neighborhood Nk(s), where k > 2.

• If s̈ ̸= s but f(ṡ) > f(s), suggesting that another local optimum has been
discovered but is not superior to the previous best solution (or incumbent),
the procedure advances to the next neighborhood.

• If s̈ ̸= s and f(ṡ) < f(s), indicating that a superior local optimum has been
found, the search restarts around s̈, initiating once again with the first neigh-
borhood.

Should the last neighborhood is reached without a solution better than the incum-
bent being found, the search begins again at the first neighborhood N1(s) until a
stopping condition, e.g., a maximum time or maximum number of iterations, or
maximum number of iterations since the last improvement, is satisfied.

D. General Variable Neighborhood Search

The subsequent variant of VNS discussed in this section is the General VNS,
which merges aspects of VND and RVNS. It begins by employing RVNS to obtain
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a solution and subsequently applies local search to enhance it. Below is the general
pseudocode 7 for GVNS:

Algorithm 7 General Variable Neighborhood Search (GVNS)
1: Input: Set of neighborhood structures Nk for k = 1, ..., kmax, initial solution s0

2: Output: Best found solution s
3: Initialization: Select the sets of neighborhood structures Nk for k = 1, . . . , kmax

for the shaking phase and Nlocal for local = 1, . . . , localmax for the local search;
Choose a stopping condition.

4: repeat
5: Set k ← 1.
6: repeat
7: Shaking:
8: Generate a point x′ at random from the kth neighborhood Nk(x) of x.
9: Local search by VND:

10: Set l ← 1.
11: repeat
12: Exploration of neighborhood: Find the best neighbor x′′ of x′ in Nl(x

′).
13: Move or not:
14: if f(x′′) < f(x′) then
15: Set x′ ← x′′ and local← 1.
16: else
17: Set local← local+ 1.
18: end if
19: until l = lmax
20: Move or not:
21: if this local optimum is better than the incumbent then
22: Move there: x← x′′, and continue the search with N1 (k ← 1).
23: else
24: Set k ← k + 1.
25: end if
26: until k = kmax
27: until stopping condition is met

The algorithm begins by initializing sets of neighborhood structures for both the
shaking phase and the local search. It then finds an initial solution and improves it
using RVNS. A stopping condition is also defined to determine when the algorithm
should terminate.

Within each iteration, the algorithm sets up structured sequence of operations.
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It initiates by setting the neighborhood index k to 1 and iterates through the sub-
sequent steps until the maximum neighborhood index kmax is attained.

Initially, the algorithm executes the shaking phase by generating a random solu-
tion x′ from the kth neighborhood Nk(x) of the current solution x. It then engages
in local search utilizing VND within Nl(x

′), where Nl denotes the neighborhood
with index l in the VND.

During the local search phase, the algorithm explores neighboring solutions
within Nl(x

′) and evaluates the potential transition to a superior solution x′′. Upon
identifying an improved solution, the algorithm updates the current solution x′ and
recommences the local search process.

Upon completion of the local search, the algorithm assesses whether the attained
local optimum surpasses the incumbent solution. If affirmative, the solution is up-
dated, and the search recommences with the initial neighborhood N1. Otherwise,
the algorithm progresses to the subsequent neighborhood k and repeats the iterative
process until kmax is reached.

The algorithm iterates until the specified termination condition is satisfied, pre-
senting an effective methodology for exploring diverse neighborhoods and deriving
high-quality solutions. Mladenovic and hansen in [32] have implemented GVNS for
the travelling salesman’s problem, and provided the upper bounds in more than half
of the existing benchmark instances. General VNS has been selected as the primary
technique utilized in our thesis project, providing a robust framework for addressing
the deployment of Relay nodes in fenced areas wireless sensor networks.

E. Skewed Variable Neighborhood Search (SVNS)

The SVNS is motivated by the topology of the search space and is a modified
version of BVNS. The basic idea of SVNS is that in the neighborhood change step
accept as new incumbent solutions not only improving solutions but in some cases
those which are worse than the current incumbent solution. Therefore, in the so
called skewed neighborhood change step, a trial solution is evaluated taking into ac-
count not only the objective values of the trial and the incumbent solution but also
the distance between them as shown in algorithm 8 below:
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Algorithm 8 Skewed VNS
1: Input: Set of neighborhood structures Nk for k = 1, ..., kmax, initial solution s0

and its objective function value f(s0).
2: Output: Best found solution s
3: Initialization: Select the set of neighborhood structures Nk for k = 1, ..., kmax.
4: Set sopt = s, fopt = f(s).
5: Choose a stopping condition and a parameter value α.
6: repeat
7: Set k = 1.
8: repeat
9: Shaking: Generate a point s′ at random from the k-th neighborhood of s.

10: Local search: Apply a local search method with s′ as the initial solution.
Denote the obtained local optimum as s′′.

11: if f(s′′) < fopt then
12: Update the best solution: fopt = f(s′′), sopt = s′′.
13: Restart the search with the first neighborhood: k = 1.
14: else
15: if f(s′′)− α · ρ(s, s′′) < f(s) then
16: Set s = s′′ and k = 1.
17: else
18: Set k = k + 1.
19: end if
20: end if
21: until k = kmax
22: until stopping condition is met

The authors in [32], have demonstrated SVNS for the weighted maximum satis-
fiability of logic problem. They have shown SVNS has performed better than tabu
search and VNS for large and medium size problems.

II.3.3 Multi-Objective Optimization Methods
Multi-objective optimization (MOO) tackles the challenge of finding optimal so-
lutions in scenarios where multiple objectives compete and often conflict with each
other. Unlike traditional single-objective optimization, where the goal is to optimize
a single criterion, MOO addresses situations where several objectives need to be op-
timized simultaneously. This paradigm shift reflects the complexity of real-world
problems, which often involve multiple criteria that must be considered holistically.

In the realm of multi-objective optimization, the decision-making process be-
comes more intricate as it shifts from seeking a single optimal solution to identify-
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ing a diverse set of solutions that represent trade-offs between competing objectives.
These trade-off solutions offer decision-makers a spectrum of choices, each reflecting
a different compromise between conflicting objectives.

For instance, in our case, we aim to optimize two primary objectives that inher-
ently conflict with each other: the number of relay nodes (RNs) deployed in
the network site and the diameter of the network. The number of relay nodes
directly impacts the network’s cost and complexity, while the diameter represents
the longest path among the shortest paths from all sentinel nodes (SNs) to the sink
node. Balancing these objectives requires finding an optimal or near-optimal trade-
off that minimizes the number of relay nodes while simultaneously minimizing the
network’s diameter. Achieving this balance ensures an efficient network topology
that minimizes both deployment costs and communication latency.

The pursuit of a set of trade-off optimal solutions reflects the essence of multi-
objective optimization. By considering all objectives as equally important, MOO
endeavors to provide decision-makers with a comprehensive understanding of the
problem landscape. Armed with this knowledge, stakeholders can then apply higher-
level qualitative considerations to select the most suitable solution based on their
preferences, constraints, and overarching goals.

In essence, multi-objective optimization offers a powerful framework for navi-
gating complex decision spaces, empowering decision-makers to explore diverse so-
lution possibilities and make informed choices that balance competing objectives
effectively.

II.3.3.1 Lexicographic method

The lexicographic method is a non-aggregated and non-Pareto approach used to
handle multi-objective optimization problems. This method prioritizes and processes
objectives based on a pre-defined order set by the decision maker. The order reflects
the importance of the objectives, and the problem is solved sequentially according
to this hierarchy.

In the lexicographic method, each objective function fi is optimized one at a
time, starting with the highest-priority objective. The solution to the first objec-
tive becomes the constraint for the next objective in line. This process continues
sequentially until all objectives have been addressed, culminating in a solution that
represents the global optimum according to the specified priorities.

The key steps of the lexicographic method are as follows:

1. Order Definition: The decision maker establishes a hierarchy of objectives
based on their relative importance.

2. Sequential Optimization: Starting with the highest-priority objective, the
method optimizes each objective function in sequence. The solution obtained
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from optimizing one objective is used as a constraint for the next objective.

3. Final Solution: The process continues until all objectives have been opti-
mized, resulting in a final solution that respects the predefined hierarchy of
objectives.

In the work by BENTABET and BENGHELIMA (2019), the lexicographic
method was applied to a multi-objective optimization problem involving the deploy-
ment of Relay Nodes (RNs) in a wireless sensor network. The objectives included
minimizing the deployment cost, maximizing the network coverage, and ensuring
energy efficiency. The objectives were prioritized based on their importance to the
decision makers. The lexicographic method was used to solve the problem, start-
ing with the most important objective (minimizing deployment cost), followed by
maximizing network coverage, and finally ensuring energy efficiency. This sequen-
tial approach facilitated the identification of an optimal solution that met all the
prioritized objectives effectively [6].

By using the lexicographic method, the authors were able to handle the multi-
objective optimization problem efficiently, demonstrating the practical applicability
of this method in real-world scenarios where clear priorities can be established among
the objectives.

II.3.3.2 Aggregated Methods

Aggregated methods transform the multi-objective problem (MOP) into a single-
objective problem. Examples of aggregated methods include:

II.3.3.2.1 Weighted Sum Method The weighted sum method combines mul-
tiple objectives into a single objective by assigning weights to each objective. It is
a straightforward approach and commonly used in classical optimization methods.
When dealing with multiple objectives, the weighted sum method is often the first
choice due to its simplicity and widespread application [69]. It is based on adding
the weighted objectives to form a single cost function as follows,

min
k∈Q

n∑
i=1

wifi(k) (II.10)

where wi > 0 for all i = 1, . . . , n and
∑n

i=1 wi = 1. The optimization may also be
subjected to various constraints. The objective functions are often normalized in
the weighted sum when they have different ranges of values.

A clear advantage of this method is that the single-objective optimization (SOP)
methods can be used to produce a unique solution, which also means that the
solution can be found with less computational burden. However, the weighting
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factors have a huge impact on the solution and they are hard to be selected [61].
It is also worth mentioning that ”weights indicate the relative importance of the
corresponding objective function but they do not imply priorities” [61].

II.3.3.2.2 Epsilon-Constraint Method The epsilon-constraint method selects
one main objective to maximize and treats the other objectives as restrictions. A
procedure that overcomes some of the convexity problems of the weighted sum tech-
nique is the ϵ-constraint method. This involves minimizing one objective and ex-
pressing the other objectives in the form of inequality constraints as shown in the
next equation,

minimize f1(x),

subject to fi(x) ≤ ϵi, i = 2, . . . ,m,

x ∈ X,

(II.11)

A notable challenge in the ϵ-constraint method lies in selecting appropriate con-
straints to ensure feasibility. Additionally, relying solely on hard constraints often
falls short of accurately expressing the true design objectives. Alternative methods,
such as prioritizing objectives to guide the optimization process within specified
bounds of acceptance. Nevertheless, articulating these priorities and constraints
effectively in the initial stages of optimization remains a significant challenge [12].

II.3.3.2.3 Goal Attainment Method The goal attainment method described
by Gembicki [29] includes a set of prior chosen design targets. Each target is associ-
ated with an objective. The formulation of the MOP in this case allows the objectives
to be under- or over-achieved so that the initial design goals can be chosen to be
imprecise by the decision-maker. The relative degree of under- or over-achievement
of these targets is determined by a set of weighting factors. A standard optimization
problem using this method can be given as follows,

min
γ∈R1,k∈Q

γ (II.12)

such that fi(k)− wiγ ≤ f ∗
i (k) subject to other constraints.

In this method, we introduce constraints to ensure that each objective function
fi(k) remains below or equal to its respective goal f ∗

i (k), scaled by a factor γ, subject
to other constraints. Here, fi(k) represents the value of the i-th objective function,
while wi denotes the weight assigned to each objective, indicating its relative im-
portance. The decision maker must select this weight vector before applying the
multi-objective optimization method. The goals f ∗

i (k) represent the desired values
that the objective functions should achieve, and γ is an unrestricted scalar [61].

It is important to note that while this method resembles the weighted sum ap-
proach, the primary focus remains on determining the appropriate weight vector.
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Additionally, each element of the weight vector does not directly correspond to the
priority of the respective objective function [61].

II.3.3.3 Pareto Methods

Pareto methods leverage the concept of dominance to identify the Pareto front,
representing the set of efficient (or non-dominated) solutions where no objective
function can be improved without degrading others.

Theorem II.3.1 (Pareto Dominance) A vector x ∈ D is said to dominate an-
other vector y ∈ D if and only if:

fi(x) ≤ fi(y), ∀i ∈ {1, 2, ...., n}, ∃j ∈ {1, 2, ..., n} / fj(x) < fj(y)

This is denoted as x ≺ y and read as: x Pareto dominates y.

Identifying the Pareto front involves evaluating the dominance relationship among
solutions to determine a set of non-dominated solutions. These solutions represent
the best trade-offs among objectives, offering decision-makers a range of optimal
choices to consider based on their preferences and constraints. The Pareto front
provides a visual representation of these trade-offs, aiding in the understanding and
selection of the most suitable solutions for the given multi-objective optimization
problem [6].

II.4 Introduction to Machine Learning
Machine Learning (ML) stands at the forefront of artificial intelligence, revolution-
izing the way machines process information and make decisions. Unlike traditional
programming paradigms, ML empowers machines to learn from past data or ex-
periences, enabling them to make predictions or classifications about future events
without explicit programming. But what exactly constitutes learning in the realm
of ML? According to Tom Mitchell, a renowned expert in Computer Science and
Machine Learning, a computer program is said to learn from experience E with re-
spect to some task T and performance measure P, if its performance on T improves
with experience E [52].

ML tasks are typically defined by how the ML system should process examples,
which are collections of features such as pixels in an image, within a dataset. Com-
mon tasks include classifications, regressions, transcriptions, machine translation,
synthesis, and sampling. Evaluating the performance of an ML algorithm involves
designing quantitative measures such as accuracy or error rate to assess its effec-
tiveness.
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In this section, we delve into the intricacies of ML, focusing on three main
categories of ML algorithms: Supervised Learning, Unsupervised Learning, and
Reinforcement Learning. Supervised learning involves learning from labeled data,
where the algorithm learns to predict the output from input examples. Unsupervised
learning, on the other hand, deals with uncovering hidden patterns or structures in
unlabeled data. Lastly, Reinforcement Learning involves learning to make decisions
by interacting with an environment and receiving feedback in the form of rewards
or penalties.

By exploring these distinct paradigms of machine learning, we aim to provide
a comprehensive understanding of their principles, applications, and challenges in
modern AI systems.

Figure II.21: Machine Learning techniques categories

II.4.1 Supervised Learning
Supervised Learning is the most popular paradigm for performing ML operations.
Two kinds of problems that supervised machine learning aims to solve are classifi-
cation problems and regression problems.

II.4.1.1 Classification

In 2012, Kevin P. Murphy [51] defined the objective of classification as learning a
mapping from the input set x to the outputs y, where y ∈ {1, ..., C} and C represents
the number of classes as shown in Figure. For binary classification problems (C = 2),
y ∈ {0, 1}, while for multi class classification (C > 2), y can take on multiple values.
In cases where class labels are not mutually exclusive, it is referred to as multilabel
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Figure II.22: Supervised Learning process [71].

classification. Let’s assume y = f(x) for some unknown function f . The objective
of learning is to estimate this function f based on predictions ŷ = f̂(x), enabling
accurate predictions on new input data. Ambiguous cases may arise, where it’s
challenging to determine the correct label class for input features. In such scenarios,
introducing a probability distribution over possible labels, denoted as p(y|x,D), can
be beneficial. This distribution typically represents a vector of length C. Given a
probabilistic output, the ”true labels” can be computed by:

ŷ = argmax
y

p(y|x,D) (II.13)

This expression identifies the most probable label based on the given input vector
x and training set D.

II.4.1.2 Regression

Regression is akin to classification, with the key distinction being the continuous
nature of response variables. In regression, the objective is to predict a continuous
outcome variable y based on one or more input variables x. Linear regression stands
out as the simplest and most widely used technique, assuming a linear relationship
between the output and input variables [35].

Several real-world supervised machine learning problems illustrate the utility of
regression [35]:
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• Predicting the GDP of a country for the next year, based on current economic
conditions.

• Forecasting the revenue of a company for the upcoming month, leveraging
historical revenue data and other relevant information.

• Estimating the number of views for a particular YouTube video, considering
the viewing history of a specific YouTube channel.

II.4.2 Unsupervised Learning
Unsupervised learning forms a crucial component of machine learning, focusing on
extracting meaningful patterns and structures from unlabeled data. Unlike super-
vised learning, where the algorithm learns from labeled examples, unsupervised
learning algorithms operate on raw, unlabeled data, making it a versatile and pow-
erful tool in various domains.

The primary objective of unsupervised learning is to uncover inherent structures
within the data, such as clusters, relationships, or underlying distributions, without
explicit guidance or supervision. This exploration enables the algorithm to identify
hidden patterns, anomalies, or similarities that may not be apparent to human
observers. Consequently, unsupervised learning plays a pivotal role in exploratory
data analysis, feature engineering, and data preprocessing tasks.

Clustering and dimensionality reduction are two fundamental tasks within unsu-
pervised learning. Clustering algorithms group similar data points together based on
their intrinsic characteristics, facilitating segmentation and classification of data into
meaningful clusters. On the other hand, dimensionality reduction techniques aim
to compress high-dimensional data into a lower-dimensional space while preserving
essential information, thereby enhancing computational efficiency and interpretabil-
ity.

Furthermore, unsupervised learning techniques extend beyond traditional data
analysis domains and find applications in various fields such as image and speech
processing, anomaly detection, recommendation systems, and natural language pro-
cessing. By autonomously identifying patterns and structures in data, unsupervised
learning algorithms pave the way for valuable insights, knowledge discovery, and
decision-making support in complex and unstructured datasets.

II.4.2.1 Clustering

Cluster analysis is an exploratory technique whose aim is to identify groups, or
clusters, of high density in which observations are more similar to each other than
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observations assigned to different clusters. This process requires to quantify the de-
gree of similarity, or dissimilarity, between observations. The results of the analysis
is strongly dependent on the kind of the used similarity metric.

For instance, let’s consider a scenario where we have extensive data on visitors to
our blog. We can employ a clustering algorithm to identify groups of similar visitors.
At no point do we explicitly tell the clustering algorithm which group a visitor
belongs to; it autonomously discovers these connections without our intervention.
For example, the algorithm might observe that 40% of our visitors are male comic
book enthusiasts who typically browse our blog in the evenings, while 20% are
young science fiction fans who visit the site on weekends, and so forth. If we utilize
a hierarchical clustering algorithm, it can further divide each group into smaller
subgroups, aiding in targeted messaging for each group.

Figure II.23: Graphical representation of how clustering can be used to identify
patterns in a data set [5].

II.4.2.2 Dimensionality reduction

Dimensionality reduction plays a pivotal role in unsupervised learning by trans-
forming high-dimensional data into lower-dimensional spaces without compromising
essential information. This technique is crucial for simplifying the modeling pro-
cess, enhancing visualization, and mitigating the curse of dimensionality commonly
encountered in machine learning tasks.

The primary goal of dimensionality reduction in unsupervised learning is to re-
duce the complexity of datasets while retaining critical information. By transform-
ing high-dimensional data into lower-dimensional spaces, dimensionality reduction
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facilitates data visualization, model simplification, and improved computational ef-
ficiency.

The process of dimensionality reduction involves projecting data onto lower di-
mensional spaces while preserving essential features. This is achieved by identifying
the most relevant dimensions or features that capture the underlying structure of
the data. The choice of dimensions or features is critical, as it directly impacts the
quality of the reduced data.

One of the key challenges in dimensionality reduction is the sensitivity to outliers.
Outliers can significantly impact the results of dimensionality reduction, leading to
inaccurate or misleading representations of the data. To address this issue, tech-
niques such as robust statistics and robust dimensionality reduction methods have
been developed.

Another challenge is overfitting, which occurs when the reduced data is too
complex and fails to generalize well to new data. Overfitting can be mitigated by
using regularization techniques, such as L1 and L2 regularization, which help to
reduce the complexity of the reduced data.

Dimensionality reduction is a fundamental concept in unsupervised learning,
and its applications span various domains. It is used to identify patterns, reduce
noise, and improve the interpretability of data. In natural language processing,
dimensionality reduction is used to reduce the dimensionality of text data, enabling
more efficient processing and analysis. In image analysis, dimensionality reduction is
used to reduce the dimensionality of image data, enabling more efficient processing
and recognition.

In conclusion, dimensionality reduction is a crucial concept in unsupervised
learning that enables the transformation of high dimensional data into lower di-
mensional spaces while preserving essential information. Its applications are diverse
and span various domains, offering insights, simplifying modeling tasks, and paving
the way for enhanced data analysis and interpretation.

II.4.3 Reinforcement Learning
Reinforcement learning (RL) is currently experiencing a surge of interest in the
research community, largely driven by the recent advancements in deep learning
(DL). The emergence of deep reinforcement learning, facilitated by DL techniques,
has significantly broadened the scope and applicability of RL methods. Positioned as
the third major paradigm of machine learning alongside supervised and unsupervised
learning, RL focuses on learning to make decisions through a process of trial and
error.

In RL, an agent interacts with its environment, seeking to learn optimal strategies
to maximize cumulative rewards. This process mimics the way humans and animals
learn from their experiences to shape their behavior. By receiving feedback in the
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form of reward signals, the agent learns to discern favorable actions from unfavorable
ones [65].

Before delving into the findings of this thesis, it is essential to establish a clear
understanding of the current state-of-the-art in RL. This section aims to explore
the intricacies of this field, providing insights into its underlying principles and
methodologies.

Examples A good way to understand reinforcement learning is to consider some
of the examples and possible applications that have guided its development [65]:

• Amaster chess player makes a move. The choice is informed both by planning—
anticipating possible replies and counterreplies—and by immediate, intuitive
judgments of the desirability of particular positions.

• A mobile robot decides whether it should enter a new room in search of more
trash to collect or start trying to find its way back to its battery recharging
station. It makes its decision based on the current charge level of its battery
and how quickly and easily it has been able to find the recharger in the past.
and moves.

• A gazelle calf struggles to its feet minutes after being born. Half an hour later
it is running at 20 miles per hour.

II.4.3.1 Elements of Reinforcement Learning

Reinforcement learning offers a computational framework for tackling sequential
decision-making problems. Unlike problems that can be solved with a single action,
RL addresses scenarios where a sequence of actions is required to achieve optimal
outcomes. This section endeavors to elucidate the core principles and concepts of
RL, providing readers with a foundational understanding of this research domain.

Beyond the agent and the environment, one can identify four main sub-elements
of a reinforcement learning system: a policy, a reward signal, a value function, and,
optionally, a model of the environment.

Agent The entity that interacts with the environment, making decisions based
on observations of the current state. These decisions, termed actions (denoted as
at), are the sole means by which the agent can influence the environment. While the
agent lacks direct control over the environment, it can modify and shape it through
its actions. Typically, the agent operates within a predefined set of actions, known
as the action space. Environments may feature discrete action spaces, where only
a finite number of moves are available (e.g., A = {North, South, East,West} in a
two-dimensional maze), or continuous action spaces, where actions are represented
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as vectors of real values. This distinction is crucial when selecting an appropriate
algorithm, as not all algorithms are compatible with both types of action spaces.
Depending on the specific requirements of the problem, it may be necessary to
adapt or customize the algorithm accordingly. The sequence of states and actions,
collectively referred to as a trajectory (τ), serves to represent an episode within the
RL framework [47].

Environment represents all the things that are outside the agent. whenever
the agent takes an action, it emits a reward and an observation of the environ-
ment [47].

Policy defines the learning agent’s way of behaving at a given time. Roughly
speaking, a policy is a mapping from perceived states of the environment to actions
to be taken when in those states. It corresponds to what in psychology would
be called a set of stimulus–response rules or associations (provided that stimuli
include those that can come from within the animal). In some cases the policy may
be a simple function or lookup table, whereas in others it may involve extensive
computation such as a search process. The policy is the core of a reinforcement
learning agent in the sense that it alone is sufficient to determine behavior. In
general, policies may be stochastic [65].

Reward Signal [65, 47] The rewards in reinforcement learning (RL) play a
crucial role in defining the objectives of the learning process. Acting as a feed-
back signal, rewards guide the agent’s behavior by distinguishing between positive
and negative actions, driving the agent to reinforce and refine its decision-making
strategies. At each time step, the environment provides the agent with a single
number, the reward, representing the immediate outcome of its action. Over time,
the agent’s goal is to maximize the total reward accumulated, shaping its behavior
to favor actions that lead to favorable outcomes.

In a biological context, rewards can be likened to the experiences of pleasure or
pain, serving as immediate feedback for the agent’s actions. The reward received
by the agent depends on its current action and the state of the environment, with
the agent having no control over the reward process itself. However, the agent
can influence the reward signal through its actions, either directly or indirectly by
altering the environment’s state.

The reward signal serves as the basis for adjusting the agent’s policy, guiding its
decision-making process. Actions that result in low rewards may prompt the agent
to revise its policy to favor alternative actions in similar situations in the future.
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Value function While rewards indicate immediate desirability, value func-
tions provide a long-term perspective by estimating the cumulative rewards ex-
pected from a given state over the future. Values offer a refined assessment of state
desirability, considering the rewards available in subsequent states [65].

Unlike rewards, which are directly provided by the environment, values must
be estimated from the agent’s observations over its lifetime. Value estimation is a
central component of RL algorithms, reflecting the importance of long-term planning
and decision-making. Despite rewards being primary in driving behavior, values take
precedence in decision-making, guiding the agent towards actions that maximize
long-term rewards.

In addition to the temporal aspect of rewards, RL differs from supervised and
unsupervised learning in its lack of a supervisor and its reliance on direct experi-
ence rather than labeled data. While supervised learning involves learning from
labeled data provided by a supervisor, RL relies on observations and rewards for
learning. Furthermore, the sequential nature of RL introduces dependencies be-
tween actions, making resulting data non-independent and challenging traditional
learning paradigms.

Model The fourth and final element of some reinforcement learning systems
is a model of the environment which is represented formally as[38]:

• a discrete set of environment states, S ;

• a discrete set of agent actions, A ;

• a set of scalar reinforcement signals; typically 0, 1 , or the real numbers.

This concept entails replicating the dynamics of the environment or, more broadly,
facilitating predictions about the environment’s behavior. For instance, when pro-
vided with a specific state and action, the model can anticipate the subsequent
state and associated reward. These models serve a crucial role in planning, referring
to the process of determining a course of action by contemplating potential future
scenarios prior to their occurrence. Approaches for addressing reinforcement learn-
ing challenges that leverage models and planning are termed model-based methods.
In contrast, model-free methods are characterized as direct trial-and-error learners,
essentially representing the antithesis of planning [65].

II.4.3.2 Approaches to Reinforcement Learning

In the realm of reinforcement learning (RL), agents are equipped with algorithms
tailored to maximize the rewards obtained from their interactions with the environ-
ment. Each RL algorithm possesses its own unique characteristics and is often de-
signed to excel in specific application domains. Recognizing the distinctions among
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these algorithmic approaches is essential for determining which one best suits the re-
quirements of a given problem. However, navigating the landscape of RL algorithms
can be daunting due to their sheer diversity and complexity.

This section endeavors to shed light on the fundamental differences among RL
algorithms, offering insights that are pertinent to the context of this thesis. While
the distinctions outlined here are pivotal, it is important to acknowledge that they
may not encompass the entirety of the RL algorithm spectrum. Nonetheless, they
serve as a valuable framework for understanding the varied approaches employed in
reinforcement learning.

II.4.3.2.1 Reinforcement Learning Framework

In Reinforcement Learning (RL), the agent interacts with a Markov Decision
Process (MDP) (S,A, γ, P, r), where S denotes the fully-observed state space of the
environment and the agent, A denotes the action space, γ denotes the discount
factor, P = {p(s0), p(st+1|st, at)} denotes the initial state distribution and transi-
tion dynamics of the environment, and r(s, a) denotes the reward function. The
reinforcement signal, or reward feedback, plays a crucial role in the agent’s learning
process. As depicted in Figure II.24, at each time step t, the agent observes the
environment’s state S(t), selects an action A(t) according to its policy π(at|st), and
receives a reward rt = r(st, at). Leveraging the accumulated expected reward and
current environmental state, the agent endeavors to refine its actions to learn the
optimal policy π∗ and to maximize the γ-discounted cumulative future return.

RL finds applications across various domains including robotics, aircraft control,
self-driving cars, and business strategy planning. Initially conceived for single-agent
scenarios, RL aims to devise an optimal policy tailored to maximize the agent’s
expected reward, with the policy’s efficacy contingent on the characteristics of the
environment.

Learning Settings

Online and Offline The learning setting in Reinforcement Learning could be
online or offline. In the first case, the learning process is done in parallel or concur-
rently while the agent continues to gather new information to use, while the second
one progresses toward learning using limited data. Generalisation becomes a critical
problem in the latter approach because the agent is not able to interact anymore
with the environment [47].

In the context of this thesis, what matters is offline learning: the learning phase
occurs concurrently with the agent’s interaction with the environment, allowing for
continuous adaptation as new information becomes available with each subsequent
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Figure II.24: Reinforcement Learning Framework

learning episode.

On-policy and Off-policy Another important difference in Reinforcement Learn-
ing algorithms consists of the distinctive usage of the policy to learn. On-policy
algorithms heavily rely on training data collected according to the current policy.
They are specifically designed to utilize data obtained from the most recent policy
iteration. Conversely, off-policy methods have the flexibility to utilize alternative
sources of valuable data for learning, beyond direct experience. This capability
enables the agent to leverage large experience buffers containing data from past
episodes [47].

In the context of this thesis, Our RL framework is an on-policy method. Thus,
it relies on information and experience sampled according to the current policy
iteration for learning.

II.4.3.3 Model-free and Model-Based Reinforcement Learning

This part describes three approaches in RL based on being model-based or model-
free, where the model-free includes value-based and policy-based algorithms as
shown in Figure II.25. For the clarify of presentation, we explicitly separate model-
based from model-free in the discussion here;

II.4.3.3.1 Model-Based approach

98



CHAPTER II. MACHINE LEARNING BASED META-HEURISTICS TO
SOLVE COMBINATORIAL OPTIMIZATION PROBLEMS

Figure II.25: Reinforcement Learning approaches

Model-based algorithms, often referred to as optimal control within the domain of
control theory, comprise a collection of techniques that leverage a learned or existing
approximate model of a Markov Decision Process (MDP) to determine the optimal
policy. Unlike model-free approaches, which rely on direct interaction with the en-
vironment to gather samples, model-based algorithms utilize the MDP model to
simulate possible scenarios and derive the best course of action without the need for
real-world data or interactions with the real environment as depicted in Figure II.26.

There are two primary principles to model-based learning. The first one implies
to assemble a model starting from prior knowledge and to exploit it to calculate the
policy and the value-function, while the second one is to infer the model from the
environment by sampling experience. The central drawback of the first technique is
that prior knowledge could be not as accurate as expected, leading to sub-optimal
results. Consequently, the preferred way to learn is the second one.

II.4.3.3.2 Model-free approach

In practical scenarios, having a high level of understanding of the model is often
unattainable, leaving agents to navigate with limited insight into the workings of
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Figure II.26: Difference between Model-free and Model-based RL algorithms

the world. In such instances, the reliance shifts to model-free methods, built on the
premise of lacking prior information regarding state transitions and rewards. This
section aims to offer a concise overview of two model-free strategies for prediction
and control: Monte Carlo (MC) methods and Exploration/Exploitation methods.

Monte Carlo learning

Monte Carlo methods can learn from episodes of experience using the simple
idea that averaging sample returns provide the value. This lead to main caveat
of these methods: they work only with episodic MDPs because the episode has to
terminate before it is possible to calculate any returns. The total reward accumu-
lated in an episode and the distribution of the visited states is used to calculate
the value function while the improvement step is carried out by making the policy
greedy concerning the value function. This approach brings to light the exploration
dilemma about how it is possible to guarantee that the algorithm will explore all
the states without prior knowledge of the whole environment. ϵ-greedy policies are
exploited instead of full greedy policy to solve this problem. An ϵ-greedy policy is
a policy that acts randomly with probability ϵ and follows the policy learned with
probability (1− ϵ). Unfortunately, even though Monte Carlo methods are simple to
implement and they are unbiased because they do not bootstrap, they require a high
number of iteration to converge. Furthermore, they have a wide variance in their
value function estimation due to lots of random decisions within an episode [47].
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Exploration Exploitation learning

One important aspect in RL is that it must explore the environment to gather
information in order to build a policy. The agent do not want to leave unexplored
areas but also to use the accumulated knowledge to make better decisions. In this
sense, it is well known that a suitable trade-off between exploration and exploitation
in imperative for global optimization performance. To gain ore rewards an agent can
follow certain actions that are known to produce high immediate rewards, however,
in order to know which is the best action it has to explore the environment. In many
cases the exploration strategy depends on the time that the agent has interacted
with the environment.

Example of the Exploration/Exploitation trade off Imagine you’re a
tourist exploring a new city, and you’re on the hunt for the best restaurant among
the plethora of restaurants available. You could play it safe and stick to what you
know, revisiting a familiar chain or opting for a reliable cuisine. However, this strat-
egy might mean missing out on the better options. On the other hand, you could
explore more, trying out new places and better restaurants.
Much like the movie industry, where sequels of proven successes are churned out
alongside risky new ventures, your decision as a tourist mirrors the exploration-
exploitation dilemma.

Policy-based and Value-based

The use of policy or value function as the central part of the method represents
another essential distinction between Model-free RL algorithms. Policy-based meth-
ods rely on approximating the agent’s policy, typically represented as a probability
distribution over available actions. These methods directly optimize the agent’s be-
havior and may require multiple observations from the environment, making them
less sample-efficient. On the other hand, value-based methods focus on determin-
ing the value of available actions to indirectly find the optimal behavior. Unlike
policy-based methods, they prioritize identifying the best action rather than the
probability distribution of actions. Additionally, value-based methods can leverage
other sources such as old policy data or replay buffers.
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II.5 Multi-Armed Bandit Problem: Techniques
for Optimal Action Selection

II.5.1 Learning with Multi-Armed Bandits
In this section we present a general formulation of the classic Multi Armed Bandit
(MAB) problem. The Multi-Armed Bandit Problem (MAB) is a fundamental prob-
lem in the field of reinforcement learning and decision-making under uncertainty.
The problem involves a gambler (controller) who has to choose among several slot
machines (also called ”one-armed bandits”) with unknown payout probabilities as
shown in Figure II.27. The gambler’s objective is to maximize his or her total
payout by choosing the best slot machine to play.The MAB problem is commonly
used in various fields, such as clinical trials, online advertising, and recommenda-
tion systems. The MAB problem can be seen as a trade-off between exploration and
exploitation. Exploration refers to the gambler trying out different slot machines
to learn about their payout probabilities, while exploitation refers to the gambler
sticking to the slot machine that has shown the highest payout probability so far.

Figure II.27: Multi Armed Bandit illustration [4].

Here are some techniques employed in addressing the Multi-Armed Bandit Prob-
lem (MABP) through reinforcement learning:
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• Thompson Sampling

• ϵ-Greedy Approach

• Softmax Exploration

• Upper Confidence Bound

II.5.1.1 Thompson Sampling

This description of Thompson sampling follows closely that of Oliver Chappelle and
Lihong Li in [17]. Thompson Sampling tackles the Multi-Armed Bandit Problem
by applying a Bayesian approach. It maintains a probability distribution for each
machine’s expected reward, representing our uncertainty about the true reward dis-
tribution. At each round, the algorithm samples from these distributions and selects
the machine with the highest sample as the action to take. The Thompson sampling
pseudo code is as follows [1]:

Algorithm 9 Thompson Sampling for Bernoulli Bandits
1: Input: Number of arms N
2: Output: Estimated success rates for each arm
3: for i = 1, . . . , N do
4: Si ← 0, Fi ← 0
5: end for
6: for t = 1, 2, . . . do
7: for i = 1, . . . , N do
8: Sample θi(t) from the Beta(Si + 1, Fi + 1) distribution
9: end for

10: Play arm i(t) := argmaxi θi(t) and observe reward rt
11: if rt = 1 then
12: Si(t) ← Si(t) + 1
13: else
14: Fi(t) ← Fi(t) + 1
15: end if
16: end for

1. Initialize Priors: The algorithm initializes a prior distribution for each slot
machine’s reward. Typically, a non-informative prior like the Beta distribution
is used, assuming equal probabilities for all possible rewards.
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2. Action Selection: At time t, the algorithm samples a reward value from each
machine’s distribution. The gambler plays an arm according to the probability
of its mean being the largest.

3. Observe Reward: After the selected action is executed, the algorithm ob-
serves the actual reward obtained from that machine, Si(t) successes (reward
= 1) and Fi(t) failures (reward = 0).

4. Update Probability Distribution: Using the observed reward, Thompson
Sampling updates the probability distribution (posterior) for the selected ma-
chine using Bayesian inference. The updated distribution becomes the prior
distribution for the next round.

5. Repeat the process

II.5.1.2 Epsilon-Greedy Approach

The epsilon-greedy algorithm is a straightforward approach that balances explo-
ration (randomly choosing an arm) and exploitation (choosing the arm with the
highest estimated reward). The epsilon-greedy algorithm begins by setting ϵ to a
fixed value. After that a random probability value is generated between 0 and 1 for
each trial. A random arm is chosen if the produced probability is less than (epsilon).
Otherwise the arm with the highest reward at the time is chosen [64].

Epsilon Decreasing: Building upon the epsilon-greedy algorithm, epsilon-
decreasing gradually reduces the exploration rate over time. This strategy allows
for more exploration in the initial stages and transitions toward greater exploitation
as the algorithm gathers more information.
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Algorithm 10 Epsilon-Greedy Algorithm
1: Input: Number of arms N , initial ϵ, number of trials T
2: Output: Estimated rewards for each arm
3: Initialize ϵ to a fixed value
4: Initialize rewards Ri ← 0 and counts Ci ← 0 for each arm i
5: for each trial t = 1 to T do
6: Generate a random probability value p between 0 and 1
7: if p < ϵ then
8: Choose a random arm at
9: else

10: Choose the arm at with the highest estimated reward Ri/Ci (if Ci > 0) or
random if not played yet

11: end if
12: Play arm at and observe reward rt
13: Update rewards Rat ← Rat + rt
14: Update counts Cat ← Cat + 1
15: Optionally decrease the value of ϵ
16: end for
17: return

{
Ri

Ci
| i = 1, . . . , N

}

II.5.1.3 Softmax Exploration

Although ϵ-greedy action selection is an effective and popular algorithm of balancing
exploration and exploitation in reinforcement learning. ϵ-Greedy’s drawback is that
when it explores it chooses equally among all actions. Consequently, it’s just as
probable to select the least promising action as it is to choose one that appears to be
the second best. Softmax methods are based on Luce’s axiom of choice (1959) [43]
and pick each arm with a probability that is proportional to its average reward.
Arms with greater empirical means are therefore picked with higher probability.
The most common Softmax method uses a Gibbs, or Boltzmann, distribution and
in our thesis, we will present the Boltzmann exploration, a Softmax method that
selects an ram using a Boltzmann distribution [65]. Given initial empirical means
µ̂1(0), . . . , µ̂k(0),

pi(t+ 1) =
eµ̂i(t)/τ∑k
j=1 e

µ̂k(t)/τ
, i = 1, . . . , n (II.14)

where τ is a positive parameter called the temperature, controlling the random-
ness of the choice. High temperatures cause the actions to be all (nearly) equiproba-
ble. Low temperatures cause a greater difference in selection probability for actions
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that differ in their value estimates. In other words, When τ = 0, Boltzmann Ex-
ploration acts like pure greedy. As τ tends to infinity, the algorithms picks arms
uniformly at random [65, 43].

II.5.1.4 Upper Confidence Bound

The UCB family of algorithms has been proposed by Auer, Cesa − Bianchi &
Fisher (2002) as a simpler, more elegant implementation of the idea of optimism
in the face of uncertainty, proposed by Lai & Robbins (1985). The name of this
family of algorithms stems from the fact that the upper bound plays a leading role
in action selection, since we are searching the action with the highest reward rate.
The following algorithms were used to identify a suitable strategy.

II.5.1.4.1 UCB1

The UCB1 algorithm relies on a straight-forward application of Hoeffding’s
inequality; therefore, it is free from any prior knowledge on how the distribution
resembles making it a model − free algorithm.

Theorem (Hoeffding’s Inequality). Let Z1, . . . , Zn be independent and identi-
cally distributed random variables such that 0 ≤ Zi ≤ 1. Then,

Pr

[∣∣∣∣∣ 1n
n∑

i=1

Zi − E[Z]

∣∣∣∣∣ > ϵ

]
≤ δ = 2 exp

(
−2nϵ2

)
(II.15)

The intuition for this result is straightforward. When averaging a set of variables
Zi, it’s expected that the average will be close to the expected value E[Z]. Hoeffd-
ing’s Inequality precisely quantifies the likelihood and degree of deviation from this
expectation.

In Hoeffing’s inequality, Q(a) denotes the true mean of the action, ˆQ(a) as
sample mean, Nt(a) as the number of times an action was taken, and Ut(a) as the
upper confidence bound.

P [Q(a) > Q̂t(a) + Ut(a)] ≤ e−2tUt(a)2 (II.16)

Applied to the Multi-Armed Bandit problem, an agent’s policy is to choose a
slot machine in every iteration t that maximizes UCB1 using the following equation:

UCB1(a) = arg max
j=1...l

p̂t(aj) + C

√
2 log

∑l
1 nl

nt(aj)

 (II.17)
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The first part of the equation is related to the exploitation. p̂t(aj) denotes the
average empirical reward received by the slot machine with a with index j at iteration
t. In other words, it represents the expected reward in response to the selected slot
machine.

The second part is linked with the exploration of possible slot machines since the
gambler explores machines based on the uncertainty of an action’s expected reward.
where the square-root term measure of the uncertainty or variance in the estimate
of a’s value [65]. nt(aj) denotes the number of times the machine with index j has
been selected up until iteration t. the

∑l
1 nl is the total number of iterations up until

iteration t. C is the exploration factor which is responsible on balancing the trade-
off between exploitation and exploration, C parameter determines the confidence
level. Usually C ranges between 1 and 2; with C = 2 meaning that we prioritize
exploration rather then exploitation.

Each time a is selected the uncertainty is presumably reduced; Nt(a) is incre-
mented and, as it appears in the denominator of the uncertainty term, the term is
decreased. If a machine other than a is selected; as it appears in the numerator the
uncertainty estimate is increased.

Sutton and Barto (2018) [65] demonstrated the effectiveness of the UCB1 algo-
rithm in tackling the 10-armed bandit problem, showcasing its robust performance.
However, they highlighted the challenges associated with UCB1 when applied to
non-stationary problems and environments with large state spaces.

II.5.1.4.2 Bayesian UCB

The Bayes-UCB Algorithm [41] is an extension of UCB1 for solving the MAB
problem. Bayesian-UCB is inspired by the Bayesian modeling of the bandit prob-
lem which helps making a reasonable bound estimation if we know the distribution
upfront.

Going from UCB1 to a Bayesian UCB [46] can be fairly simple. assuming the
rewards of each arm are normally distributed, we replace the second part of the
UCB1 term with:

C
σ(xa)√
nt(aj)

(II.18)

σ(xa) is the standard deviation of arm a’s rewards at time t, c is an adjustable
hyper-parameter for defining the size of the confidence interval we want to set to
an arm’s mean observed reward. na is the number of times arm a has been pulled.
The resulting equation of arm selection is as follows:

Bayesian− UCB(a) = arg max
j=1...l

[
p̂t(aj) + C

σ(xa)√
nt(aj)

]
(II.19)
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II.5.1.4.3 UCB-Tuned

Auer et al.[9] propose UCB-Tuned as an improvement to UCB, besides the arith-
metic mean of an arm, it also considers the variance in the bias sequence. This
approach’s logic is that variance-aware algorithms can quickly locate sub-optimal
actions, thereby diminishing the total regret. Establishing that the slot machine to
activate is the one that has the maximum value of the following equation:

UCB − Tuned(a) = arg max
j=1...l

x̂j +

√
log nt

nt(aj)
min{1

4
, Vj(nt(aj))} (II.20)

Where:

Vj(s) = x̂j,s
2 +

√
2 log t

nt(aj)
(II.21)

The 1
4
signifies an upper bound on the variance of a Bernoulli random variable [9].

II.6 Guiding Local Search with Reinforcement Learn-
ing

In this thesis, guiding local search using Reinforcement Learning (RL) involves lever-
aging the Upper Confidence Bound (UCB) policy within a General Variable Neigh-
borhood Search (GVNS) framework. The approach, termed UCB_GVNS, aims to
balance exploration and exploitation by dynamically selecting the most promising
neighborhood structures to apply during the search process. This methodology en-
hances the search for optimal solutions by adaptively focusing on the most beneficial
neighborhoods, based on feedback received during the search.

The RL agent is tasked with navigating the combinatorial search space by making
decisions that maximize cumulative rewards over time. These decisions are guided
by the UCB policy, which systematically explores less-visited neighborhoods while
exploiting those that have historically yielded high rewards. This balance is crucial
for avoiding local optima and ensuring a thorough exploration of the search space.

An essential aspect of this approach is the credit assignment problem, which
involves determining the contribution of specific actions (neighborhood choices) to
the overall success. This problem is challenging due to the sparse, delayed, and
potentially deceptive nature of rewards in RL environments. Addressing these chal-
lenges is vital for the effective functioning of the UCB_GVNS algorithm, as it
ensures that the RL agent can accurately learn from its experiences and improve its
decision-making process over time
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II.6.1 Credit Assignment problem
In reinforcement learning (RL), an agent learns to make decisions by receiving and
maximizing a reward signal from its environment, this is referred to as the credit
assignment problem in the domains of machine learning and neurobiology. This re-
ward signal guides the agent in understanding which actions are beneficial and which
are not, ultimately shaping its behavior. The process of assigning rewards, however,
is fraught with challenges, primarily because rewards can be sparse, delayed, or
deceptive [22].

II.6.1.1 Challenges in Reward Assignment

One of the primary issues in RL is the problem of sparse rewards. In many envi-
ronments, an agent might not receive any feedback (reward) for a prolonged period,
making it difficult to learn effective policies. For instance, in a maze-solving task, the
agent might only receive a reward upon reaching the exit, providing no intermediate
feedback to guide its progress.

Another significant challenge is delayed rewards, where the consequences of an
action are not immediately apparent. This delay can obscure the connection between
actions and their outcomes, complicating the learning process. For example, in
strategic games like chess, the impact of an early move might only become clear
many turns later.

Deceptive rewards present yet another hurdle. In some environments, certain
actions might yield short-term rewards but lead to long-term penalties. This can
mislead the agent into developing suboptimal policies that prioritize immediate gains
over better long-term strategies.

II.6.1.2 Potential-Based Reward Shaping

To address these challenges, authors in [10] have explored various methods of reward
shaping, which involves modifying the reward signal to provide additional guidance
to the agent. One effective technique is potential-based reward shaping (PBRS).
PBRS modifies the reward function by incorporating extra knowledge about the
task, which helps in accelerating the learning process without altering the optimal
policy. This method leverages the cumulative rewards from past episodes to shape
the reward signal dynamically. Specifically, the reward function is adjusted based on
the agent’s performance relative to its best and worst episodes so far. This adaptive
method ensures that the agent receives continuous feedback on its improvement, even
in environments with sparse or delayed rewards. The proposed reward function can
be described by the following equation:
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ϕ(s, a, t) =

{
0 if R(s, a) = 0

1 + Rep−Repu(t)
Repu(t)−Repl(t)

otherwise
(II.22)

where R(s, a) is the immediate reward, Rep is the cumulative reward for the cur-
rent episode, Repu(t) is the maximum episode reward observed so far, and Repl(t) is
the minimum episode reward observed so far [10]. The reward assignment problem
in reinforcement learning is a significant challenge that impacts the efficiency and
effectiveness of learning agents. Techniques such as potential-based reward shaping
provide promising solutions by enhancing the reward signal with additional knowl-
edge. By dynamically adjusting rewards based on the agent’s performance, these
methods offer a robust framework for improving learning outcomes in complex and
sparse environments. Our reward assignment approach is inspired by PBRS but dif-
fers in several key aspects. These differences will be explored in detail in Chapter III.
Future research can further refine these approaches, integrating more sophisticated
knowledge extraction techniques to enhance the adaptability and performance of RL
agents.

Figure II.28: UCB_GVNS contextual diagram
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Figure II.28 presents the schematic diagram of the UCB_GVNS. at iteration
t, The agent observes the state of the environment then makes a prediction of the
best neighborhood to be used, the agent then observes the reward given to the
neighborhood chosen, the process repeats for a number of episodes exploring possible
neighborhoods in the operator pool and their rewards.

II.7 Conclusion
In summary, Chapter II has delved into the powerful combination of meta-heuristic
algorithms and machine learning techniques to tackle combinatorial optimization
problems. By harnessing the capabilities of GAs and VNS, enhanced by the rein-
forcement learning strategy of the UCB1, we have developed a robust hyper-heuristic
framework. This framework will be thoroughly evaluated in Chapter 3, where we
will address the node placement problem, detail the proposed model and frame-
work, and present the results obtained from our approach. Additionally, we will
compare our findings with other existing methods to highlight the effectiveness of
our solution.
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Chapter III
Implementation and Experimental Results

III.1 Introduction
In this chapter, we detail the implementation of our proposed hyper-heuristic ap-
proach to solve the deterministic deployment problem of Wireless Sensor Networks
(WSN) dedicated to the monitoring of sensitive sites. The proposed approach in-
tegrates meta-heuristic algorithms, such as genetic algorithms and variable neigh-
borhood search, with reinforcement learning techniques, specifically the Upper Con-
fidence Bound (UCB1) algorithm. Initially, a genetic algorithm provide an initial
solution. This solution is then passed to the UCB1-guided General Variable Neigh-
borhood Search (GVNS) algorithm, which dynamically selects the optimal neigh-
borhood structure at each iteration to enhance the solution’s quality.

The following sections provides a comprehensive guide to the implementation
and optimization of our surveillance network model. The insights gained from this
chapter are instrumental in developing robust security solutions, ensuring rapid and
reliable alert transmission in various operational environments.

III.2 Optimal Node Placement Problem
Considering an area of interest (or site) to be monitored using a WSN. The sentinel
sensor nodes (SSNs) and RNs are deployed in a deterministic manner so that every
point on the border is covered by at least one SSN, and there exists a path, composed
of a limited number of hops (minimum relays), from each SSN to the sink.

The deployment space of the site is discretized. The site is modeled by a two-
dimensional square grid due to the challenge of exploring all possible positions within
a well-defined area. The centers of the grid cells are indexed by i and represent
candidate locations where nodes can be deployed.
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Figure III.1: Spatial Discretization: Square Grid Node Deployment

The set of cells representing the boundary of the considered space is denoted
by P . For a point p ∈ P (center of the cell) to be covered, the entire cell must
be covered (the four points constituting a cell). The cells are numbered from 0 to
(n− 1) as shown in Figure III.1. “n′′ represents the number of cells in the grid. In
the case of Figure III.1, n = 25. The Cartesian coordinates of a position i will be
calculated as follows: 

xi = (i mod Cols) · step+ step
2

yi = (i÷ Cols) · step+ step
2

(III.1)

Where:

• i: cell index

• Cols = number of columns in the grid

• step = distance between the centers of two neighboring cells
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This equation applies to both squared and non-squared grids. In a squared
grid, the number of rows and columns are equal (e.g., Cols =

√
n for n cells),

ensuring uniform cell spacing. For non-squared grids, where the number of rows
differs from the number of columns, Cols defines the number columns, maintaining
correct positioning of cell centers. This method, derived from the equation in [6],
provides a systematic way to map cell indices to Cartesian coordinates, ensuring
accurate spatial representation of the discretized space.

SSNs and RNs form a multi-hop network that must be fully connected to the
sink. The sink is randomly placed within the grid. Two nodes are directly connected
if the distance between them is less than or equal to the communication range Rc.

III.3 Model Description
The SSNs are positioned at the borders of the network as shown in Figure III.2.
These sentinels serve as the first line of defense and are responsible for generating
an alert upon detecting intrusion.

Element Description
grid Size of the grid representing the area
sink Coordinates of the sink
sinked sentinels Sentinels that have been connected to the sink
sinked relays Relays that have been connected to the sink
free slots Available slots for relays
communication range Connectivity span for Relays, Sensors and sink

nodes
Sensing range Sensing range for the sensor nodes
mesh size Size of the mesh
lmax Maximum number of neighborhoods
α, β Parameters for epsilon constraints

Table III.1: Important elements of UCB_GVNS Hyper-heuristic

The Table III.1 lists essential parameters and elements, such as the grid size,
sink coordinates, and communication ranges, which are crucial for understanding
the deployment and operational efficiency of the surveillance network. These ele-
ments are part of the UCB_GVNS Hyper-heuristic, which plays a pivotal role in our
model’s optimization process. This hyper-heuristic utilizes a combination of General
Variable Neighborhood Search (GVNS) and Upper Confidence Bound (UCB1) algo-
rithms to effectively deploy relay nodes (RNs) within the network, ensuring optimal
alert transmission from sentinels (SSNs) to the sink.
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Meanwhile, RNs are distributed throughout the network area. These relays act
as intermediate nodes, facilitating the transmission of alerts between the sentinels
and the sink located centrally within the network. RNs play a crucial role in ensuring
that alerts can travel efficiently across the network, minimizing transmission delays
and optimizing network performance.

Finally, the sink is positioned centrally within the network, represented as a
triangle in Figure III.2. The receives alerts from both SSNs (in the case where the
SSN is directly connected to it) and from RNs, consolidating the information for
further analysis or decision-making purposes. Figure III.2 clearly demonstrates that
all border cells are covered. Therefore, we achieve complete border coverage along
with a path to the sink from each SSN in the bordering.

Figure III.2: Surveillance Model
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III.4 Description of the Proposed framework
In this master’s thesis, we delve into the unresolved question of determining the most
effective sequence of local search operators to optimize the performance of Variable
Neighborhood Search. Our approach introduces a RL-based meta-heuristic algo-
rithm termed UCB_GVNS, which draws inspiration from the Multi-armed Bandit
problem, a specific instance of a single-state reinforcement learning problem.

III.4.1 Initial Solution
As depicted in Figure III.3, the UCB_GVNS algorithm receives its initial solution
from a Genetic Algorithm (GA). As noted [69], employing a genetic-based initial so-
lution is advantageous because GAs offer control and consistently produce solutions
with high fitness values, presenting a challenging starting point for our algorithm.

The GA operates by iteratively evolving a population of candidate solutions
through generations. It employs mechanisms such as crossover and mutation to
generate new solutions from existing ones. The crossover operation involves com-
bining genetic information from two parent solutions to produce offspring, while
mutation introduces random modifications to diversify the solution space.

Furthermore, the evaluation function assesses the fitness of each solution based
on predefined objectives, allowing for the selection of the most promising individ-
uals for reproduction. The GA’s initialization phase involves generating an initial
population of solutions through randomization.

Throughout the algorithm’s execution, fitness scores are computed for each so-
lution, guiding the selection of parent solutions for reproduction. This iterative
process continues until a termination condition is met, which is reaching a maxi-
mum number of generations. Ultimately, the GA aims to produce an initial solution
that serves as a starting point for subsequent optimization using the UCB_GVNS
hyper-heuristic.

Genetic Algorithm parameters

To provide a comprehensive understanding of the solution process, this subsection
focuses on the GA employed to generate the initial solution. We will detail the
specific GA operators chosen and the parameter settings utilized in our study.

Fitness The evaluation methodology employed in this work leverages a multi-
objective fitness function termed ϵ-constraints. This function aims to achieve a
balance between two key performance indicators (KPIs): minimizing the number
of RNs deployed to ensure the connectivity between every SSN and the sink node,
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Figure III.3: UCB_GVNS Framework Flowchart
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and the Network Diameter 1 (ND). The function calculates a weighted sum, com-
bining the number of deployed RNs and the ND (representing the number of hops).
Weighting factors allow for prioritization based on application needs. Addition-
ally, the function incorporates a penalty for infeasible deployments characterized
by unreachable sentinels or excessive communication hops exceeding a predefined
threshold (ϵ). This approach ensures efficient exploration of the deployment search
space by penalizing infeasible solutions.

Selection The selection process within this genetic algorithm employs a straight-
forward elitism strategy. Here, the evaluate function calculates a fitness score for
each solution in the population, considering both the number of connected relays
and the sentinel network diameter. These solutions are then ranked based on their
fitness scores, with higher scores indicating better performance. To generate off-
spring for the next generation, the algorithm leverages the top two ranked solutions
(parents) identified through this ranking process. This elitism approach ensures
that solutions with superior performance have a higher chance of influencing the
next generation, potentially leading to an overall improvement in the population’s
quality over time.

Crossover The genetic algorithm incorporates a Uniform Crossover technique
to create new offspring solutions (children) by combining genetic material from two
high-performing parent solutions. Following parent selection based on their fitness
scores, the algorithm prioritizes the parent with a more compact structure (fewer
nodes) as the primary source. It then iterates through corresponding routes (genes)
from both parents. For each gene pair, a coin flip determines whether the offspring
inherits the route from the primary or secondary parent. This approach offers a
balance between simplicity and exploration, allowing the creation of diverse offspring
with a chance of inheriting successful routes from both parents. Below you will find
the uniform crossover pseudocode in algorithm 11.

Mutation To prevent the population from stagnating on sub-optimal solu-
tions, the genetic algorithm incorporates a mutation process that injects controlled
variability. This is achieved by randomly selecting a solution and a sentinel within
that solution. The algorithm then randomly selects a slot from the available free
slots. If the chosen slot is already occupied by a relay node in the selected sentinel’s
route, the relay node is removed, allowing the slot to become free again. Conversely,
if the chosen slot is free, a new relay node is added to the sentinel’s route, effec-
tively extending its reach. And below the pseudo-code for the bit flip mutation in
algorithm 12:

1the longest shortest path
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Algorithm 11 Uniform Crossover
1: Input: Parents P1 and P2

2: Output: Offspring O1 and O2

3: O1 ← empty individual
4: O2 ← empty individual
5: for each gene i in P1 and P2 do
6: if random number r between 0 and 1 < 0.5 then
7: O1[i]← P1[i]
8: O2[i]← P2[i]
9: else

10: O1[i]← P2[i]
11: O2[i]← P1[i]
12: end if
13: end for
14: return O1, O2

Algorithm 12 Single Bit Flip Mutation
1: Input: Individual I
2: Output: Mutated individual M
3: M ← copy of I
4: Choose a random gene i from M
5: Flip the value of gene i (0 to 1 or 1 to 0)
6: return M

Hyper-parameters Our genetic algorithm relies on two crucial hyper param-
eters: population size and number of generations. Balancing between high-quality
solutions and efficient execution time is paramount. After thorough experimen-
tation, we settled on a population size of 5 individuals and 15 generations. These
values were meticulously selected through a trial-and-error approach to optimize the
trade-off between solution quality and execution time. Notably, we deliberately kept
the mutation rate and crossover rate parameters constant to maintain simplicity and
focus on the primary parameters influencing the algorithm’s performance.

III.4.2 Main components of the proposed framework
In hyper-heuristic frameworks, the focus lies on developing a robust strategy for solv-
ing combinatorial problems by intelligently selecting and applying various heuristic
methods. At its core, a hyper-heuristic framework involves the utilization of meta-
heuristics that operate at a higher level of abstraction, guiding the application of
lower-level heuristics or neighborhood operators in our case. These neighborhood
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operators define the space of potential solutions for a given problem, each capable
of transforming a solution into a nearby solution within the problem space. For
instance, in WSN optimization scenario, neighborhood operators might involve ac-
tions like adding, deleting, or relocating relay nodes. By employing a range of such
operators, a hyper-heuristic framework aims to efficiently explore and exploit the
solution space, leveraging the strengths of different heuristics to achieve optimal or
near-optimal solutions. The combination of different heuristic methods within this
framework allows for adaptive and dynamic problem-solving strategies, enhancing
the scalability and effectiveness of the overall optimization process [67, 49].

III.4.2.1 Neighborhood operators

Given a set S that contains all the possible solutions of a combinatorial problem,
a neighborhood operator N is a function that maps a given solution s ∈ S to a
neighborhood of solutionsN(s) ⊆ S. The neighborhood structure our model uses,
consists of five neighborhood operators, namely: Add random relay node, Delete
random RN, Relocate a RN, Add a relay node next to a SSN, Delete a RN next to
SSN

III.4.2.2 Combining UCB1 and GVNS

This section delves into the optimization method employed for sensor deployment
within a WSN. This innovative approach leverages a powerful combination of two
techniques: Upper Confidence Bound applied to a General Variable Neighborhood
Search (UCB_GVNS).

The UCB_GVNS algorithm thrives on the exploration-exploitation trade-off in-
herent to UCB1, strategically guiding a GVNS search process. Let’s dissect the
algorithm (Algorithm 14) to understand its inner workings, with the UCB1 opera-
tor selection pseudo-code itself depicted in algorithm 13.

First, the algorithm starts with the shaking operation, which will be discussed
in detail later. As shown in the Flowchart III.3, until the termination criteria are
met, a set of steps is performed by the algorithm. The UCB1 policy within the
UCB_GVNS algorithm is crucial for balancing exploration and exploitation during
this process. It systematically selects which neighborhood to explore at each iter-
ation by calculating an upper confidence bound for each neighborhood, reflecting
both potential reward (solution quality) and uncertainty (the need to explore less-
visited neighborhoods). This approach ensures that the algorithm does not get stuck
in local optima by continually assessing and exploring various neighborhoods. By
prioritizing neighborhoods with higher upper confidence bounds, the UCB1 policy
effectively navigates the solution space, finding the optimal action to take at every
iteration. If the neighborhood chosen by the UCB policy is applied and an im-
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provement is found in term of fitness value, the RL agent keeps exploiting the same
neighborhoods until the local optimum is found. These steps keep repeating until
the termination criteria are met, resulting in an optimized network configuration.

The ND is calculated using Dijkstra algorithm, calculating the shortest path
from the sink to every SSN in the network and then picking the longest path among
the shortest ones as the diameter.

Algorithm 13 UCB1 Adaptive operator selection
1: Input: C, s, n, p̂
2: Output: Selected neighborhood index {s: Time step, k: neighborhood count}
3: if operators that have not been selected exist then
4: x ← uniform selection from operator pool;
5: else
6: x ← arg max

j=1...k

(
p̂j + C

√
2 log(s)

nj

)
7: end if
8: nx ← nx + 1;

III.4.2.2.1 Shaking

The shaking operation is designed to diversify the search process by generating
new candidate initial solution. The shaking operation involves sequentially applying
all neighborhood operations to generate diverse solutions. The sequence of neigh-
borhoods for the shaking operation are: adding a relay next to an existing relay,
deleting a random relay, deleting a relay next to a sentinel with multiple relay neigh-
bors, relocating a relay, and adding a relay next to a sentinel without relay neighbors.
The systematic exploration of various neighborhoods helps escaping local optimum
and exploring a wide solution space.

The shaking operation in our hyper-heuristic can be likened to the initial action
in the multi-armed bandit problem, where every arm (i.e. neighborhood) is pulled
once. In the context of multi-armed bandit problem, pulling each arm initially
ensures that every arm is explored, providing baseline performance data for each
arm. This initial exploration phase is crucial for establishing a foundation for the
subsequent balance between exploration and exploitation.

Similarly to the UCB_GVNS algorithm, the shaking operation ensures that ev-
ery neighborhood (akin to an arm in the multi-armed bandit) is explored initially.
By sequentially applying each neighborhood operation during the shaking phase,
the algorithm gathers initial performance metrics for the neighborhoods. This com-
prehensive initial exploration provides valuable experience and insights into the
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Algorithm 14 UCB_GVNS pseudocode
1: Output: Optimal sinked relays, free slots
2: l ← 1
3: while termination criteria not met do
4: i← 0
5: improvement← True
6: previous← Calculate fitness
7: while improvement and i < len(sinked relays) + 1 do
8: improvement← False
9: i← i+ 1

10: chosen_neighborhood← Apply UCB1 policy to select neighborhood
11: Apply neighborhood action based on chosen neighborhood
12: after ← Calculate fitness
13: if previous > after then
14: improvement← True
15: Reward← Credit Assignment
16: else
17: Penalty ← Credit Assignment
18: end if
19: end while
20: end while

potential effectiveness of different neighborhoods, which is essential for the UCB1
strategy to make informed decisions in the later stages of the optimization process.

III.4.2.2.2 Fitness calculation

The fitness calculation in our approach involves a multi-objective evaluation aimed
at balancing two critical performance metrics for relay deployment: the number of
relays successfully connected to the sink node and diameter of the network. Specifi-
cally, the fitness function is defined as a weighted sum of the number of sinked relays
and the network diameter, which represents the communication hops. The weights
α and β allow for prioritization based on specific application requirements. If a so-
lution breaches connectivity constraints or exceeds a predefined diameter threshold
ϵ, it is assigned an infinite fitness value, effectively penalizing infeasible solutions.
This method ensures efficient exploration of the solution space by focusing on viable
deployment configurations. Below the ϵ-constraints pseudocode:
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Algorithm 15 epsilon_constraints
1: Input: Solution s
2: ϵ← grid
3: fitness ← (alpha× sinked_relays) + (beta× diameter)
4: if Connectivity breach or diameter > epsilon then
5: return ∞
6: else
7: return fitness
8: end if

III.4.2.3 Termination criteria

The UCB_GVNS algorithm employs a multi-pronged approach to determine when
to stop searching for the best relay deployment configuration. This termination
strategy balances achieving a good solution within a reasonable amount of time.

One approach is a simple fixed budget method. You define a maximum number
of iterations the algorithm will run for, regardless of the improvement observed.
This ensures the program terminates after a set amount of computational effort
is expended, which is in our case the number of meshes.This approach is termed
STAT_UCB_GVNS.

However, a fixed number of iterations might not always be ideal. To address
this, the algorithm incorporates early stopping criteria based on the concept of
stagnation. Here, the concept of velocity is introduced. Velocity captures the change
in solution quality (measured by a fitness function) between consecutive iterations.
It’s calculated as the absolute difference in fitness values. Additionally, an average
velocity is computed over a window of past velocities to smooth out short-term
fluctuations and assess the overall trend.

The early stopping criteria leverage these velocity measures. As the algorithm
16, if the average velocity over recent iterations falls below a certain threshold (in-
dicating minimal improvement) and the number of consecutive iterations without
improvement exceeds a predefined threshold (patience), the algorithm terminates
early. This logic prevents the program from getting stuck in situations where it keeps
exploring without significant progress, the approach is termed DYN_UCB_GVNS.

Choosing the most suitable termination criteria depends on your specific goals
and constraints. If computational resources are limited, a fixed maximum iteration
approach might be preferred. On the other hand, if achieving the absolute optimal
solution is crucial, a higher number of iterations or a more stringent early stopping
criterion based on velocity might be necessary. Additionally, for problems that
exhibit slow convergence or a high risk of getting stuck in suboptimal solutions, a
velocity-based early stopping approach can be particularly beneficial.
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Algorithm 16 Dynamic Termination Criteria for UCB_GVNS
1: Input: Parameters: max_iterations, patience, velocity_threshold,

max_consecutive_errors
2: Output: Termination condition met based on specified criteria
3: Variables: iteration = 0, consecutive_errors = 0, last_n_velocities = []
4: while consecutive_errors < max_consecutive_errors do
5: Perform UCB_GVNS logic
6: Calculate improvement velocity for current iteration
7: Update last_n_velocities with current velocity
8: Calculate average velocity from last_n_velocities
9: Check termination criteria (iteration < max_iterations and

average_velocity < velocity_threshold)
10: if termination criteria met then
11: break
12: end if
13: Update counters
14: iteration← iteration+ 1
15: end while
16: return Termination condition met

III.4.2.4 Rewards and Penalties

The UCB_GVNS framework adopts a multi step learning procedure where the out-
come of an action referred to as a reinforcement signal is infrequent and delayed in
time. The credit assignment problem is the problem of identifying which actions
(neighborhoods) or sequence of actions lead to better rewards.

Our hyper-heuristic framework utilizes a novel, non-binary reward scheme, adopt-
ing a different strategy for rewards and penalties signals.

In case of a positive feedback (reward), the following equation determines the
reward. The new solution, after fitness is always smaller than previous fitness for
minimization problems, Rs represents the velocity of improvement after applying
the neighborhood action, in other words it represents the distance between the
new solution and the prior one. Rf represents the reward factor as every action
(neighborhood) has a fixed factor to differentiate between neighborhoods and there
rewards.

reward = Rs ∗Rf (III.2)
Where:

Rs = |previous− after|
In contrast, when the neighborhood yields a solution with a worse fitness value,

the following equation determines the negative rewards. Although similar, the dif-
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ference between the reward and penalty equation is that the penalty has a negative
value and the Pf has fixed value for every operator, conversely to the reward equa-
tion where every neighborhood has a reward factor associated with it.

penalty = −(Rs ∗ Pf) (III.3)

Where:
Rs = |previous− after|

The resulting reward signals from all operators are stored in a quality array
associated with every neighborhood, the quality associated with the neighborhood
changes according to the signal resulted by applying it.

III.5 Simulation and results discussion
III.5.1 Simulation environment
Simulation settings refers to the predefined parameters and conditions under which
the simulation is conducted. These settings determine the environment and con-
straints for the network model, ensuring consistency and reproducibility of the sim-
ulation results. The specific simulation settings used in our study are detailed in
Table III.2.

Parameter Values
Grid size 17× 17, 20× 20, 25× 25, 30× 30, 35× 35

Single mesh
size 20 m

Surface areas 115600m2, 160000m2, 250000m2, 360000m2, 490000m2

Communication
range (SSNs,
RNs and the

sink)

30 m

Sensing range
(SSNs) 15 m

Number of
scenarios 10

α, β 0.5, 0.5

Table III.2: Simulation environment
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III.5.2 Performance Metrics
Table III.3 outlines the performance measures utilized in this study.

Measure Description

Average fitness

∑
fitnesses

number of scenarios . The fitness is calculated using ϵ-
constraints at the end of each scenario.

Average total number of
RNs

∑
total number of RNs

number of scenarios . The total number of RNs represents
the number of RNs obtained after each scenario.

Average of the avg. hops

∑
total average hops

number of scenarios . The average hops represent the aver-
age number of hops after each scenario.

Average execution time

∑
execution time

number of scenarios . Execution time represents the time
elapsed for each scenario.

Table III.3: Performance Metrics

III.5.3 Experimental Setup
To conduct the experiments outlined in this thesis, we leveraged a High-Performance
Computer (HPC) equipped with Ubuntu Linux, accessed via SSH protocol. The
HPC boasted an 8-core CPU and 32GB of RAM. Python 3.5 served as the primary
programming language for implementing the hyper-heuristic framework.

III.5.4 Results discussion
In this subsection, we compare the performance results of our proposed approach,
namely UCB_GVNS, with its two variants UCB_GVNS with static stopping crite-
ria, labeled STAT_UCB_GVNS and UCB_GVNS with dynamic stopping criteria,
labeled DYN_UCB_GVNS, with Basic Variable Neighborhood Search (BVNS) pro-
posed in [69]. It is worth noting that for the sake of fairness in the comparison, we
replaced the greedy algorithm used by the BVNS in [69] to generate the initial
solution, with the GA used by DYN_UCB_GVNS, STAT_UCB_GVNS.

Tables III.4, III.5, and III.6 present the simulation results comparing RL-based
approaches and the BVNS approach, starting from the initial solution provided
by the GA, across various metrics (number of RNs, ND, average hops, and fit-
ness value). “Static” indicates the STAT_UCB_GVNS, and “Dynamic” indi-
cates DYN_UCB_GVNS. It is apparent that UCB_GVNS outperforms the BVNS
in terms of number of relays and fitness value, with the DYN_UCB_GVNS variant
performing the best. In terms of Network diameter and average Hops, the values
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provided by BVNS remain the same as the values obtained by the GA, since BVNS
do not explore the solution space compared to UCB_GVNS based methods.

Metric 17x17 20x20
Static Dynamic BVNS Static Dynamic BVNS

GA Number of RNs 213 213 213 303 303 303
GA ND 9 9 9 9.2 ≈ 10 9.2 ≈ 10 9.2 ≈ 10

GA Avg. hops 9 9 9 9.2 ≈ 10 9.2 ≈ 10 9.2 ≈ 10
GA Fitness 111.25 111.25 111.25 156.1 156.1 156.1

Number of RNs 109 98 204 149 130 292
ND 15 15 9 15 16 10

Avg. hops 12 12 9 13 13 10
Exec. time 13m 47s 23m 47s 5m 7s 48m 2s 1h 14m 43s 15m 11s

Fitness 62 56 106.5 83 73 151

Table III.4: Comparison of GA and UCB_GVNS performance with dynamic and
static stopping criteria, and BVNS for 17x17 and 20x20 grids

Metric 25x25 30x30
Static Dynamic BVNS Static Dynamic BVNS

GA Number of RNs 497 497 497 738 738 738
GA ND 12 12 12 16 16 16

GA Avg. hops 12 12 12 15 15 15
GA Fitness 254.5 254.5 254.5 377 377 377

Number of RNs 247 245 485 325 318 729
ND 22 22 12 27 27 15

Avg. hops 19 19 12 22 22 15
Exec. time 3h 55m 4h 54m 28m 32s 7h 55m 8h 32m 35m 4s

Fitness 134.5 133.9 248.5 175.5 171.95 372

Table III.5: Comparison of GA and UCB_GVNS performance with dynamic and
static stopping criteria, and BVNS for 25x25 and 30x30 grids

Metric 35x35
Static Dynamic BVNS

GA Number of RNs 1027 1027 1027
GA ND 17 17 17

GA Avg. hops 17 17 17
GA Fitness 522.1 522.1 522.1

Number of RNs 429 420 1016
ND 24 24 17

Avg. hops 22 22 17
Exec. time 11h 15m 12h 40m 1h 2m 11s

Fitness 226.05 222 516.5

Table III.6: Comparison of GA and UCB_GVNS performance with dynamic and
static stopping criteria, and BVNS for 35x35 grids
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III.5.4.1 Evaluating the fitness improvement

We compare the fitness improvements of the three approaches: DYN_UCB_GVNS,
and STAT_UCB_GVNS, and BVNS. Figure III.4 illustrate the comparative perfor-
mance of these approaches. The results indicate that the UCB_GVNS approaches
outperformed the BVNS, with the DYN_UCB_GVNS achieving the highest fitness
improvement. This suggests that the adaptive nature of the dynamic stopping cri-
teria allows for a more efficient exploration the solution space, leading to superior
optimization results compared to both the static stopping criteria and the BVNS
approach.

(a) DYN_UCB_GVNS (b) STAT_UCB_GVNS

(c) BVNS

Figure III.4: Fitness Comparison between GA and the three approaches

III.5.4.2 Evaluating the average hops and Network Diameter

Figure III.5 presents the Average number of hops from all sentinels to the sink
through relays:

As shown in Figure III.5 the average hops count and network diameter show
an increase for the RL-based methods. Conversely to the BVNS approach, which
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(a) STAT_UCB_GVNS (b) DYN_UCB_GVNS

(c) BVNS

Figure III.5: Network Diameter and AVG hops: Comparison between GA and the
three approaches

can be interpreted as the balance reached between number of relays and network
diameter in order to minimize the fitness value.

III.5.4.3 Evaluating the number of relays deployed

Figure III.6 presents the Average number relays deployed for different grid sizes. The
figure shows that the RL-based methods achieve a better number of relay nodes de-
ployed in every grid comparing to the BVNS algorithm, with the DYN_UCB_GVNS
achieving the best number of relays deployed.

III.5.4.4 Comparing fitness convergence

Both RL-based approaches show significant fitness improvement. However, while
the DYN_UCB_GVNS takes longer in terms of execution time, it guarantees fitness
convergence more effectively than the STAT_UCB_GVNS, which stops when the
maximum number of iterations is reached as depicted in Figure III.7
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(a) STAT_UCB_GVNS (b) DYN_UCB_GVNS

(c) BVNS

Figure III.6: Number of relays Comparison between GA and the three approaches

III.5.4.5 Evaluating the Execution time

Figure III.8 represents the execution time for the proposed approaches, the
STAT_UCB_GVNS, the DYN_UCB_GVNS, and BVNS. The RL-based methods
takes longer time comparing to the BVNS, which is necessary to explore the neigh-
borhoods efficiently. The DYN_UCB_GVNS takes the longest to execute. This is
attributed to its dynamic stopping criteria, which aim to achieve the best possible
fitness convergence.

III.5.4.6 Evaluation of computational complexity

The evaluation of the computational complexity of the proposed algorithms focuses
on the memory consumption and CPU cores utilized during their execution.

Memory Consumption The memory consumption of the algorithm is influenced
by several factors, including the size of the grid, the number of nodes, and the specific
algorithmic approach used. In general, the memory usage grows with the number of
nodes and the complexity of the operations performed on each node. For example,
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(a) DYN_UCB_GVNS Fitness Convergence

(b) STAT_UCB_GVNS Fitness Convergence

Figure III.7: Fitness Convergence Comparison between DYN_UCB_GVNS and
STAT_UCB_GVNS
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Figure III.8: Comparison of Execution Time for Different Methods

the dynamic approach (DYN_UCB_GVNS) requires additional memory to store
the dynamically updated parameters and intermediate results, leading to higher
memory consumption compared to the static approach (STAT_UCB_GVNS) and
the basic approach (BVNS). The UCB_GVNS algorithm requires an average of 1.20
MB for a 17x17 grid.

CPU Cores Utilized The CPU usage is a crucial aspect, especially when consid-
ering the execution time and efficiency of the algorithms. The DYN_UCB_GVNS
algorithm, with its dynamic stopping criteria, requires more computational resources
to explore the solution space thoroughly. This results in higher CPU usage and
longer execution times compared to the STAT_UCB_GVNS and BVNS algorithms.
The percentage of CPU cores utilized can vary based on the experimental setup, in
our case for a 17x17 grid the CPU cores utilized averaged 25% of the 8 CPU cores
available.
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III.6 Conclusion
In this chapter, we have explored the implementation and experimental results of
our proposed methods for optimal node placement in WSNs. Our primary focus was
on evaluating the effectiveness of different approaches, namely DYN_UCB_GVNS,
STAT_UCB_GVNS.

The implementation of our framework demonstrated its capability to handle the
complexities associated with node placement problem in fenced areas WSNs. We be-
gan by detailing the optimal node placement problem and the model used for simula-
tions. Our framework incorporated genetic algorithms for initial solution generation
and utilized advanced techniques like the Reinforcement Learning method Upper
Confidence Bound (UCB1) and General Variable Neighborhood Search (GVNS) for
optimization.

The experimental results provided significant insights into the performance of
each approach. Our simulations, conducted under various grid sizes and configu-
rations, highlighted the strengths and weaknesses of each method. The dynamic
stopping criteria of DYN_UCB_GVNS showed superior performance in terms of
fitness improvement and efficient exploration of the solution space compared to the
static stopping criteria and BVNS approach. This adaptive nature enabled better
optimization, as evidenced by the higher fitness scores and improved performance
metrics.

The comparative analysis also included evaluations based on metrics such as
the number of relays, network diameter, average hops, and execution time. The
results indicated that while BVNS performed well in terms of execution time, the
RL-based approaches, particularly the DYN_UCB_GVNS, achieved better overall
optimization results.

In summary, this chapter has validated the effectiveness of our proposed meth-
ods through comprehensive implementation and rigorous experimental evaluation.
The findings underscore the potential of dynamic RL-based optimization techniques
in addressing complex WSN deployment challenges, paving the way for more ro-
bust and efficient network designs. Future work can extend these methodologies to
broader applications and further refine the adaptive mechanisms to enhance perfor-
mance under varied conditions.
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General Conclusion

This thesis presented a comprehensive investigation into the optimization of node
placement in Wireless Sensor Networks (WSNs) using advanced techniques com-
bining Reinforcement Learning (RL) and Meta-Heuristics. Our primary goal was
to develop and evaluate novel methods to enhance network performance, consider-
ing key metrics such as the number of relays, network diameter, average hops, and
execution time.

Our research began with a detailed exploration of existing methodologies for
WSN deployment, highlighting the complexities and challenges involved. We re-
viewed various approaches and identified a lack of intelligence based approaches,
establishing the need for more adaptive and efficient optimization techniques.

The core of our work introduced a hybrid framework incorporating Genetic Al-
gorithms (GA) for initial solution generation, followed by optimization using Upper
Confidence Bound (UCB1) and General Variable Neighborhood Search (GVNS).
We proposed and implemented two primary approaches within this framework:
DYN_UCB_GVNS, utilizing dynamic stopping criteria, and STAT_UCB_GVNS,
based on static stopping criteria. Additionally, we evaluated the Basic Variable
Neighborhood Search (BVNS) approach for comparative analysis.

The advancements made in enhancing Variable Neighborhood Search (VNS)
performance through the integration of machine learning techniques present several
promising avenues for future research:

1. Refinement of Reinforcement Learning (RL) Algorithms: Explore
more sophisticated RL models and fine-tune hyperparameters to achieve greater
improvements in solution quality and computational efficiency.

2. Simplified Fitness Value and Network Diameter Calculations: De-
velop methods that are computationally less expensive and easier to implement
for precise calculations of fitness value and network diameter, significantly re-
ducing the overall computational burden.
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3. Exploration of Different Neighborhood Structures: Experiment with
various neighborhood configurations to identify structures that provide a bet-
ter balance between exploration and exploitation, leading to enhanced opti-
mization results.

4. Utilization of Model-Based Reinforcement Learning: Implement model-
based RL, which involves creating a model of the environment to simulate
different scenarios, improving the efficiency and effectiveness of the search
process.

5. Application of Deep Reinforcement Learning (DRL) Methods: Lever-
age deep neural networks in DRL to handle high-dimensional state spaces more
effectively, potentially leading to breakthroughs in optimization performance.

6. Real-World Implementation and Testing: Validate theoretical results
through real-world implementation and testing in various environments, adapt-
ing the algorithms to practical constraints and dynamic conditions.

These future efforts will not only enhance the robustness and versatility of the
proposed solutions but also contribute to the evolving field of combinatorial opti-
mization and its applications in diverse domains.
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Abstract

Wireless Sensor Networks (WSNs) have become over the years a very attractive
field of research. In fact, they had the attention of many researchers who have been
interested in issues raised by these networks, such as energy, deployment, coverage,
connectivity, latency, routing, etc. WSNs are particularly characterized by their
miniaturized aspect, which makes them stealthy, and have rapid deployment in ac-
cessible or inaccessible zones. WSNs, which are considered an emerging technology,
have a wide variety of applications in various fields such as military, health, trans-
portation, agriculture, etc. In this thesis, we address the hybridization of Machine
Learning (ML) tools and meta-heuristics to optimize the deployment of Relay Nodes
(RNs) and Network Diameter (ND) in WSNs dedicated to the surveillance of sensi-
tive fenced areas (e.g., oil/nuclear sites, airport, etc.). Consequently, we propose a
novel hyper-heuristics, labeled STAT_UCB_GVNS and DYN_UCB_GVNS, that
use Reinforcement Learning (RL) to guide the local search process, enhancing the
effectiveness of the VNS algorithm in terms of solution quality. Experimental re-
sults demonstrate that our RL-based approach, achieves significant improvements
in fitness value, specifically in the number of deployed RNs and ND, compared to
Basic VNS (BVNS). Indeed, the proposed RL-based approach achieves an average
fitness improvement of 49.97% while deploying an average of 53.144% fewer relays
than BVNS.

Keywords: Wireless Sensor Networks, Deterministic Deployment, Coverage,
Connectivity, Network Diameter, Multi-objective Combinatorial Optimization, Meta-
Heuristics, Machine Learning, Reinforcement Learning,



الملخص

علىاستحوذالواقع،فيللبحث.جذاباًمجالاًالسنینمرعلى)WSNs(اللاسلكیةالمستشعراتشبكاتمجالأصبحلقد

الكمون،الاتصال،التغطیة،النشر،الطاقة،مثلالشبكات،ھذهتثیرھاالتيبالقضایااھتمواالذینالباحثینمنالعدیداھتمام

الانتشاروسریعةخفیة،یجعلھامماحجمھا،بصغرخاصبشكلاللاسلكیةالمستشعراتشبكاتتتمیزوغیرھا.التوجیھ،

ولھاناشئة،تقنیةاللاسلكیةالمستشعراتشبكاتتعتبرإلیھا.الوصولیصعبالتيأوإلیھاالوصولیمكنالتيالمناطقفي

تھجیننتناولالأطروحة،ھذهفيوغیرھا.الزراعة،النقل،الصحة،العسكریة،مثلمختلفةمجالاتفيواسعةتطبیقات

شبكاتفي)ND(الشبكةوقطر)RNs(الترحیلعقدنشرلتحسینوالمیتا-إرشادات)ML(الآليالتعلمأدوات

وغیرھا).المطارات،النفط/النوویة،مواقع(مثلالمسیجةالحساسةالمناطقلمراقبةالمخصصةاللاسلكیةالمستشعرات

الذي،DYN_UCB_GVNSوSTAT_UCB_GVNSتسمیتھتمالھایبر-إرشادات،منجدیداًنوعاًنقترحبالتالي،

تظُھرالحل.جودةحیثمنVNSخوارزمیةفعالیةیعززمماالمحلي،البحثعملیةلتوجیھ)RL(المعززالتعلمیستخدم

الترحیلعقدعددفيوخاصةاللیاقة،قیمةفيكبیرةتحسیناتیحققالمعززالتعلمعلىالقائمنھجناأنالتجریبیةالنتائج

المعززالتعلمعلىالقائمالنھجیحققالواقع،في).BVNS(الأساسیةVNSبخوارزمیةمقارنةالشبكة،وقطرالمنتشرة
بـمقارنةً٪53.144بمتوسطالترحیلالعقدمنأقلعددبنشریقومبینما٪49.97بنسبةاللیاقةفيمتوسطاًتحسناً

BVNS.

تحسین،الشبكةقطر،الاتصال،التغطیة،الحتميالنشر،اللاسلكیةالمستشعراتشبكاتالمفتاحیة:الكلمات

،المعززالتعلم،الآليالتعلم،Meta-Heuristics،الأھدافمتعددةالمتعددةالمجموعات
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