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Abstract 

The goal of this work is to use a first order shear deformation theory (FSDT) with four 

variables in the displacement field to investigate the static and dynamic behavior of functionally 

graded plates sitting on Winkler / Pasternak foundations-type. This study also examined the 

various forms of porosity in the FG plates that develop during the melting or mixing phases. 

The Navier's solution is used to solve the obtained differential equations. The Hamilton 

principle was also utilized to derive the equations of motion for the plates in this work, and 

using local theories and Eringen theories on continuum mechanics (non-local). The resulting 

numbers are contrasted with those found in other studies. Through a number of examples, a 

thorough parametric analysis was created to demonstrate how foundation parameters, porosity 

distributions, power indices, and geometry affect both perfect and imperfect FG plates. 
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  Résumé 

Ce travaille vise à mettre en œuvre une théorie de déformation par cisaillement du premier 

ordre (FSDT) qui utilise quatre variables dans le champ de déplacement. Afin d'analyser les 

propriétés statiques et dynamiques des plaques fonctionnellement graduées qui sont basées sur 

des fondations de type Winkler / Pasternak. Les différentes formes de porosité présentes dans 

les plaques FG lors des phases de fusion ou de mélange ont également été étudiées dans cette 

étude. Les équations différentielles obtenues sont résoudre à l'aide de la solution de Navier. Et 

en utilisant des théories locales et des théories de Eringen (non locales). Dans cette étude, on a 

également employé le principe de Hamilton pour dériver les équations de mouvement des 

plaques, et les résultats obtenus diffèrent de ceux présents dans d'autres études. Plusieurs 

illustrations ont été utilisées pour illustrer l'impact des paramètres de fondation, des 

distributions de porosité, des indices de puissance et de la géométrie sur les plaques FG parfaites 

et imparfaites. 
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 الملخص

هو دراسة السلوك الديناميكي والسكوني للصفائح المتدرجة  هذا العملالهدف من 

اساسات وينكلر / باسترناك باستخدام نظرية  نوع هياكل منوظيفيا المرتكزة على 

 انحناء التشوه من الدرجة الاولى مع أربع متغيرات في مجال التشوه. تم ايضا

استكشاف انواع مختلفة من الثقوب التي تظهر في الالواح ذات التركيب الوظيفي 

يتم انتاجها  تم حل المعادلات التفاضلية التي اثناء مراحل الانصهار او الخلط

باستخدام حل نافييه واستخدام نظريات إيرينجن في ميكانيكا الاستمرارية )نظريات 

غير محلية(. قمنا باشتقاق معادلات الحركة للألواح في هذا العمل باستخدام مبدأ 

ثم تمت مقارنة الارقام الناتجة مع تلك التي تم الابلاغ عنها في الادبيات.  هاملتون

معمقة باستخدام عدة حالات لإظهار كيفية تأثير الاساس وتوزيع  تم تطوير دراسة

الثقوب ومؤشرات الطاقة والهندسة على كل من الالواح ذات تركيب الوظيفي 

 .المثالية وغير مثالية
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    Functionally Graded Materials (FGM) are an advanced form of composite materials which 

usually consists of metal and ceramic which makes it possible to customize and modify the 

characteristic of the result material thus resulting in improving it mechanical behavior, and 

although it was originally created in order to create a barrier against high temperatures but its 

uses has evolved and is being employed in several sectors such as aerospace, automotive, 

nuclear energy and civil engineering ((Sofiyev & Avcar, 2010),(Bessaim and al, 2013), (Naebe & 

Shirvanimoghaddam, 2016), (Ebrahimi and al, 2017), (Zidi and al, 2017),(El-Haina and al, 2017), (Avcar 

and al, 2018),(Zarga and al, 2019),(Karami and al, 2019), , (Hellal and al., 2021)). There are different 

types of conventional continuum theories and each theories has its properties and qualities and 

uses like where the classical plate theory (CPT) can only be used on thin plates since it ignores 

transverse shear deformation making less accurate when using any other plates, while the first-

order shear deformation theory (FSDT) takes into consideration transversal shear deformation 

so it can be used on both thin and medium plates, Lastly The higher-order shear deformation 

theory (HSDT) it doesn’t need a shear correction coefficient which in itself depends on the 

variables of geometry, load and boundary conditions and thickness of plates thus making 

higher-shear deformation theory (HSDT) a more reliable shear deformation theory than 

classical plate theory and first shear deformation theory (FSDT) and can be used on thin, 

medium as well as  thick plates.((Al-Basyouni and al, 2015), (Bouderba, Houari, & Tounsi, 2013),(M. 

Avcar, 2016), (Youcef and al, 2018), (Draouiand al, 2019)). While the classical structural theories 

(local theories) are founded on the assumption that stress at a specific point is solely influenced 

by the strain at that same point. The non-classical continuum mechanics (nonlocal), states that 

stress at a point is influenced by strains across the entire continuum ((Reddy and al,2008)(Lu and 

al, 2007), (Heireche and al, 2008),  (Benzair and al., 2008), (Amara and al, 2010)). Porosities are a 

result of divergent solidification temperatures of the material elements, thus creating micro 

voids during the sintering process during the process of manufacturing Functionally Graded 

Materials (FGMs). These tiny spaces, are what referred to as porosities, the introduction of air 

bubbles into the matrix during the melting or mixing stages is one of the main causes for these 

micro-voids. Furthermore, water vapor may develop on particle surfaces during the 

solidification process, which aids in the creation of micro gaps in the material structure. In order 

to minimize porosity and guarantee the appropriate material integrity and functionality, careful 

control and optimization of manufacturing parameters like temperature, pressure, and 

atmosphere are required. These porosities (micro voids) have the potential to significantly affect 
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the mechanical properties and overall performance of the FGM. A number of foundation models 

have been introduced to better define the interaction between the plate and the foundation as a 

result of the growing interest in the study of integrated structures, there various model to which 

are used among them are the Winkler model and the Pasternak model, the Winkler model which 

operates on utilizing springs alone and the Pasternak model in which it enhances the Winkler 

model by adding a shear layer to it with a two-parameter substrate resulting in a much more 

reliable model in the  representation of mechanical interactions, especially when it comes to 

flexible plates ((Wang and al, 2005). (Winkler,1867); (Kolahchi and al, 2016).  (Pasternak, 

1954).(Akhavan and al, 2009), (Hsu, 2010), (Baferani and al, 2011), (Lü and al, 2009), (Bouderba et 

al., 2013), (Bounouara and al, 2016), (Sobhy, 2013). (Kneifati, 1985)). 

The first chapter concentrates mainly on Functionally Graded Material’s FGM, what they 

are, from what they are made of and what are the various field of applications for it, this chapter 

mainly focuses on introducing the reader to the concept. 

The second chapter delves deeper into the subject, we discuss the different types of 

theories that are used for researching the mechanical behavior of FGM plates which they are, 

first the classical plate theory (CPT), the second one is first order shear deformation theory 

(FSDT), and lastly the high order shear deformation theory (HSDT). 

In the third chapter, we explained what porosities are and how they are created and 

conducted research on a functionally graded metal-ceramic nano plate (P-FGM) that was resting 

on an elastic foundation of the Winkler-Pasternak type by using first order shear deformation 

theory (FSDT) with four Unknown’s as well as Eringen continuum mechanics (non-local 

theories). 

Chapter 4 will have a thorough parametric analysis and discussion of the ways in which 

the porosity parameter, power index, stiffness of the number of modes and shape and the 

foundation parameters affect the behaviors under consideration. 

And a general conclusion on the entirety of our work by which it will allow us to discuss our 

findings on FGM throughout our thesis. 
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I.Introduction: 

Functionally Graded Materials (FGMs) offer customized engineering opportunities to 

satisfy the unique requirements of many applications, marking an important milestone in the 

field of advanced materials. One characteristic that sets FGMs apart is their capacity to display 

intentional and progressive changes in their characteristics across their structure. Because of 

this special quality, which opens the door to the best performance possible, FGMs are a crucial 

material category in the context of modern technology. FGMs are utilized in a variety of 

industries, including shipbuilding, civil engineering, automotive, and aerospace. They provide 

benefits including high strength, light weight and resistance to corrosion, and the capacity to 

manufacture complicated shapes. Because of their distinct qualities and capacity to adapt to 

many media formats, they are continually changing and becoming more and more used in a 

variety of sectors. Because of their unique qualities and capacity to adapt to many media 

formats, they are continually changing and becoming more and more used in a variety of 

different sectors. Y. Koizumi first proposed the idea of functionally graded materials (FGMs) 

in 1984. 

I.1. The Concept of FGMs: 

Functional Gradient Materials (FGMs) are a class of heterogeneous materials that exhibit 

controlled spatial variation in their chemical and/or structural characteristics in at least one 

direction. This gradual variation in properties is achieved through deliberate modification of 

chemical composition, microstructure, or atomic order depending on the position within the 

material. 

FGMs are often composed of a mixture of ceramic and metal, with a ceramic-rich surface 

and a metal-rich surface (Table I.1), between which a gradual change in volume fractions is 

observed (Reddy, 2000). This technology, which mimics the structural complexity of natural 

materials such as bones, teeth and bamboo ((Bakar and al, 2018) ; (Sato and al, 2017)), was 

first proposed in 1972 for composites and polymer materials ((Bohidar and al, 2014)). However, 

it was in 1984 in Japan that FGMs were applied in an innovative way during the design of a 

space shuttle (Ashwinkumar, 2017), aiming to create a material capable of withstanding 

temperature variations of around 1000°C. (Figure I.1). 
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 FGMs represent a significant advance in the field of materials science, offering solutions 

to the limitations inherent in homogeneous materials. For example, a homogeneous material 

with excellent thermal resistance might lack ductility, while a ductile material might not 

withstand high temperatures. FGMs, however, enable a combination of properties that were 

previously considered mutually exclusive. Creating FGMs requires a thorough understanding 

of materials chemistry, thermodynamics, materials mechanics, and manufacturing processes. 

Manufacturing techniques for FGMs are diverse and include methods such as physical vapor 

deposition (PVD), chemical vapor deposition (CVD), gradient sintering, powder metallurgy, 

and computer-aided extrusion. These techniques must be meticulously controlled to ensure a 

precise and efficient gradient of functional properties.  

The application of FGMs extends to many fields, ranging from aerospace, where they are 

used for heat shields and engine components, to the biomedical industry, where they are 

integrated into implants for better integration with bone tissue. In the energy sector, FGMs 

contribute to improving the performance of gas turbines thanks to their resistance to high 

temperatures and thermal gradients. Additionally, in electronics, FGMs enable the development 

of substrates for circuits that can withstand significant thermal stress without compromising 

electrical conductivity. Innovation in the field of FGMs continues to grow, with ongoing 

research to develop even more resistant materials adapted to extreme environments. Scientists 

are also exploring the possibility of integrating nanotechnologies to further refine property 

gradients and pave the way for revolutionary applications. 

 In conclusion, functionally gradient materials represent a fascinating and constantly 

evolving area of materials science. They offer almost unlimited possibilities for the design of 

advanced systems and structures. With their ability to mimic complex natural materials and 

withstand extreme conditions, FGMs have the potential to transform many industrial sectors 

and become a pillar of technological innovation. The history of FGMs, from their initial design 

to their application in cutting-edge projects, Figure I.1 shows the development of the materials 

towards FGM (Mahamood and al, 2012). 
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Figure I. 1:Materials development towards FGM (Mahamood and al., 2012) 

 

 

I.2. The Definition of Functionally Graded Material: 

A manufactured material that varies purposefully and systematically in composition, 

microstructure, or structural qualities is known as functionally graded material. Materials that 

have been functionally graded (FGM) are intentionally designed to display various, continuous 

gradients that are optimized for one or more properties. Basically, anything that is purposefully 

made to have structural modifications on a regular basis is considered functionally designed. 

Differentiating functionally designed materials from more homogeneous ones is the ability to 

purposefully increase the number of materials in order to improve specific performance 

Pure Metal Alloys
Surface 

Treatment
Powder 

metallurgy
Composite 
Materials

FGMs

 

 

Ceramics 

 

 

At the Hight of Temperature 

 

 Good thermal Resistance 

 Good resistance to oxidation  

 Low thermal conductivity 

 

Ceramic-Metal 

 

Continuity of Material from point 

to point 

 

 Elimination of the interface 

problem 

• Relax thermal stress 

 

 

Metal 

 

 

At the low of Temperature 

 

 Good mechanical stress 

 High thermal conductivity 

• Very good toughness  

Table I. 1:A compression between ceramic and metal properties. 
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characteristics. Products that are efficiently employed to meet needs across applications will 

have more possibilities as a result of this customization (Li and al., 2020). 

I.3. The Definition of Composite Materials: 

A composite material is a material that combines two or more separate materials with 

varying properties. These constituents, occasionally denoted as component phases, retain their 

unique properties inside the ultimate structure of the composite. Together, these components 

create a unique mixture that has better properties than either one alone. Because of their 

versatility and ability to provide customized features, compounds are highly sought in a wide 

range of industries. Because of their capacity to provide mechanical flow ahead, composites are 

highly sought after in applications demanding long-term and permanent performance. The 

materials are often referred to as the matrix (continuous phase) and the reinforcement (dispersed 

phase).      

 

 

 

 

Figure I.2: Classification of composite materials. Figure I. 2: Classification of composite materials. 
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I.4. The Difference Between FGM and Composite Materials: 

Composite materials are manufactured by combining two or more different materials to 

form a new material with improved properties. These materials typically consist of distinct 

layers, such as fibers embedded in a matrix. Composites are widely used in applications such 

as aerospace, automotive, construction, and sporting goods due to their high strength, 

lightweight nature, and tailored properties. 

On the other hand, Functionally Graded Materials (FGM) are materials that exhibit a 

gradient in their composition, microstructure, or properties. This means that the material 

changes gradually from one end to the other, rather than having distinct layers. FGMs are often 

used in engineering applications where a smooth transition of properties is needed, such as in 

thermal barrier coatings, dissimilar material joints, or components for extreme environments. 

It's important to note that FGMs can be considered as a specific category of composite 

materials, but with a more continuous structure and property gradient. FGMs offer advantages 

such as reduced interfacial shear stresses and improved resistance to delamination compared to 

traditional composites ((J. Wang, 1999); (Chawla, 2012). Materials.(Koizumi, 1997) 

Figure I.3; Characteristics of FGM Composite Materials Compared to Conventional Composite Figure I. 3:Characteristics of FGM Composite Materials Compared to Conventional Composite 
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I.5. Classification:  

Functionally Graded Materials (FGM) have undergone significant classification over 

time due to the advancement of applications and technologies aimed at producing FGM at 

various scales. In this article, we will delve into three primary classification criteria: structure, 

type, and application domain of FGM. 

I.5.1. Structure-based Classification 

FGM can be classified based on their structural characteristics, primarily into two groups: 

continuous gradient materials and discontinuous gradient materials (Figuer I.4) (Makwana and 

al., 2014); (Zhang and al., 2019). 

 Continuous Gradient Materials: Continuous gradient materials exhibit a smooth 

transition in properties without distinct interfaces. 

 Discontinuous Gradient Materials: Discontinuous gradient materials showcase 

abrupt changes in composition or microstructure, often categorized into different types 

based on the nature of the gradient. 

In addition, these materials can also be classified into three gradient types: 

 Gradient of composition (Figure. I.4 c, f). 

 Gradient of orientation (Figure. I.4 d, g). 

 Gradient of fraction (Figure. I.4 e, h). 
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I.5.2. Type-based Classification 

FGM classification based on type considers three primary gradients : composition, 

microstructure, and porosity (Figure I.5) (ELMASCRI, 2020). 

 Composition Gradient: This type of FGM classification focuses on variations in 

material composition, leading to diverse chemical structures. 

 Microstructure Gradient: in FGM are obtained during the solidification process, 

resulting in varied surface and internal microstructures. 

 Porosity Gradient: within FGM change with spatial location, affecting the material's 

properties and performance. 

I.5.3. Process-based Classification 

Another classification criterion involves categorizing FGM production processes into 

constructive and transport processes. 

Figure I. 4:Functionally graded materials with different gradient forms [(Zhang et al., 2019)]. a 

Discrete/discontinuous FGM with interface. b Continuous FGM without interface. c, f Composition 

gradient. d, g Orientation gradient. e, h Fraction gradient 
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 Constructive Process: involve layer-by-layer fabrication, enabling precise control over 

gradient (Ngo and al., 2018) 

 Transport Process: rely on physical methods such as fluid flow, diffusion, or thermal 

conduction to create gradients within structures (K. Wang and al., 2012), (Kaushal and 

al., 2018). 

 

 

I.6. Applications of FGMs: 

Functionally graduated materials (FGM) can be used in various fields, as shown in Figure 

I.6. They offer the possibility of combining contradictory properties such as conductivity and 

thermal insulation in the same material, which allows them to be used in different areas. 

Although the concept was originally developed for the aviation industry, it is now applicable to 

a wide range of fields. 

 Figure I. 5:Typical example of three different types of FGM gradient (Popoola et al., 2016). 
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Figure I. 6:Applications of FGMs. 

 

The use of FGMs is particularly interesting when the service conditions of an application 

require hardware properties that vary spatially. This flexibility makes it possible to design 

systems and structures that are both more efficient and more durable. 

I.6.1. Civil Engineering: 

Functionally Graded Materials (FGMs) herald a revolution in the realm of civil 

engineering, promising significant advancements in the design of structures that are not only 

more robust and durable, but also precisely tailored to the unique challenges of each project. 

And making an impact in several sectors such as: 

1. Road and Pavement Construction: Envision lighter, more cost-effective yet equally 

sturdy roads. Through FGM, this vision could become a reality. These innovative 

materials could transform the road infrastructure, making it both more sustainable and 

economical (SAID, 2016). 

2- Geotechnical Engineering and Foundations: In the delicate domain of geotechnical 

engineering, FGMs opens the door to revolutionary foundations. They promise to 

enhance the stability of soils and foundations, offering new possibilities for design and 

construction to adeptly address geotechnical challenges. 
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3- Retaining Structures: When it comes to stabilizing soils, particularly in areas where 

stability is a concern, FGMs emerges as an innovative solution. They enable the 

construction of more resilient retaining walls, providing a creative response to 

engineering challenges. 

4- Piles and Foundation Pillars: FGMs also revolutionizes the design of piles and pillars, 

offering increased strength, durability, and performance. This could significantly 

enhance the load-bearing capacity of foundations, a major asset in numerous civil 

engineering applications. 

5- Coastal Protection and Maritime Engineering: Confronting the rigors of the marine 

environment, FGMs offers reinforcement solutions for coastal and maritime structures. 

These materials could play a crucial role in increasing the resilience of infrastructure to 

extreme environmental conditions (BENSALAH, 2022). 

6-  Thermal and Acoustic Insulation: FGMs extends beyond mechanical strength; they 

also offer significant advantages in terms of thermal and acoustic insulation. Their use 

could contribute to the design of more environmentally friendly and energy-efficient 

buildings and infrastructure. 

In summary, FGMs are positioned as key players in the future of civil engineering, 

promising more efficient, durable, and cost-effective structures. Their ability to adapt to specific 

mechanical and thermal constraints, reduce transitional stresses between different materials, 

optimize overall infrastructure performance, and lower manufacturing and maintenance costs, 

marks a significant evolution in how we conceive and build. (Amitrano and al,2020). 

         I.6.2. The importance of FGMs in civil engineering: 

 Functional gradient materials (FGMs) play a critical role in civil engineering due to their 

ability to offer optimized mechanical and thermal properties, making them particularly suitable 

for many applications in infrastructure construction. 

The importance of FGMs in this area manifests itself in several ways (Iakovidis and al., 2022); 

(Halbe, 2021) : 

 Durability and resistance: FGMs enable the design of materials that adapt to the 

specific mechanical constraints encountered in infrastructures, thus improving their 

durability and resistance to various loads and environmental conditions. 
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 Reduction of transition stresses: FGMs can be used to minimize transition stresses 

between different materials, thereby reducing the risk of failure and cracking within 

structures. 

 Performance optimization: The use of functional gradient materials makes it possible 

to optimize the performance of infrastructures by adapting the properties of the 

materials to the specific requirements of each component. 

 Cost reduction: FGMs also contribute to reducing costs related to the manufacturing 

and maintenance of infrastructure by using more efficient and durable materials, thus 

promoting better use of available resources. 

 

I.7. Advantages and Disadvantages of Functionally Graded Materials (FGM) 

 Functionally Graded Materials (FGM) are an intriguing class of materials that offer 

unique properties owing to their graded composition. Understanding the advantages and 

disadvantages of FGM is crucial for various applications across industries (ELLALI, 2019). 

 

I.7.1 Advantages of FGM 

Functionally Graded Materials provide several advantages over conventional materials: 

 Decreased Thermal Stresses: One significant advantage of FGM is the reduction of 

thermal stresses resulting from differences in thermal expansion coefficients of 

constituent materials. 

 Enhanced Stress Control: The absence of a distinct interface in FGM allows for better 

overall stress control, leading to improved material performance. 

 Improved Material Cohesion: FGM facilitates better cohesion between different 

materials, such as metals and ceramics, enhancing overall structural integrity. 

 Expansion of Functional Region: FGM enables the expansion of the functional region 

before reaching the limit of plastic deformation, enhancing the material's versatility. 

 Prevention of Delamination: The absence of sharp interfaces in FGM helps in 

preventing delamination, which is common in traditional composite materials. 

 Increased Fracture Toughness: FGM exhibits higher fracture toughness, contributing to 

improved durability and reliability in various applications. 
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 Reduction of Stress Singularities: FGM eliminates stress singularities at different 

locations, including free surfaces, corners, and crack tips, leading to enhanced structural 

performance. 

 

I.7.2. Disadvantages of FGM 

Despite their advantages, Functionally Graded Materials present several challenges: 

 

 Complex Manufacturing Process: The fabrication of FGM is intricate due to the need 

for precise property gradients, leading to complex manufacturing processes. 

 Inadequate Property Matching: Matching properties of different materials within an 

FGM can be challenging, leading to issues such as poor adhesion and undesired material 

phases. 

 Formation of Undesired Phases: During fabrication, undesired phases may form within 

the FGM, impacting its mechanical and functional properties. 

 Cost Implications: The manufacturing of FGM often requires specialized equipment and 

techniques, leading to higher production costs compared to traditional materials. 

 

   Functionally Graded Materials offer a unique set of advantages, including reduced 

thermal stresses, improved material cohesion, and enhanced fracture toughness. However, 

challenges such as complex manufacturing processes and inadequate property matching must 

be addressed for wider adoption. 

 

I.8. FGM Manufacturing Processes:  

Functionally graduated materials (FGM) are composite materials whose properties 

gradually vary in the volume of the material. This gradual variation is generally designed to 

respond to changes in environmental or operational constraints, thus optimizing material 

performance for specific applications. FGMs may have gradients in composition, 

microstructure, mechanical, thermal, electrical, magnetic, etc. Some manufacturing processes 

used for functionally graded materials include (ADDOU, 2021):  
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I.8.1. Physical Vapor Deposition (PVD) 

 PVD involves the deposition of material atoms onto a substrate through physical 

processes such as evaporation or sputtering. This technique allows precise control over film 

thickness and composition, facilitating the creation of graded structures in FGMs  

I.8.2. Chemical Vapor Deposition (CVD) 

 CVD enables the synthesis of FGMs by depositing thin films of different materials onto 

substrates through chemical reactions in the vapor phase. This method offers versatility in 

material selection and deposition conditions, ensuring uniformity across the graded layers  

I.8.3. Powder Metallurgy 

  Powder metallurgy involves the consolidation of metal powders through processes like 

compaction and sintering. By blending powders with varying compositions, FGMs with tailored 

properties can be fabricated, making them ideal for aerospace and automotive applications. 

I.8.4. Centrifugal Method 

  The centrifugal method utilizes centrifugal force to distribute materials radially within a 

mold, resulting in graded structures with controlled composition gradients. This technique is 

particularly advantageous for producing FGMs with high throughput and uniformity. 

I.8.5. Tape Casting Method 

  Tape casting involves the deposition of ceramic slurries onto flexible substrates, 

followed by layer stacking and densification. This method is suitable for fabricating thin, 

flexible FGMs used in electronics and medical devices. 

I.8.6. Slip Casting 

Slip casting utilizes a slurry of ceramic particles suspended in a liquid medium, which is 

poured into molds and allowed to solidify. By adjusting the composition of the slurry, FGMs 

with graded microstructures can be produced, offering enhanced mechanical properties. 

I.8.7. Solid Freeform Fabrication Method (SFF) 

SFF encompasses various additive manufacturing techniques like 3D printing, enabling 

the layer-by-layer deposition of materials to create complex FGM geometries. This method 

offers design flexibility and rapid prototyping capabilities. 
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I.8.8. Directed Energy Deposition 

Directed Energy Deposition (DED) involves the focused delivery of energy, such as laser 

or electron beams, to melt and fuse materials onto a substrate. By controlling deposition 

parameters, FGMs with gradient compositions and structures can be achieved. 

I.8.9. Plasma Spraying 

Plasma spraying utilizes a plasma torch to melt and propel feedstock material onto a 

substrate, forming a dense coating. This technique is commonly employed for thermal barrier 

coatings in aerospace applications, showcasing the versatility of FGMs. 

I.8.10. Sintering and Infiltration 

Sintering involves the heating of powdered materials to bond particles together, while 

infiltration involves the impregnation of porous substrates with molten metal. Combined, these 

techniques enable the fabrication of FGMs with tailored porosity and mechanical properties. 
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Figure I. 7:Commonly used processing techniques for the production of FGMs (ADDOU, 2021) 
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I.9. Conclusion: 

In this chapter, we have defined functionally graded materials "FGMs," the concept of 

their development, their properties, their areas of application, and their main manufacturing 

methods. 

The spatial and progressive variation of the properties of functionally graded materials 

allows for the creation of innovative structures that can be exploited in numerous areas of 

application in special civil engineering structures. 
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II. Introduction  

The study of the static and dynamic behaviors of FGM plate structures or beams often 

involves resorting to different theories and methods to effectively solve associated problems. 

Over time, several theories have been developed to model plate behavior, each with its own 

assumptions and application domains. 

 In 1888, Love introduced a theory of thin plates, based on the assumptions of Gustav 

Kirchhoff and inspired by Euler-Bernoulli's assumptions. This theory, also known as the 

classical theory or Kirchhoff-Love theory, provided an important basis for thin plate analysis 

carried out by researchers such as Timoshenko (1921), (Reissner, 1945), and Uflyand (1948). 

Subsequently, Mindlin contributed to strengthening the theory of semi-thick plates, also known 

as the first-order deformation theory. This theory takes into account the effects of plate thickness 

on its behavior, thus offering more precise modeling in certain situations.  

However, when the plate thickness becomes significant, an improvement of the 

assumptions of classical and first-order theories is necessary. It is at this stage that higher-order 

theories come into play to account for additional effects such as transverse curvature and 

transverse shear.  

Therefore, the choice of the right theory and appropriate method will depend on the specific 

characteristics of the structure under study, the plate thickness, and the expected effects on its 

static and dynamic behavior. Each theoretical approach offers its own advantages and 

limitations, and it is crucial to select the most suitable method based on the application 

requirements. 

II.1. The analytical models of FGM plates. 

 II.1.1. Classical Plate Theory of Love-Kirchhoff 

Classical Plate Theory, also known as Love-Kirchhoff theory, is a fundamental 

framework used in the analysis of thin plates subjected to loads and deformations. It serves as 

a cornerstone in understanding the behavior of structures made from functionally graded 

materials. This theory provides a comprehensive approach to studying the mechanical 
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properties and behaviors of such materials, offering valuable insights into their design and 

application.  

This theory is based on several assumptions (Figure II.1): 

 Planarity Assumption: This assumption states that the middle plane of the plate, which 

is equivalent to the average curve of beams, is initially flat. This means that any point 

in this plane will only move in the vertical direction and not in the plane itself. 

 Non-Deformation Assumption: This assumption implies that the middle layer of the 

plate, which is equivalent to the neutral fiber of beams, does not undergo deformation 

within its plane. In other words, the length and shape of any line in the middle plane 

remain unchanged during the deformation. 

 Transverse Displacement Assumption: This assumption considers only the transverse 

displacement ‘w’ of points in the middle layer. It means that any point in the middle 

plane of the plate can move up or down, but not in the plane itself. 

These assumptions simplify the mathematical model and make it possible to analyze the stresses 

and deformations in thin plates under the effect of loads 

 

Figure II.1: Schematization of plate deformations by the classical theory «CPT» (Reddy, 1997). 
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This model of plate can be referred to the works of Timoshenko and Woinowsky-Krieger 

(Timoshenko, 1959) ; (L. Wang and al., 2017) ; (Reddy, 1999). 

The displacement field in Kirchhoff-Love theory has the form of equations (II.1): 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝛿𝑤0
𝛿𝑥

 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝛿𝑤0

𝛿𝑦
                                          (II.1) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) 

    Where: 

u0 and v0 are membrane displacements in x and y directions respectively. 

w0 is the arrow of the plate. 

𝛿𝑤0

𝛿𝑥
  and 

𝛿𝑤0

𝛿𝑦
  are rotations due bending (without shearing). 

 

 Various applications of classical thin plate theory (CPT) 

 Leissa (1973): This study used the CPT to study free vibration of thin isotropic 

rectangular plates. 

 Hu and Zhang (2011): They applied the assumptions of the CPT and Von Karman to 

analyze the vibration and stability of FGM (Functionally Graded Material) plates. They 

also studied the influence of certain parameters on these vibrations. 

 Chakraverty and Pradhan (2014): These researchers combined the CPT and the 

Rayleigh-Ritz method to analyze plate vibrations in FGM. In their work, the plate rested 

on the elastic foundation of Winkler with different boundary conditions. They analyzed 

the influence of certain foundation parameters, boundary conditions and geometric 

properties. 

This work demonstrates the versatility and effectiveness of the CPT for the analysis of plate 

vibrations in various contexts. 
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II.1.2. First-Order Shear Deformation Theory (FSDT) 

The First-Order Shear Deformation Plate Theory (FSDT), also known as the Mindlin 

Plate Theory (Mindlin 1951), and it is based on the displacement field (II.2): 

  

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧𝜑𝑥(𝑥, 𝑦) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧𝜑𝑦(𝑥, 𝑦)                                      (II.2) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) 

Where 𝜑
𝑥
 and 𝜑

𝑦
denote rotations about the y and x axes, respectively. 

This theory extends the Classical Thin Plate Theory (CPT) by including transverse shear 

deformation in its kinematic assumptions. Here are the key points: 

 Transverse Shear Deformation: Unlike the CPT, which assumes that planes 

perpendicular to the mid-plane before deformation remain perpendicular after 

deformation, the FSDT allows for transverse shear deformation. This means that these 

planes can become non-perpendicular due to shear deformation. 

 Shear Correction Factors: The FSDT introduces shear correction factors to account 

for the discrepancy between the actual transverse shear force distributions and those 

computed using the kinematic relations of the FSDT. These correction factors help to 

more accurately predict the behavior of the plate under various conditions. 

 Dependence on Geometric Parameters and Conditions: The shear correction factors 

in the FSDT depend not only on the geometric parameters of the plate but also on the 

loading and boundary conditions. This makes the FSDT a more versatile and accurate 

model for analyzing plate behavior under a wider range of conditions. 

   FSDT is particularly useful for thick and thin FGM plates as it can provide a more accurate 

prediction of their behaviour (Wang et al, 2001). 
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Various applications of First-Order Shear Deformation Theory (FSDT): 

 Liew, Xiang and Kitipornchai (1993): They applied Mindlin plate theory to analyze 

the vibration of thick rectangular plates with different boundary conditions. 

 Croce and Venini (2004): They applied FSDT to study the bending behavior of FGM 

plates under mechanical load in a thermal environment. 

 Fallah, Aghdam and Kargarnovin (2013): They used the FSDT and the extended 

Kantorovich method to analyze the free vibration of moderately thick FGM plates 

resting on an elastic foundation. 

 Hosseini-Hashemi, Fadaee and Atashipour (2011): They developed and proposed a 

new precise analytical approach based on Reissner-Mindlin plate theory to analyze the 

free vibration of FGM rectangular plates. 

 Nguyen, Sab and Bonnet (2008): They developed a new FSDT model for FGM plate 

analysis. 

This work demonstrates the versatility and effectiveness of FSDT and Mindlin plate theory 

for the analysis of plate vibration and bending behavior in various contexts. 

 

Figure II 2: Representation of the Reissner-Mindlin plate (Reddy, 1997) 
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II.1.3. High-order shear deformation theories (HSDT):  

Are based on a nonlinear distribution of displacement fields in plate thickness, taking into 

account the effects of transverse shear deformation and/or normal transverse deformation. 

Unlike classical and first-order theories, HSDT models do not require correction factors for the 

shear effect. Several authors have proposed high-order shear deformation theories to analyze 

the mechanical behavior of thick plates, especially those that are functionally graduated. The 

HSDT developed by Reddy in 2000 was used by many researchers to study static bending, free 

vibration and buckling of FGM plates, including (Hildebrand and al., 1949); (Naghdi, 1957); 

(Reddy, 1984); (Kant & Swaminathan, 2002); (Liberscu L., 1967). 

 

Figure II 3: High-order plate representation (Reddy, 1997). 

 

 

The displacement field in High-order shear deformation theories (HSDT) has the form of 

equations (II.3): 
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𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝛿𝑤0
𝛿𝑥

+ 𝑓(𝑧)𝜑𝑥(𝑥, 𝑦) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝛿𝑤0
𝛿𝑦

+ 𝑓(𝑧)𝜑
𝑦
(𝑥, 𝑦) 

 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) 

Where: 

( u0 ,v0 ) and (∅𝑥 ,∅𝑦) are membrane displacements and rotations in x and y directions 

respectively. (𝜑𝑥= 
𝛿𝑤0

𝛿𝑥
+ ∅𝑥 ;  𝜑𝑦= 

𝛿𝑤0

𝛿𝑦
+ ∅𝑦  ) 

f (z) is a transverse shear (shape) function characterizing theories in contrast to Love-

Kirchhoff’s theory where f (z)= 0 , while in the reisner-mindlin theory f (z)= z  . 

 

Various applications of High-order shear deformation theories (HSDT): 

 Javaheri and Eslami, 2002: They applied the theory of third-order shear deformation 

(TSDT) and the Navier solution to study the thermal buckling of simply supported FGM 

plates. 

 Shen, 2002: Shen performed a non-linear analysis of FGM plates subjected to 

transverse loads in the thermal environment using TSDT34. 

 Yang, Liew and Kitipornchai, 2004: They studied buckling, free vibration and 

dynamic stability of laminated FGM plates using HSDT56. 

 Belkhodja et al., 2020: They studied an exponential-trigonometric theory of higher-

order shear deformation (HSDT) for the analysis of bending, free vibration and buckling 

of plates in FGM78. 

 Rabhi et al., 2020: They studied the buckling and free vibration of exponential gradient 

sandwich plates resting on elastic foundations under various boundary conditions by 

applying a new HSDT at 3 unknows910. 

This research has all contributed to the advancement of understanding and analysis of thick 

plates and composite materials. They improved existing models and proposed new approaches 

to solving complex problems in this area.   
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II.1.4. The different models of high-order theory: 

Shear functions f(z) are mathematical functions used in high-order models to describe the 

distribution of transverse shear stresses in a material. Several authors have proposed different 

shear functions f(z) to model this complex phenomenon. 

The distribution of transverse shear stresses in the thickness of a material can take 

different forms, such as parabolic, sinusoidal, hyperbolic or exponential. Each form of stress 

distribution has its own characteristics and implications for the mechanical behavior of the 

material. 

the shear functions f(z) are powerful tools to model the distribution of transverse shear stresses 

in high-order materials. The shape of the stress distribution chosen can have a significant impact 

on the results of mechanical analyses and must be carefully selected according to the properties 

of the material studied and the mechanical phenomena to be taken into account. 

Table II. 1:Different shear functions used in plate theories isotropic and FGM (Boukhari, 2016) 

 

Theory 

 

 

Titled 

 

 

Shear function 

f(z) 

 

 

Distribution of 

𝛄𝐱𝐳 and 𝛄𝐲𝐳 

according to z 

 

 

Correction 

and shear 

coefficient  

 

Domain 

of 

validity 

CPT.Kirchoff 

[Kirchoff, 

1850a] and 

[Kirchoff, 

1850b] 

Classical 

plate theory 
0 … … 

Thin 

plates 

FSDT Midlin 

[Midlin, 1951] 

Deformation 

theory of 

1st order 

plates 

z constant Required 

Thin 

and 

medium 

plates 

thick 
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Ambartsumian 

[Ambartsumian, 

1958] 

Theory of 

order 

superior 

𝑧

2
(
ℎ2

4
−
𝑧2

3
) 

Linear 

 

Not Required 

 

Thin 

plates 

and 

moderat

ely 

thick 

Reissner 

[Reissner, 1975] 

Theory of 

order 

superior 

5

2
𝑧(1 −

4𝑧2

3ℎ2
) 

Parabolic 

 

 

Thin 

plates 

and 

thick 

 

TSDPT, 

Touratier 

[Touratier, 

1991] 

Theory of 

trigonometric 

deformation 

plates 

 

ℎ

𝜋
sin(

𝜋𝑧

ℎ
) 

ESDPT Karama 

and al. [Karama, 

2003] 

Theory of 

deformation 

exponential 

of 

plates 

𝑧𝑒−2(𝑧/ℎ)
2
, 𝛼 >

0 

PSDPT, 

Levinson 

[Levinson, 

1980], Reddy[ 

Reddy, 1984] 

Theory of 

deformation 

parabolic of 

plates 

𝑧(1 −
4𝑧2

3ℎ2
) 

Aydogdu 

[Aydogdu, 

2003] 

Theory of 

deformation 

exponential 

of 

plates 

𝑧𝛼
2(𝑧/ℎ)2

ln(𝛼) , 𝛼 > 0 

Elmeiche, 

Tounsi and al 

[Elmeiche, 

2011] 

Refined 

theory plates 

(
ℎ
𝜋) sin

(
ℎ𝑧
𝜋
)𝑧

cosh (
𝜋
2
) − 1
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Aite atmane and 

al [Aite atmane, 

2010] 

Refined 

theory plates 

cosh (
𝜋
2
)

cosh (
𝜋
2
) − 1

𝑧

−

ℎ
𝜋
sinh(

𝜋𝑧
ℎ
)

cosh (
𝜋
2
) − 1

 

Shimpi [Shimpi, 

2002] 

Refined 

theory plates 

ℎ [
1

4
(
𝑧

ℎ
)

−
5

3
(
𝑧

ℎ
)3] 

II.2. The material properties of FGM plates: 

Graded functional materials (FGM) represent a significant advancement in the field of 

multiphase materials, allowing the design of structures with gradual properties by continuously 

modifying the components according to a predetermined profile. FGMs are characterized by 

their non-uniform microstructures that lead to continuous gradient macroscopic properties, 

enabling the exploration of a wide range of innovative applications. 

A typical FGM is characterized by a progressive variation of material properties 

throughout its structure. This gradation can be described using various mathematical functions 

such as power law, exponential function, or sigmoid function to determine the volume fractions 

of constituents. These functions allow for precise and controlled definition of phase distribution 

within the material, thereby influencing its overall properties. Let's take the example of an 

elastic rectangular plate to illustrate the concept of FGM in figure II.4. The coordinates x and y 

define the plane of the plate, while the z-axis is perpendicular to its mid-surface in the thickness 

direction.(ADDOU, 2021) 
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The properties of the material, such as Young's modulus and Poisson's ratio, play a crucial 

role in the performance of structures. These properties may vary between the upper and lower 

surfaces of materials but are carefully defined based on specific requirements. 

It is interesting to note that Young's modulus and Poisson's ratio of plates generally only 

vary in the thickness direction, represented by the z-axis. Previous studies, such as Delale and 

Erdogan in 1983, highlighted that the impact of Poisson's ratio on deformation is less compared 

to Young's modulus. Thus, the Poisson's ratio of plates is often considered constant. 

However, Young's moduli can vary along the thickness of plates in the case of functionally 

graded materials (FGMs). These variations can follow functions such as power laws (P-FGM), 

exponential functions (E-FGM), or sigmoid functions (S-FGM), thereby influencing the 

mechanical properties of materials. 

II.2.1. The power law mixing law or material property of a P-FGM structure (power 

law) 

is defined by the volume fraction of the FGM which corresponds to a power law function. This 

volume fraction is determined by the equation (II.6) 

𝑉(𝑧) = (
𝑧

ℎ
+
1

2
)
2

 

where p is the material parameter and h is the thickness of the plate.  

 

Figure II 4: Plate model of functionally graded materials (FGM). 
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Once the local volume fraction V(z) is defined, the material properties of a P-FGM can be 

calculated using the mixing law expressed by equation (II.7) according to (Bao & Wang, 1995). 

𝐸(𝑧) = 𝐸𝑚 + (𝐸𝑐 − 𝐸𝑚)𝑉(𝑧) 

Where m E and c E are respectively the Young's moduli of the lower surface(𝑧 = −ℎ 2⁄ )  and 

upper surface (𝑧 = ℎ 2⁄ )  of the FGM plate, Figure II.5 illustrates the variation of Young's 

modulus in the direction of the thickness of the P-FGM plate, showing that Young's modulus 

changes rapidly near the lower surface for p>1 and increases rapidly near the upper surface for 

p<1. This variation is essential for understanding the mechanical behavior of P-FGM structures 

and for designing composite materials with specific properties 

 

 

 

Figure II 5: Variation of the volume fraction in a P-FGM plate. 
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II.2.2. Sigmoid mixing law or material property of an S-FGM structure (sigmoid law): 

is a method used to express variations in the properties of FGM materials. This approach is 

often used to overcome stress concentrations that occur in FGMs due to interfaces where the 

material changes rapidly. 

(Chung, 2001) introduced the sigmoid volume fraction S-FGM, composed of two power law 

functions defined by specific relationships. 

𝑉1(𝑧) =
1

2
(
ℎ 2 +𝑧⁄

ℎ 2⁄
)
𝑃

 For       −ℎ 2 ≤ 𝑧 ≤ 0⁄  

𝑉1(𝑧) = 1 −
1

2
(
ℎ 2 +𝑧⁄

ℎ 2⁄
)
𝑃

For            0 ≤ z ≤ h 2⁄  

By applying the mixing rule, the Young's modulus of the FGM-S can be calculated using 

equations  

For  −ℎ 2 ≤ 𝑧 ≤ 0⁄  

𝐸1(𝑧) = 𝑉1(𝑧)𝐸𝑐 + [1 − 𝑉1(𝑧)]𝐸𝑚 

For           0 ≤ z ≤ h 2⁄  

𝐸1(𝑧) = 𝑉2(𝑧)𝐸𝑐 + [1 − 𝑉2(𝑧)]𝐸𝑚 

 

these equations allow determining the Young's modulus as a function of the volume fraction of 

sigmoid distributions illustrated in Figure II.6. 
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Figure II 6 :Variation of the volume fraction in an S-FGM plate 
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II.2.3. Exponential mixing law or material property of an E-FGM structure (exponential 

law): 

This law is used to describe the material properties of FGMs using an exponential 

function and is given by equation II.10: (Delale & Erdogan, 1983). 

𝐸(𝑧)  =  𝐸𝑚𝑒
𝐵(𝑧+ℎ/2)  ,  𝐵 =

1

2
𝑙𝑛

𝐸𝑐

𝐸𝑚
 

 

The variation of Young's modulus across the thickness of E-FGM plates is depicted in Figure 

II.7 

 

 

 

 

Figure II 7: Variation of Young's modulus in an E-FGM plate. 
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II.3. Conclusion  

In this chapter, we have given a general overview of the different theories of plates, 

including the classical theory (CPT) of Love-Kirchhoff used for the study of thin plates, the 

theory of deformation in shear order one (FSDT) which takes into account the transverse shear 

effect. To obtain accurate results by this theory, most often a correction coefficient is used.) and 

high-order shear theory (HSDT). We also presented a synthesis on the different models of high-

order theory and the authors' work on models  
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III. Introduction  

There are several techniques to prepare FGMs by using most of the materials, as described 

by researchers. Researchers in recent times have developed major techniques of porosity, and 

different materials have been used as per different applications regularly. The suitability of these 

plate like systems can be used in the diversified field, such as in aerospace (air plane, rocket), 

nanocomposites, chemical biomedical devices, capacitors, microelectronics, oxide fuel cells, 

photo catalysts, resistor, turbine blades; and also in engineering and technological applications. 

In the field of flexible electronics, the nucleus of these plate like systems, such as in electronic 

skins, and smart textiles have acquired immense interest for future compliance with human 

bodies and robots. Hence, they were used in solar cells, biocompatible strategies in orthopedics, 

drug delivering nanocontainers, and biofuel cells, microfluidic applications including high 

efficiency cancer therapy and advanced photothermal therapy (Penna and al., 2022) 

The efficient employment of more advanced and multifunctional composite, smart, and 

hybrid structures made of advanced materials with properly designed porosity patterns in the 

realm of modern diversified engineering applications is not only a challenging task but also a 

keen interest around the globe. To enter a strike in the modern scenario of structural designing 

technology, an engineered functional and multifunctional gradation in porosity and variously 

distributed microstructural defects in the lattice structure may be in great demand (Jalali and 

al., 2021). The grade and distribution of porosity are mainly adopted to regulate the 

thermomechanical properties of materials and also to tailor the mechanical, thermal, diffusion, 

and enhancement properties of various advanced materials such as thermoelectric systems, 

piezoelectric materials, semiconductive structures, and other multifunctional materials. The 

most widespread NP production technique includes reducing or coating the solid phase from 

the liquid or solution phase. This method is mainly used to prepare metal and metal alloy NPs 

(Valencia et al., 2022) 

III.1. Background and Motivation 

Some researchers further argue that their superposition will give most accurate 

predictions because a close match for their predictions was achieved with respect to 

experiments. Being a junior perspective researchers, we kept our further investigation on the 

idea of nonlocal theory, plate-type functionally graded material, linearized theory and free 
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bending of the plate is done. It is concluded that with respect to classical model, nonlocal theory 

gives increased adhesive’s maximum bending power, and faster I-degradation of additional 

non-s of nonlocal theory increases the plate’s bending power. Because two nonlo-cal parameters 

make the situation much more complex, the authors simplify the free bending prob-lems, as 

proposed by different researchers in the past. They considered the nonlocal theory effect only 

in sandwiched structure. The plate models are useful for mechanical analysis of quasi zero axial 

deformation, lower dimensional solid structures such as plate and sandwich structures. The 

state-of-the-art in modeling of plates in mechanics involves nonlocal hyperelastic and linearized 

theories, thus higher order theories. All of them are implemented.Implanted in functionally 

graded mechanism, the modern plate mechanics become too complex to incorporate each and 

every noninertial effect. To fabricate such green products, the people from academia are striving 

for the tools to probe the ecofriendly structural design strategies for green materials. Particular 

attention is paid to the effect of classical and nonlocal small scale parameters. 

Research on micro-electromechanical systems and nano-electromechanical systems has 

increased due to their small volume, light weight, and excellent performance in various fields 

(Tang et al., 2022). When material structure are reduced to micro-nano levels, their mechanical 

behavior differs significantly from macro dimension levels. As the materials possess 

dimensionsality from micrometer to nanometer, it is important to account for the characteristic 

length scale of the materials into the governing equation. Such types of models are known in 

the literature as nonclassical models. Classical model give incorrect evaluation of such 

characteristic length scale material in case. It is reasoned that micro-structural in their aspect, 

stresses and displacements are needed but classical model gives constant stress power law over 

the entire body's volume. It gives a finite stress on the body's surface (Monaco and al., 2021). 

This is the main reason such models are known as classical, because we have no reasons to 

believe that materials retain such behaviour. It is quite clear that these models can give us wrong 

predictions for internal stresses and hence for the boundary inhomogeneity. Classical model 

predictions also depend on the response of the body's geometric size. In many different ways 

to deal with the said issues, the classical model result to ill-posed predictions. The surface 

elasticity and nonlocal theory non-classical theory are the accurate models that account for these 

effects, separately (Thakur et al., 2021). 
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III.2. Research Objectives 

(Monaco et al., 2021) This research aims to explore mechanical behaviors of FGPNs 

resting on EF using gradient theory. According to Eringen’s higher order continuum theory, the 

general classical Euler–Bernoulli beam theory cannot accurately describe the mechanical 

behaviors at nanoscale because of the size-dependent behaviors and nonlocal surface energetics. 

In this theory, several dimensions such as micro-continuum, nonlocal, gradient and nanoscale 

continuum, are taken into consideration. Through compounding the surface elasticity and the 

nonlocal distribution of the stress tensor, one can approach the real behavior of materials in 

discontinuities as in interfaces and surfaces. It is worth mentioning, as a relevant concept, that 

Liebscher observed that, by resolving the experimental stresses, the razor blade can be 

sharpened to some nanometers by the Szillat–Gogler method. This method makes use of a 

lumped interface in the edge zone and a notched distribution of the elastic constants being in 

comformity with an integration procedure based on the principle of momentum of Liu. Many 

researchers have expanded the idea of Eringen’s theory, among them the most popular are 

Toupin, Mindlin, Henzias, Yugang Gao, and their several followers. Many of these researchers 

are not only eager to challenge the conventional continuum mechanics, but also owing to the 

fact that the classical theory becomes simply invalid for solving the multiscale bar/beam-like 

body problems, they have proposed a governing equation without any need to comprehensively 

recall balance equations for varied modifications of the continuum mechanics. (Penna and al., 

2021) Recently, Timoshenko beam theory has been enriched by the presence of two nonlocal 

deformation parameters. Tagantsev’s gradient theory comes to facilitate our objective 

utilization for the first time for our numerical validation. We are just persuaded to delve into 

the nonlocal derivative to scrutinize bending and stretching of elastomeric thin film crystalline 

systems. The proposed relation between these compatible surfaces to exhibit some 

compatibility of the elastic mechanics in nonlocal beam theory is also appealing. The same 

general trend on the dependence of thermal vibrations properties on values of the nonlocal 

parameter is obtained for nonisopotency, Hookean plateau and Hookean yard. The 

consequences of Wood in capability of temperature are also discussed. During the presentation, 

we are reviewing paper for the first time. Moreover, we disclose an essential achievement that 

for CNTs under hygrothermal variation; the thermal vibration response (frequency and 

amplitude) is being at the extreme domain. We also explore possible improvements of 

preconceived available theoretical data in which the thermal response of RW and FWs appears 
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more tangible and might be approved by employing more advanced gradient theories like 

nonlocal and stress gradient theory. 

III.3. Geometry and concept of the functionally graduated plate (P-FGM) 

In the framework of this study, we conducted research on a functionally graded metal-

ceramic nano plate (P-FGM) that was resting on an elastic foundation of the Winkler-Pasternak 

type and had dimensions of "a" for length, "b" for width, and "h" for thickness in the x y 

coordinate system (Figure III.1). It is assumed that the FG plate's material properties, including 

mass density, Poisson's ratio, and Young's modulus, will continuously change with thickness in 

accordance with a power-law distribution. 

 

 

 

 

 

 

Figure III. 1: FG plaques supported on elastic foundations. 
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The variation of material properties across plate thickness is shown in the following equation:  

𝑝(𝑧)  =  𝑃𝑚  +  (𝑃𝑐 − 𝑃𝑚) (
𝑧

ℎ
+ 

1

2
)𝑝      (III.1) 

Where 𝑃𝑚 and 𝑃𝑐 are the properties of metallic and ceramic materials respectively. p is the 

power index. 

This equation shows how the material properties of the plate changes as a function of 

position within the thickness of the plate. Variation in material properties will lead to massive 

result on the mechanical and thermal behavior of the plate. 

III.4. Functionally graded porous plates: 

The existence of empty spaces in the material's structure is referred to as the porosity of 

FGM plates. This porosity may develop throughout the FGM plate manufacturing process, to 

more precise during the sintering phase or component material consolidation phase of the 

manufacturing process. FGM plates can have uniform, non-uniform, logarithmic-non-uniform, 

or density-based porosity, not to mention other possible varieties. Porosity in FGM plates has 

the possibility to massively affect the mechanical and thermal characteristics of the material in 

question.  

Figure III. 2:Presentation of various representations of porosity variations. 
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III.5. Types of porosity distribution: 

III.5.1. FGM plates with porosity type I (even porosities): 

Even porosity throughout the FGM plate's thickness can be seen in the first porosity 

distribution model. According to (Wattanasakulpong & Ungbhakorn, 2014) model, porosity 

remains constant throughout the plate's thickness (Fig. III.2a). Equations that take this uniform 

porosity distribution into account are used to derive the effective material properties (III.2). 

𝑃(𝑧) = 𝑃𝑐 ((
1

2
+

𝑧

ℎ
)
𝑝

−
𝜉

2
) + 𝑃𝑚 (1 − (

1

2
+

𝑧

ℎ
)
𝑝

−
𝜉

2
)        (III.2) 

 

Where  is the parameter which takes into account the effect of porosity. 

Formulation of young’s module E(z) (III.3a), masse density 𝜌(𝑧) (III.3c) and poison’s ratio 

𝑣(𝑧) (III.3b) can be obtained by applying the equation (III.2) (Wattanasakulpong & Ungbhakorn, 

2014): 

           𝐸(𝑧) = (𝐸𝑐 − 𝐸𝑚)(
𝑧

ℎ
+
1

2
)
𝑝

+ 𝐸𝑚 −
𝜉

2
(𝐸𝑐 + 𝐸𝑚)   (III.3a) 

           𝑣(𝑧) = (𝑣𝑐 − 𝑣𝑚) (
𝑧

ℎ
+
1

2
)
𝑝

+ 𝑣𝑚 −
𝜉

2
(𝑣𝑐 + 𝑣𝑚)      (III.3b) 

                          𝜌(𝑧) = (𝜌𝑐 − 𝜌𝑚) (
𝑧

ℎ
+
1

2
)
𝑝

+ 𝜌𝑚 −
𝜉

2
(𝜌𝑐 + 𝜌𝑚)    (III.3c) 

III.5.2. FGM plates with porosity type II (uneven porosities)  

Uneven porosity presents obstacles to material infiltration, especially in the intermediate 

zone, which in itself increase the risk of creating micro-voids. On the other hand, the upper and 

lower free surfaces of the plate allow for easier material infiltration; nevertheless, this also 

increases the risk of micro-void developing. Wattanasakulpong and Ungbhakorn’s created a 

different porosity distribution model in which porosity varies with thickness, taking these 

factors into account. Equations define the effective properties of materials having an odd 

distribution, as seen in Figure III.2 (b). (III.4). 

𝐸(𝑧) = (𝐸𝑐 − 𝐸𝑚) (
𝑧

ℎ
+
1

2
)
𝑝

+ 𝐸𝑚 −
ξ

2
(𝐸𝑐 + 𝐸𝑚) (1 −

2|𝑧|

ℎ
)     (IVI.4a) 

𝑣(𝑧) = (𝑣𝑐 − 𝑣𝑚) (
𝑧

ℎ
+
1

2
)
𝑝

+ 𝑣𝑚 −
ξ

2
(𝑣𝑐 + 𝑣𝑚) (1 −

2|𝑧|

ℎ
)     (VI.4b) 
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ρ(𝑧) = (ρ𝑐 − ρ𝑚) (
𝑧

ℎ
+
1

2
)
𝑝

+ ρ𝑚 −
ξ

2
(ρ𝑐 + ρ𝑚) (1 −

2|𝑧|

ℎ
)    (VII.4c) 

 

III.5.3. FGM plates with porosities type III (logarithmiques- uneven porosities) 

Gupta and Talha (2018) created a model based on the porosity's logarithmic changes over 

plate thickness. In contrast to even or uneven distributions, this method provides a unique 

porosity distribution that affects material qualities in a different way. 

𝐸(𝑧) = (𝐸𝑐 − 𝐸𝑚) (
𝑧

ℎ
+
1

2
)
𝑝

+ 𝐸𝑚 − log (1 +
ξ

2
) (𝐸𝑐 + 𝐸𝑚) (1 −

2|𝑧|

ℎ
)    (VIII.5a) 

𝑣(𝑧) = (𝑣𝑐 − 𝑣𝑚) (
𝑧

ℎ
+
1

2
)
𝑝

+ 𝑣𝑚 − log (1 +
ξ

2
) (𝑣𝑐 + 𝑣𝑚) (1 −

2|𝑧|

ℎ
)   (VIIII.5b) 

ρ(𝑧) = (ρ𝑐 − ρ𝑚) (
𝑧

ℎ
+
1

2
)
𝑝

+ ρ𝑚 − log (1 +
ξ

2
) (ρ𝑐 + ρ𝑚) (1 −

2|𝑧|

ℎ
)    (IXI.5c) 

 

III.5.4. FG plate with type IV porosities (density): 

The density-based FG porosity model with type IV porosities is based on the concepts of 

true and apparent density. These concepts are defined by the following equations: 

𝑚0 = ∫ 𝜌(𝑧)𝑑𝑧
ℎ

    and   𝜉 = 0   and     𝑚1 = ∫ 𝜌(𝑧)𝑑𝑧
ℎ

 at    𝜉 > 0     (III.6) 

Or  

𝜌(𝑧) = (𝜌𝑐 − 𝜌𝑚)(
ℎ

𝑧
+
1

2
)
𝑝

+ 𝜌𝑚−
𝜉

2
(𝜌𝑐 + 𝜌𝑚)       (III.7) 

 

Here, m0 real mass density and m1 apparent mass density. Considering that the model of 

elasticity depends on the density of the material, the expression for Young's model, as proposed 

by (Eltaher and al.,), the following equation shows that: 

𝐸(𝑧) = (𝐸𝑐 − 𝐸𝑚)(
ℎ

𝑧
+
1

2
)
𝑝

+ 𝐸𝑚−
𝑚0−𝑚1

𝑚0
− (𝐸𝑐 + 𝐸𝑚)     (III.8) 

With consideration for differences in elastic models as a function of density as well as both true 

and apparent densities, this model offers a more precise method for evaluating porosity in 

materials. 
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III.5.5. FGM plates with porosity type V: 

A two-parameter porosity (type V) Although it allows for a greater range of porosity 

distributions, the addition of a two-parameter porosity model complicates the study. Different 

porosity distributions can be obtained by altering parameters like ξ and φ, which offers diversity 

in material design and optimization. 

𝐸(𝑧)  =  (𝐸𝑐 − 𝐸𝑚)(
𝑧

ℎ
+
1

2
)𝑃 + 𝐸𝑚 −

𝜉

2
(𝐸𝑐 + 𝐸𝑚)(1 −

2|𝑧|

ℎ
)
𝜑

     (III.9a) 

𝜌(𝑧)  =  (𝜌𝑐 − 𝜌𝑚)(
𝑧

ℎ
+
1

2
)𝑃 + 𝜌𝑚 −

𝜉

2
(𝜌𝑐 + 𝜌𝑚) (1 −

2|𝑧|

ℎ
)
𝜑

    (III.9b) 

III.6. The four-variable first-order theory FSDT improved: 

 A crucial topic for the design and modeling of composite structures is the investigation 

of transverse shear stresses through the thickness of composite plates. Analytical analysis of 

these restrictions can be done precisely and effectively by using first-order theory with four 

variables. 

This method is based on the analytical solutions for cross-stacked and balanced antisymmetric 

laminated composite plate structures provided by Hamilton's principle and Navier's method. 

When compared to higher-order theories and three-dimensional elasticity models, the four-

variable first-order theory is distinguished by its precision and capacity to give dependable 

numerical findings. 

For the examination of laminated composite plates' natural frequencies, the outcomes derived 

from this theory are essential. To ensure the stability and longevity of composite structures, 

accurate knowledge of transverse shear stresses through plate thickness is crucial. 

(BOUNOUARA, 2016) 

Two terms can be identified in the transverse displacement component (𝑤): bending is 

represented by term (𝑤𝑏) and cross-sectional shear by term (𝑤𝑠). These two elements are 

expressed as follows and solely rely on the x and y coordinates:                             

         𝑤 =  𝑤𝑏 +  𝑤𝑠       (III.10) 
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III.6.1. Cinematic:  

The simplified hypotheses in this study are based on an already existing FSDT theory, 

the difference in this theory is the number of unknown variables has been reduced to four. 

The displacement field of the old FSDT is indicated by:  

 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧
𝛿𝑤

𝛿𝑥
− 𝑧𝜑𝑥(𝑥, 𝑦) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧
𝛿𝑤

𝛿𝑥
− 𝑧𝜑𝑦(𝑥, 𝑦)                    (III.11) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) 

(𝑢0 , 𝑣0, 𝑤0, 𝜑𝑥  𝑒𝑡 𝜑𝑦) are five unknown displacement functions of the midplane of the plate; 

and h represents the thickness of the plate. By dividing the transverse displacement w into two, 

bending and shear (meaning 𝑤 = 𝑤𝑏 + 𝑤𝑠) and by adding another hypothesis that is 

represented by this equation 𝜑𝑥 =
𝛿𝑤𝑏

𝛿𝑥
  et 𝜑𝑦 =

𝛿𝑤𝑏

𝛿𝑦
  the new displacement field of the present 

theory can be rewritten in a simpler form such that: 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦)  −  𝑧𝑤𝑏,1 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) −  𝑧𝑤𝑏,2                                     (III.12) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤𝑏(𝑥, 𝑦) + 𝑤𝑠(𝑥, 𝑦) 

The constraints linked to the displacement fields are: 

                     

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}

 
 

 
 

=

{
 
 

 
 

𝑢0,1  − 𝑧𝑤𝑏,11
𝑣0,2  − 𝑧𝑤𝑏,22

𝑢0,2 + 𝑣0,1  − 2𝑧𝑤𝑏,22
𝑤𝑠,1
𝑤𝑠,2 }

 
 

 
 

      (III.13) 

Assuming a linear distribution of shear stress throughout the plate's thickness, the basic 

theory of FSDT, or "First-order Shear Deformation Theory," was created. But in order to 

prevent shear-lock, this method needed a constant shear correction coefficient. A novel 

distributed shear function theory was put forth in an effort to enhance the basic FSDT theory. 

By using this method, discontinuities at the top and bottom surfaces are eliminated and shear 
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stress is distributed parabolically across the plate's thickness. This enhancement allows for a 

better consideration of the shear strain vector in plate analysis. (Nguyen and al, 2019) . 

                                  {
𝜸𝒙𝒛
𝒄

𝜸𝒚𝒛
𝒄 } = 𝒇(𝒛) {

𝛾𝑥𝑧
𝛾𝑦𝑧
}       (III.14) 

Transverse shear strain distribution through plate thickness is given by the shear 

distribution function 𝑓(𝑧). The following requirements were met by selecting this function: The 

shear strain is distributed parabolically across the thickness and is equal to zero on the plate's 

top and lower surfaces; the integration throughout the thickness of the plate roughly 

corresponds to the FSDT's constant shear correction factor (5/6). Inspired by the research of 

(Zenkour, 2006). The shear distribution function can be chosen as follows: 

                        𝑓(𝑧) =
5

4
cos(

𝜋𝑧

ℎ
)       (III.15) 

 

The constraints linked to the displacement fields are: 

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} = {

𝑢0,1 
𝑣0,2 

𝑢0,2 + 𝑣0,1 
} − z (

𝑤𝑏,11
𝑤𝑏,22
𝑤𝑏,22

) ,  {
𝛾𝑥𝑧
𝑐

𝛾𝑦𝑧
𝑐 } = 𝑓(𝑧) {

𝛾𝑥𝑧
𝛾𝑦𝑧
}  (III.16) 

III.7. Nonlocal Theory and Constitute Relations: 

An interesting alternative to conventional physics theories is offered by Eringen. In 

actuality, there are often more restrictions on the application of classical concepts than one may 

believe, leading to inconsistent or a rather disparate kind of results from experimental findings.  

The non-local approach, which lies in between atomic theories and classical mechanics, 

considers the influence of the microstructure on the behavior of the material. This approach 

generalizes classical theories by considering that behavior at a given point depends on the state 

of the material at that location.  

In order to more thoroughly explain elastic behavior, these theories' mathematical formulation 

takes long-range interactions into account and include a unique internal length of the material. 

Said another way, constitutive relations and non-local theory offer a fresh perspective on 

understanding material behavior in a more refined way. (BOUNOUARA, 2016) 

the study of Eringen (1983), the tensor of stresses not localized at the point is represented by:  

𝜎 − 𝜇∇2𝜎 = 𝜏 
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In the two-dimensional case of a material with functional gradient, the nonlocal behavior 

relation in equation (III-16) is in the following forms:  

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦
𝜏𝑥𝑧
𝜏𝑦𝑧}

 
 

 
 

− 𝜇 (
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
)

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦
𝜏𝑥𝑧
𝜏𝑦𝑧}

 
 

 
 

=

[
 
 
 
 
𝐶11 𝐶12 0 0 0
𝐶12 𝐶22 0 0 0
0 0 𝐶66 0 0
0 0 0 𝐶55 0
0 0 0 0 𝐶44]

 
 
 
 

{
 
 

 
 
𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}
 
 

 
 

  (III.16)   

  

 ( 𝑥   , 𝑦  , 𝑥𝑦   , 𝑥𝑧  , 𝑦𝑧) and ( 𝑥  , 𝑦  , 𝑥𝑦  , 𝑥𝑧, 𝑦𝑧  ) are the components of stresses and strains, 

respectively. And 𝐶𝑖𝑗   can be given by: 

𝐶11 = 𝐶22 =
𝐸(𝑧)

1−𝑣2
    ;  𝐶12 =

𝑣𝐸(𝑧)

1−𝑣2
    ;     𝐶44 = 𝐶55 = 𝐶66 =

𝐸(𝑧)

2(1+𝑣)
   (III.17) 

 

III.8. Movement Equation: 

Hamilton's principle is used to derive equations of motion in our study It can be formulated 

analytically: 

           0 = ∫ (𝛿𝑈 + 𝛿𝑈𝑓 − 𝛿𝐾)𝑑𝑡
𝑇

0
        (III.18) 

U, 𝑈𝑓  and K are the variations, of strain energy, energy of work done by external forces and 

kinetic energy, respectively. 

* The variations in the strain energy are calculated by: 

𝛿𝑈 = ∫ ∫ (𝜎𝑥𝛿𝜀𝑥 + 𝜎𝑦𝛿𝜀𝑦 + 𝜏𝑥𝑦𝛿𝛾𝑥𝑦 + 𝜏𝑥𝑧
𝑐 𝛿𝛾𝑥𝑧

𝑐 + 𝜏𝑦𝑧
𝑐 𝛿𝛾𝑦𝑧

𝑐 )
ℎ
2⁄

−ℎ
2⁄𝐴

𝑑𝑧𝑑𝐴   (III.19) 

𝛿𝑈 = ∫[𝑁𝑥𝛿𝑈,1 −𝑀𝑦𝛿𝑤𝑏,11 + 𝑁𝑦𝛿𝑈𝑓,2 +𝑀𝑦𝛿𝑤𝑏,22 +𝑁𝑥𝑦(𝛿𝑢,2 + 𝛿𝑈𝑓,1) − 2𝑀,𝑥𝑦𝛿𝑤𝑏,12
𝐴

+𝑄𝑥
𝑐𝛿𝑤𝑠,1 + 𝑄𝑦

𝑐𝛿𝑤𝑠,2] 𝑑𝐴 

 

 𝑁 ,𝑀 𝑎𝑛𝑑 𝑄𝑐   are the resulting constraints defined by: 

(𝑁𝑥  , 𝑁𝑦  , 𝑁𝑥𝑦) = ∫ (𝜎𝑥  , 𝜎𝑦  , 𝜎𝑥𝑦  )
ℎ/2

−ℎ/2
𝑑𝑧      (III.20a) 
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(𝑀𝑥  , 𝑀𝑦  , 𝑀𝑥𝑦) = ∫ (𝜎𝑥  , 𝜎𝑦  , 𝜎𝑥𝑦  )
ℎ/2

−ℎ/2
𝑧𝑑𝑧     (III.20b) 

(𝑄𝑥
𝑐  , 𝑄𝑦

𝑐) = ∫ (𝜏𝑥𝑧
𝑐  , 𝜏𝑦𝑧

𝑐  )
ℎ/2

−ℎ/2
𝑓(𝑧)𝑑𝑧       (III.20c) 

 

* The expression of the variation of work energy 𝛿𝑼𝒇 is: 

δ𝑈𝑓 = −∫ (𝑈𝑊𝑖𝑛𝑘𝑙𝑒𝑟 +𝑈𝑃𝑎𝑠𝑡𝑒𝑟𝑛𝑎𝑘)dV𝑉
          (III.21) 

 

 Winkler Model:  

𝑞𝑊𝑖𝑛𝑘𝑙𝑒𝑟 = 𝐾0𝑊 

 Pasternak Model:  

                                                            𝑞𝑃𝑎𝑠𝑡𝑒𝑟𝑛𝑎𝑘 = 𝑘0𝑊 − 𝑘1∇
2W 

𝑘1 Is the shear stiffening and  ∇2is the recongulair carttesian coordinates 

 

The Laplace differential operator: 

∇2=
𝜕2

𝜕𝑥2
 + 

𝜕2

𝜕𝑦2
 

* The change in strain energy is calculated by: 

δK = ∫ (u̇δu̇˙ + v̇δv̇ + ẇδẇ)ρ(z)dV
𝑣

       (III.22) 

After integration by part in the direction of the thickness, equation (III.23) becomes: 

δK = ∫ {I0[u̇δu̇ + v̇δv̇ + (ẇb + ẇs)δ(ẇb + ẇs)] − I1(u̇δẇ𝑏,1 + ẇ𝑏,1δu̇ + v̇δẇ𝑏,2 + w𝑏,2̇ δv̇)
𝐴

+ I2(w𝑏,1̇ δw𝑏,1̇ + w𝑏,2̇ δw𝑏,2̇ )}dA 

 

The superscript symbol (.) indicates differentiation with respect to the time variable (t). 

The density of the material is represented by the symbol (). 
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( I0 , I1, I2 ) Represent the mass inertias defined by: 

( I0 , I1, I2 ) = ∫ (1, z, z2)ρ(z)dz
ℎ/2

−ℎ/2
      (III.23) 

By substituting the expressions of the variations 𝛿𝑈, 𝛿𝑉 and 𝛿𝐾 are given by the equations 

(III.19), (III.20) and (III.21) in equation (III.16) and by carrying out the integration by parts, 

then by grouping the coefficients or terms of  𝛿𝑢, 𝛿𝑣, 𝛿𝑤𝑏  𝑎𝑛𝑑 𝛿𝑤𝑠. 

we obtain the following equations of motion of the present theory: 

 

δu: N𝑥,1 + N𝑥𝑦,2 = I0ü − I1ẅ𝑏,1 

                        δv:N𝑦,2 +N𝑥𝑦,1 = I0v̈ − I1ẅ𝑏,2      (III.24) 

δwb:M𝑥,11 +M𝑦,22 + 2M𝑥𝑦,12 − 𝑞𝑊𝑖𝑛𝑘𝑙𝑒𝑟 − 𝑞𝑃𝑎𝑠𝑡𝑒𝑟𝑛𝑎𝑘

= I0(w𝑏̈ + ẅ𝑠) + I1(𝑢̈,1 + v̈,2) − I2(ẅ𝑏,11 + ẅ𝑏,22) 

δws:Q𝑥,1
𝑐 +Q𝑦,2

𝑐 = I0(ẅ𝑏 + ẅ𝑠) 

 

By substituting equation (III.13 and 14) into equation (III-16) and the subsequent results into 

equation (III-20), the constraint resultants are determined as follows: 

{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

}− 𝜇 (
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) {

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} = [
𝐴11 𝐴12 0
𝐴12 𝐴22 0
0 0 𝐴66

] {

𝑢,1
𝑣,2

𝑢,2 + 𝑣,1
} + [

𝐵11 𝐵12 0
𝐵12 𝐵22 0
0 0 𝐵66

] {

−𝑤𝑏,11
−𝑤𝑏,22
−2𝑤𝑏,12

}            (III.25a) 

 

{

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

}− 𝜇 (
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) {

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

} = [
𝐵11 𝐵12 0
𝐵12 𝐵22 0
0 0 𝐵66

] {

𝑢,1
𝑣,2

𝑢,2 + 𝑣,1
} + [

𝐷11 𝐷12 0
𝐷12 𝐷22 0
0 0 𝐷66

] {

−𝑤𝑏,11
−𝑤𝑏,22
−2𝑤𝑏,12

}          (III.25b) 

 

{
𝑄𝑥𝑧
𝑐

𝑄𝑦𝑧
𝑐 } − 𝜇 (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) {
𝑄𝑥𝑧
𝑐

𝑄𝑦𝑧
𝑐 } = [

𝐴𝑎55 0
0 𝐴𝑎444

] {
𝑤𝑠,1
𝑤𝑠,2

}                      (III.25C) 
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nonlocal theory equations of motion:                  

δu: N𝑥,1 +N𝑥𝑦,2 = ( 1 − 𝜇∇
2 )(I0ü − I1ẅ𝑏,1) 

       δv: N𝑦,2 +N𝑥𝑦,1 = ( 1 − 𝜇∇
2 )(I0v̈ − I1ẅ𝑏,2)      (III.26) 

δwb: [M𝑥,11 +M𝑦,22 + 2M𝑥𝑦,12]+( 1 − 𝜇∇
2 )( 𝑘0𝑊 −𝑘1∇

2W) 

= ( 1 − 𝜇∇2 )(I0(w𝑏̈ + ẅ𝑠) + I1(𝑢̈,1 + v̈,2) − I2(ẅ𝑏,11 + ẅ𝑏,22) 

δws ∶ Q𝑥,1
𝑐 + Q𝑦,2

𝑐 = ( 1 − 𝜇∇2 )(I0(ẅ𝑏 + ẅ𝑠)) 

 

III.9. The Navier method: 

The Navier method can be displayed in double trigonometric functions as follows: 

 

{

𝑢(𝑥, 𝑦, 𝑡)
𝑣(𝑥, 𝑦, 𝑡)
𝑤𝑏(𝑥, 𝑦, 𝑡)
𝑤𝑠(𝑥, 𝑦, 𝑡)

} = ∑ ∑

{
 
 

 
 𝑈𝑚𝑛𝑒

𝑖𝜔𝑡 cos 𝛼𝑚 𝑥 sin𝛽𝑛𝑦

𝑉𝑚𝑛𝑒
𝑖𝜔𝑡 𝑠𝑖𝑛 𝛼𝑚 𝑥 cos𝛽𝑛𝑦

𝑤𝑏𝑚𝑛𝑒
𝑖𝜔𝑡 𝑠𝑖𝑛 𝛼𝑚 𝑥 sin𝛽𝑛𝑦

𝑤𝑠𝑚𝑛𝑒
𝑖𝜔𝑡 𝑠𝑖𝑛 𝛼𝑚 𝑥 𝑠𝑖𝑛 𝛽𝑛𝑦}

 
 

 
 

∞
𝑛=1

∞
𝑚=1                                         (III.27) 

 

Where mnU
, mnV

, bmnW
 and smnW

 are arbitrary parameters to be determined,   is the 

eigenfrequency associated with (m,n) the eigenmode, and /m a   and /n b  .  

 
1,3,5 1,3,5

sin sinmn

m N

q x Q x y 
 

 

                                                                        (III.28) 

 

For a sinusoidally distributed load, we have: 

1m n        and        1 0Q q                                                                         (III.29) 

The analytical solutions can be derived for any fixed value of 'm' and 'n'  by substituting 

Equations (III.27) and (III.28) into Equation (III.26). 

Free vibration: 

       2 0K M                                                                       (III.30 a) 

Static problems: 
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    K F                                                                             (III.30 b) 

where 

                

11 12 13 14

12 22 23 24

13 23 33 34

14 24 34 44

,

a a a a

a a a a
K

a a a a

a a a a

 
 
 
 
 
 

                                                                   (III.31 a) 

 

11 13 14

22 23 24

13 23 33 34

14 24 34 44

0

0
,

m m m

m m m
M

m m m m

m m m m

 
 
 
 
 
 

                                                                 (III.31 b) 

and 

   

0

0

,

m

m

bm m

sm m

U

V

W F Q

W Q

   
   
      

     
   
   
     

                                                                      (III.31 c) 

 

 

with 
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(III.32 ) 
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III.10. Conclusion: 

In this chapter, a first order shear deformation theory (FSDT) with four unknowns was 

used to provide a dynamic behavior analysis of perfect and imperfect FG-plates. The research 

was done on a functionally graded metal-ceramic nano plate (P-FGM) that was resting on an 

elastic foundation of the Winkler-Pasternak type. The porosity effect in graded material 

properties is described by five different models of porosity distributions. Using the Navier 

equation and Hamilton's equation, as well as nonlocal theory which was provided by Eringen 

work, the equations of motion was established. 
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IV. Introduction 

In this chapter, our goal is to present the numerical results obtained to demonstrate the 

effectiveness and accuracy of the proposed theory regarding the static and free vibration 

responses of isotropic homogeneous plates and functionally graded material (FGM) plates at 

different scales. 

These plates are simply supported, with or without the presence of Winkler or Pasternak elastic 

foundations. The material properties of FGM plates vary according to different porosity 

distributions. Our study aims to evaluate the impact of material index, porosity index, geometric 

ratio, non-local parameter, and elastic foundation parameters on the vibrational characteristics 

of these plates. 

IV.1.  Presentation and Analysis of Results: 

IV.1.1. Mechanical Analysis of Macroscopic Functionally Graded Material (FGM) Plates 

Here, we use a new shear deformation theory to give numerical findings for the static 

response analysis of a simply supported Functionally Graded Material (FGM) plate subjected 

to uniform and sinusoidal stress, sitting on a Winkler-Pasternak elastic foundation. Solutions 

from the literature are compared and contrasted. This chapter presents a number of numerical 

examples to confirm the accuracy of this theory.  

The numerical results are presented for a ceramic/metal graded plate that has been evaluated. 

The material properties are given as follows: 

Ceramic Properties: 

 Young's Modulus (E𝑐): 380 GPa 

 Poisson's Ratio (νc): 0.3 

 Density (ρ𝑐): 3,800 kg/m³ 
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Metal Properties: 

 Young's Modulus (E𝑚): 70 GPa 

 Poisson's Ratio (ν𝑚): 0.3 

 Density (ρ𝑚): 2,702 kg/m³ 

 

The parameters non-dimensional form: 

 

 

3

4

0

10
,

2 2

ch E a b
w w

a q

 
  

 
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, ,
2 2 2

x x

h a b h
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 

 
  

 
 

 

 

0

0,0,
3

xy xy

h h

aq
 

 
  

 
 

 

0

0, ,0
2

xz xz

h b

aq
 

 
  

 
 

 

4

0 0 /K k a D  et 
2

1 1 /K k a D . 

where 
3 2/12(1 )D Eh    

A comparison of the transverse shear stresses and non-dimensional deflections of a 

simply supported square FGM plate is shown in Table IV.1. A comparison is made between 

the outcomes and the findings derived from the Sinusoidal Shear Deformation Theory (SSDT) 

(Touratier, 1991). 
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The results produced by the current approach are in good agreement with those reported 

by SSDT, as Table IV.1 demonstrates. Table IV.1 further illustrates how the material parameter 

p affects the deflections and stresses. 

 

The non-dimensional deflections of a thin isotropic plate sitting on a Winkler-Pasternak 

elastic foundation are compared with those reported in the literature in order to justify the 

current approach.  

A comparison of the deflections of a square homogenous plate with simple support that is 

resting on a Winkler elastic foundation under uniform loading is shown in Table IV.2. The 

deflections are compared to those reported by (Lam and al., 2000) and (Kobayashi and Sonoda, 

1989), where a good degree of agreement was seen between the findings. 

 

Table IV. 2: Comparison of non-dimensional deflections of a homogeneous plate under uniform 
loading resting on a Winkler foundation for a/h=100. 

 

K0 

3

4

(0,5 ,0,5 )10Dw a a

qa
 

[Kobayashi 1989] [Lam et al. 2000] present 

1 4,052 4,053 4,052 

34 3,347 3,349 3,347 

54 1,506 1,507 1,506 

 

a/h 

 

p 

w  xz  

SSDT present SSDT present 

 

2 

 

 

0 0,6668 0,6696 0,2414 0,2291 

1 1,2152 1,2198 0,2414 0,2291 

4 2,1353 2,1261 0,1975 0,1838 

10 2,7205 2,7215 0,2136 0,2003 

 

10 

0 0,2960 0,2960 0,2462 0,2321 

1 0,5889 0,5889 0,2462 0,2321 

4 0,8819 0,8810 0,2029 0,1873 

10 1,0089 1,0083 0,2198 0,2042 

Table IV. 1: Comparison of non-dimensional deflections and transverse shear stresses of an FGM 

plate under sinusoidal loading. 
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A comparative analysis of the deflections of a square homogenous plate with simple 

support put on an elastic foundation made of Winkler-Pasternak under uniform loading is 

shown in Table IV.3. The current theory's results (four variables) are in close agreement with 

those of ((Lam and al., 2000)). 

 

Table IV. 3: Comparison of non-dimensional deflections of a homogeneous plate under uniform 

loading resting on a Winkler-Pasternak elastic foundation for 𝑎/ℎ=100. 

 

 

Figure IV.1 illustrates the distribution of the shear stress as a function of the ratio 𝑧/h for a 

square FGM plate under sinusoidal loading. 

 

 

 

K0 

 

K1 

Dw(0,5a, 0,5a)103

qa4
 

[Lam et al.2000] present 

 

1 

1 3,853 3,853 

34 0,763 0,763 

54 0,115 0,115 

 

34 

1 3,210 3,210 

34 0,732 0,732 

54 0,115 0,115 

 

54 

1 1,476 1,476 

34 0,570 0,570 

54 0,109 0,109 
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Figure IV. 1:Variation of transverse shear stress as a function of 𝑧/ℎz/h for a square FGM plate on 
elastic supports with a/h=10, p=2 : (a) K0 =10 ; (b)  K1=10. 
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The distinction between the curves in Figures IV.1.a and IV.1.b is evident. It can be 

observed that the transverse shear stress gradually increases with the decrease of K0 or K1, 

indicating that increasing the elastic modulus of the foundation can enhance the stiffness of the 

plate. 

Additionally, the distribution of transverse shear stress through the thickness of the plate is not 

parabolic, as is typically known for homogeneous plates. The maximum shear stress value is 

obtained at the surfaces (z/h=±0.5) and not in the middle of the plate (z/h=0), as is the case for 

homogeneous materials (composed of a single material). 

 

Figures IV.2 show the distribution of longitudinal normal stress as a function of the ratio 𝑧/ℎ 

for a square FGM plate under sinusoidal loading. 
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Figure IV. 2:Variation of normal stress as a function of 𝑧/ℎz/h for a square FGM plate on elastic 
supports with a/h=10, p=2, (a) K0 =10. (b) K1 =10 

 

 Based on the results illustrated in Figures IV.2, it can be observed that: 

 The stresses are in a state of compression and reach their minimum values in the lower 

half (metal-rich side). 

 The stresses are zero at 𝑧/ℎ=0.151. Beyond this point, they transition to a state of tension 

and become significantly higher compared to the compressive stresses in the upper half 

(ceramic-rich side). 

 The maximum values of normal compressive and tensile stresses are found at the 

extreme lower and upper fibers of the plate, respectively. 

 The elastic foundation has a significant effect on the maximum values of the normal 

stress 𝜎𝑥. As evident, the normal stress gradually increases with the decrease of K0 or 

K1.  

 

Figure IV.3 depicts the distribution of the tangential stress as a function of the ratio z/h 

for a square FGM plate under sinusoidal loading. From the results illustrated in Figure IV.3, it 

can be observed that the tangential stress is maximal at certain points on the upper and lower 

surfaces of the FGM plate. It is zero at 0,151z   
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Figure IV. 3:Variation of the shear stress as a function of z/h for a square FGM plate on elastic 

supports with a/h=10, 𝑝=2: (a) K0=10; (b) K1=10. 

 

 

 



CHPTER IV                         Results and discussion 
 
 

61 
 

IV.1.2.  Dynamic Analysis of Macroscopic Functionally Graded Material (FGM) Plates 

A plate AL/Al2O3 composed of Aluminum (as metal) and Alumina (as ceramic) is considered. 

The material characteristics such as Young's modulus and the mass density of Aluminum are 

𝐸𝑚 = 70𝐺𝑃𝐴 et 𝜌𝑚 = 2702𝐾𝑔/𝑚3, while those of Alumina are sont 𝐸𝑐 = 380𝐺𝑃𝐴, 𝜌𝑐 =

3800𝐾𝑔/𝑚3. The Poisson's ratio is assumed constant throughout the thickness of the plate, 

with a value of 0.3. The different nondimensional parameters used are: 

Dimensionless frequency parameters:  

𝜔∗ = 𝜔
𝑎2

ℎ𝜋
√
12𝜌

𝐸
   ;  𝜔̂ = 𝜔ℎ√

𝜌𝑐

𝐸𝑐
   ;  𝜔̅ = 𝜔

𝑎2

ℎ
√
𝜌𝑐

𝐸𝐶
 ;  𝜔̃ = 𝜔ℎ√

𝜌𝑚

𝐸𝑚
   ;  𝜔̅ = 𝜔

𝑎2

ℎ
√
𝜌𝑚

𝐸𝑚
    

Foundation parameters: 

4

0 0 /K k a D
                     

2

1 1 /K k a D
. 

Where  

𝐷11 =
𝐸𝑚ℎ

3

(12−(1−𝑣𝑚)
  

 

A- Perfectly Supported FG Plate 

Table IV.4 presents the first five dimensionless fundamental frequencies ω* of a simply 

supported isotropic square plate, with simply supported boundary conditions (a/h=1000 and 

a/h=5). The results obtained are compared to those published by (Manna, 2005), (Leissa, 1973) 

,(Liew and al., 1993),(Raju and al., 1980). 

It is noted that the obtained results correlate well with the results of the other mentioned studies. 
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Table IV. 4:The first five dimensionless fundamental frequencies 𝜔∗of a simply supported 

 

Table IV.5 shows the values obtained for the first two nondimensional fundamental 

frequencies ω̂ of square Al/Al2O3 plates for different values of the length-to-thickness ratio and 

the power index P. Using the current theory and other theories. 

Analysis of this table reveals that the current theory offers excellent accuracy in determining 

the frequencies of FGM plates. Additionally, it was found that the nondimensional frequencies 

ω̂ of FGM plates decreased as the value of the power index increased. 

 

a/h Source 

Mode 

1 2 3 4 5 

1000 

(Manna, 2005) 2.000 5.000 5.000 8.000 10.000 

(Manna, 2005) 2.000 5.000 5.000 8.000 10.000 

(Manna, 2005) 2.000 5.000 5.000 8.000 10.000 

(Leissa, 1973) 2.000 5.000 5.000 8.000 10.000 

(Liew, and al, 1993) 2.000 5.000 5.000 8.000 10.000 

Present 2.0965 5.2413 5.2413 8.3861 10.4826 

5 

(Manna, 2005) 1.768 3.868 3.868 5.596 6.615 

(Manna, 2005) 1.768 3.868 3.868 5.594 6.611 

(Manna, 2005) 1.807 4.000 4.000 5.807 6.867 

(Liew and al., 1993) 1.768 3.866 3.866 5.588 6.601 

(Raju and al, 1980) 1.768 3.876 3.876 5.600 6.683 

Present 1.8459 4.0225 4.0225 5.8021 6.8463 
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Table IV. 5:The first two nondimensional fundamental frequencies ω̂ of square Al/Al2O3 plate 

 

 

 

Table IV.6 illustrates the first four nondimensional frequencies ω̄ of a rectangular FGM 

plate, with geometric ratios of 5, 10, and 20, and a power law index varying from 0 to 10. The 

plate was composed of aluminum as metal and alumina as ceramic. Using equation (III.1) to 

evaluate the Young's modulus and the density of the plate, the first four nondimensional 

frequencies ω̄ obtained from this theory were compared to those provided by (Hosseini-

Hashemi and al, 2011) based on FSDT, (Reddy,2000) based on TSDT, and (Thai and al, 2013) 

based on SSDT. 

 

Mode a/h Method 
p 

0 0.5 1 4 10 

1 

2 

Quasi-3D (Matsunaga, 2008) 0.9400 0.8233 0.7477 0.5997 0.5460 

S-FSDT (Thai & Choi, 2013) 0.9265 0.8062 0.7333 0.6116 0.5644 

Present 0. 9157 0.8017 0.7258 0.5815 0.5277 

5 

Quasi-3D (Matsunaga, 2008) 0.2121 0.1819 0.1640 0.1383 0.1306 

S-FSDT (Thai & Choi, 2013) 0.2112 0.1805 0.1631 0.1397 0.1324 

Present 0.2103 0.1801 0.1625 0.1372 0.1291 

10 

Quasi-3D (Matsunaga, 2008) 0.0578 0.0492 0.0443 0.0381 0.0364 

S-FSDT (Thai & Choi, 2013) 0.0577 0.0490 0.0442 0.0382 0.0366 

Present 0.0576 0.0489 0.0441 0.0380 0.0362 

2 

2 

Quasi-3D (Matsunaga, 2008) 1.7406 1.5425 1.4078 1.1040 0.9847 

S-FSDT (Thai & Choi, 2013) 1.7045 1.4991 1.3706 1.1285 1.0254 

Present 1.6774 1.4876 1.3509 1.0542 0.9387 

5 

Quasi-3D (Matsunaga, 2008) 0.4658 0.4040 0.3644 0.3000 0.2790 

S-FSDT (Thai & Choi, 2013) 0.4618 0.3978 0.3604 0.3049 0.2856 

Present 0.4584 0.3963 0.3580 0.2951 0.2732 

10 

Quasi-3D (Matsunaga, 2008) 0.1381 0.1180 0.1063 0.0905 0.0859 

S-FSDT (Thai & Choi, 2013) 0.1376 0.1173 0.1059 0.0911 0.0867 

Present 0.1372 0.1171 0.1056 0.0899 0.0852 
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Table IV. 6:The first four nondimensional frequencies ω̄ of a rectangular plate (𝑏/𝑎=2) 

a/h 
Mode 

(m, n) 
Method 

P 

 

0 0.5 1 2 5 8 10 

5 

1 (1,1) 

(Hosseini-

Hashemi and 

al, 2011) 

3.4409 2.9322 2.6473 2.4017 2.2528 2.1985 2.1677 

(Reddy,2000) 3.4412 2.9347 2.6475 2.3949 2.2272 2.1697 2.1407 

(Thai and al, 

2013) 
3.4416 2.9350 2.6478 2.3948 2.2260 2.1688 2.1403 

Present 3.4315 2.9285 2.6411 2.4875 2.2203 2.1609 2.1303 

2 (1,2) 

(Hosseini-

Hashemi and 

al, 2011) 

5.2802 4.5122 4.0773 3.6953 3.4492 3.3587 3.3094 

(Reddy,2000) 5.2813 4.518 4.0781 3.6805 3.3938 3.2964 3.2514 

(Thai and al, 

2013) 
5.2822 4.5187 4.0787 3.6804 3.3914 3.2947 3.2506 

Present 5.2592 4.5039 4.0635 3.6638 3.3782 3.2769 3.2283 

3 (1,3) 

(Hosseini-

Hashemi and 

al, 2011) 

8.0710 6.9231 6.2636 5.6695 5.2579 5.1045 5.0253 

(Reddy,2000) 8.0749 6.9366 6.2663 5.6390 5.1425 4.9758 4.9055 

(Thai and al, 

2013) 
8.0772 6.9384 6.2678 5.6391 5.1378 4.9727 4.9044 

Present 8.0257 6.9052 6.2333 5.6012 5.1074 4.9328 4.8553 

4 (2,1) 

(Hosseini-

Hashemi and 

al, 2011) 

9.7416 8.6926 7.8711 7.1189 6.5749 5.9062 5.7518 

(Reddy,2000) 10.1164 8.7138 7.8762 7.0751 6.4074 6.1846 6.0954 

(Thai and al, 

2013) 
10.1201 8.7167 7.8787 7.0756 6.4010 6.1806 6.0942 

Present 10.0415 8.6657 7.8257 7.0171 6.3536 6.1196 6.0200 
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10 1 (1,1) 

(Hosseini-

Hashemi and 

al, 2011) 

3.6518 3.0983 2.7937 2.5386 2.3998 2.3504 2.3197 

 

 

(Reddy,2000) 3.6518 3.0990 2.7937 2.5364 2.3916 2.3411 2.3110 

(Thai and al, 

2013) 
3.6519 3.0991 2.7937 2.5364 2.3912 2.3408 2.3108 

Present 3.6488 3.0972 2.7917 2.5342 2.3895 2.3384 2.3078 

2 (1,2) 

(Hosseini-

Hashemi and 

al, 2011) 

5.7693 4.8997 4.4192 4.0142 3.7881 3.7072 3.6580 

(Reddy,2000) 5.7694 4.9014 4.4192 4.0090 3.7682 3.6846 3.6368 

(Thai and al, 

2013) 
5.7697 4.9016 4.4194 4.0089 3.7673 3.6839 3.6365 

Present 5.7622 4.8969 4.4145 4.0036 3.7632 3.6780 3.6290 

3 (1,3) 

(Hosseini-

Hashemi and 

al, 2011) 

9.1876 7.8145 7.0512 6.4015 6.0247 5.8887 5.8086 

(Reddy,2000) 9.1880 7.8189 7.0515 6.3886 5.9765 5.8341 5.7575 

(Thai and al, 

2013) 
9.1887 7.8194 7.0519 6.3885 5.9742 5.8324 5.7566 

Present 9.1702 7.8007 7.0399 6.3754 5.9640 5.8180 5.7383 

4 (2,1) 

(Hosseini-

Hashemi and 

al, 2011) 

11.8310 10.0740 9.0928 8.2515 7.7505 7.5688 7.4639 

(Reddy,2000) 11.8315 10.0810 9.0933 8.2309 7.6731 7.4813 7.3821 

(Thai and al, 

2013) 
11.8326 10.0818 9.0940 8.2306 7.6696 7.4787 7.3808 

Present 11.8024 10.0627 9.0743 8.2091 7.6527 7.4552 7.3511 

20 

1 (1,1) 

(Hosseini-

Hashemi and 

al, 2011) 

3.7123 3.1456 2.8352 2.5777 2.4425 2.3948 2.3642 

 (Reddy,2000) 3.7123 3.1458 2.8352 2.5771 2.4403 2.3923 2.3619 

 
(Thai and al, 

2013) 
3.7123 3.1458 2.8353 2.5771 2.4401 2.3922 2.3618 
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 Present 3.7115 3.1453 2.8347 2.5765 2.4397 2.3915 2.3610 

2 (1,2) 

(Hosseini-

Hashemi and 

al, 2011) 

5.9198 5.0175 4.5228 4.1115 3.8939 3.8170 3.7681 

(Reddy,2000) 5.9199 5.0180 4.5228 4.1100 3.8884 3.8107 3.7622 

(Thai and al, 

2013) 
5.9199 5.0180 4.5228 4.1100 3.8881 3.8105 3.7621 

Present 5.9179 5.0167 4.5215 4.1086 3.8870 3.8089 3.7600 

3 (1,3) 

(Hosseini-

Hashemi and 

al, 2011) 

9.5668 8.1121 7.3132 6.6471 6.2903 6.1639 6.0843 

(Reddy,2000) 9.5669 8.1133 7.3132 6.6433 6.2760 6.1476 6.0690 

(Thai and al, 

2013) 
9.5671 8.1135 7.3133 6.6432 6.2753 6.1471 6.0688 

Present 9.5618 8.1102 7.3099 6.6395 6.2725 6.1429 6.0635 

4 (2,1) 

(Hosseini-

Hashemi and 

al, 2011) 

12.4560 10.5660 9.5261 8.6572 8.1875 8.0207 7.9166 

(Reddy,2000) 12.4562 10.5677 9.5261 8.6509 8.1636 7.9934 7.8909 

(Thai and al, 

2013) 
12.4565 10.5680 9.5263 8.6508 8.1624 7.9925 7.8905 

Present 12.4477 10.5624 9.5336 8.6446 8.1576 7.9856 7.8816 

 

B- The perfect FG plates resting on an elastic foundation (Winkler-Pasternak) 

Table IV.7 presents the fundamental nondimensional frequencies « 𝜔̃ » of square FG 

plates varying according to the thickness-to-length ratios "h/a", the power index "p", and the 

stiffness parameters of the Winkler-Pasternak foundation (K0, K1). According to (Baferani and 

al,2011) and (Shahsavari and al, 2018), the current results are compared to those presented 

previously. The agreement between the current results and those of existing models in the 

literature is evident in the table, confirming their adequacy. 
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Table IV. 7:Fundamental nondimensional frequencies « 𝜔̃ » of isotropic and square FG plates resting 
on Winkler-Pasternak foundations. 

K0 K1 h / a Théorie 
p 

0 0.5 1 2 5 

0 0 

 

0.05 

(Baferani and al., 2011) 0.0290 0.0249 0.0227 0.0209 0.0197 

(Shahsavari and al., 2018) 0.0291 0.0248 0.0226 0.0206 0.0195 

Présente 0.0293 0.0249 0.0224 0.0208 0.0196 

0.1 

(Baferani and al., 2011) 0.1134 0.0975 0.0891 0.0819 0.0767 

(Shahsavari and al., 2018) 0.1135 0.0970 0.0882 0.0806 0.0755 

Présente 0.1133 0.0971 0.0884 0.0803 0.0756 

 

0.15 

(Baferani and al., 2011 0.2454 0.2121 0.1939 0.1778 0.1648 

(Shahsavari and al., 2018) 0.2459 0.2109 0.1916 0.1746 0.1622 

Présente 0.2455 0.2111 0.1919 0.1749 0.1629 

 

0.2 

(Baferani and al., 2011) 0.4154 0.3606 0.3299 0.3016 0.2765 

(Shahsavari and al., 2018) 0.4168 0.3586 0.3260 0.2961 0.2722 

Présente 0.4169 0.3589 0.3265 0.2967 0.2733 

100 0 

0.05 

(Baferani and al., 2011) 0.0298 0.0258 0.0238 0.0221 0.0210 

(Shahsavari and al., 2018) 0.0298 0.0257 0.0236 0.0218 0.0208 

Présente 0.0299 0.0257 0.0238 0.0219 0.0209 

 

0.1 

(Baferani and al., 2011) 0.1162 0.1012 0.0933 0.0867 0.0821 

(Shahsavari and al., 2018) 0.1163 0.1006 0.0923 0.0853 0.0809 

Présente 0.1170 0.1009 0.0923 0.0853 0.0809 

 

0.15 

Baferani, Saidi et Ehteshami, 

(2011) 
0.2519 0.2204 0.2036 0.1889 0.1775 

(Shahsavari and al., 2018) 0.2522 0.2190 0.2010 0.1855 0.1745 

Présente 0.2526 0.2199 0.2011 0.1855 0.1746 

0.2 

(Baferani and al., 2011) 0.4273 0.3758 0.3476 0.3219 0.2999 

(Shahsavari and al., 2018) 0.4284 0.3734 0.3431 0.3159 0.2950 

Présente 0.4287 0.3738 0.3440 0.3160 0.2967 
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C- Perfect and imperfect FG plates resting on the Winkler-Pasternak elastic 

foundation 

The results of our analysis on porosity in the material of the FG plate are presented in this 

section. We examined two models of micro-void distribution and included them in our study.  

Table IV.8 data illustrate the effects of porosity and Winkler-Pasternak foundation on the 

nondimensional frequency parameters "𝜔̅" of square FG plates with "p=1". Our findings 

indicate that increasing porosity as a volume fraction has minimal impact on the "𝜔̅" frequency 

parameter values of the non-uniform model. Additionally, we observed an inverse relationship 

between the nondimensional frequency parameter "𝜔̅" and the porosity index ""for uniform 

porosity models. However, for non-uniform porosities, the nondimensional frequency "𝜔̅" 

increases with ""even surpassing the frequency of a perfect plate. In conclusion, the highest 

values of the nondimensional frequency «𝜔̅" are obtained for plates resting on an elastic 

foundation with a coefficient 0 1( , ) 100K K   

 

 

 

 

 

 

 

 

100 

 

 

 

 

 

 

100 

 

0.05 

(Baferani and al., 2011) 0.0411 0.0395 0.0388 0.0386 0.0388 

(Shahsavari and al., 2018) 0.0411 0.0393 0.0386 0.0383 0.0385 

Présente 0.0411 0.0393 0.0386 0.0383 0.0385 

 

0.1 

(Baferani and al., 2011) 0.1619 0.1563 0.1542 0.1535 0.1543 

(Shahsavari and al., 2018) 0.1616 0.1551 0.1525 0.1512 0.1521 

Présente 0.1620 0.1553 0.1526 0.1519 0.1530 

0.15 

(Baferani and al., 2011) 0.3560 0.3460 0.3422 0.3412 0.3427 

(Shahsavari and al., 2018) 0.3551 0.3421 0.3367 0.3342 0.3358 

Présente 0.3552 0.3426 0.3370 0.3350 0.3358 

 

0.2 

(Baferani and al., 2011) 0.6162 0.6026 0.5978 0.5970 0.5993 

(Shahsavari and al., 2018) 0.6137 0.5940 0.5856 0.5815 0.5843 

Présente 0.6140 0.5950 0.5860 0.5820 0.5850 
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Table IV. 8:Variations of the frequency parameters «𝜔̅ of perfect and imperfect square FG plates with 
respect to the stiffness of Winkler-Pasternak foundations (p=1). 

0 1( , )K K  h / a 𝜉 
Even 

porosity 
Uneven porosity Perfect 

(0,0) 

0.05 

0.05 8.8876 9.7668 

9.035 
0.1 8.7762 9.0476 

0.15 8.5676 9.0576 

0.2 8.8828 9.8856 

0.1 

0.05 8.7792 8.9408 

8.839 
0.1 8.5535 8.8470 

0.15 8.4598 8.8882 

0.2 8.3058 8.9006 

0.15 

0.05 8.5531 8.6029 

8.555 
0.1 8.2761 8.5456 

0.15 8.1248 8.5494 

0.2 7.9539 8.5542 

0.2 

0.05 8.0635 8.1795 

8.189 
0.1 7.9385 8.1800 

0.15 7.8015 8.1815 

0.2 7.6450 8.1835 

(100,0) 

0.05 

0.05 9.3248 9.4560 

9.445 
0.1 9.2032 9.4752 

0.15 9.0696 9.4960 

0.2 8.9192 9.5176 

0.1 

0.05 9.1372 9.2608 

9.276 
0.1 9.0216 9.2770 

0.15 8.8948 9.2950 

0.2 8.7532 9.3142 

0.15 

0.05 8.8538 8.9654 

8.960 
0.1 8.7480 8.9797 

0.15 8.6328 8.9939 

0.2 8.5037 9.0108 

0.2 

0.05 8.5095 8.6080 

8.698 
0.1 8.4160 8.6195 

0.15 8.3157 8.6325 

0.2 8.1995 8.6455 

(100,100) 

0.05 

0.05 15.6217 15.5755 

15.535 
0.1 15.8274 15.7115 

0.15 16.0589 15.8576 

0.2 16.3146 16.0115 

0.1 

0.05 15.4170 15.3577 

15.326 
0.1 15.6250 15.4950 

0.15 15.8600 15.6390 

0.2 16.1210 15.7900 

0.15 0.05 15.1180 15.0520 14.924 
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IV.1.2. Dynamic analysis of free FG nano-plates at the nanoscale 

A- Perfectly Supported Nano-FG Plate 

Table IV.9 compares the results obtained for the first four nondimensional frequencies 

𝜔ˉ of rectangular nano-plates (with aspect ratios b/a=2 and a/h=10) simply supported as a 

function of the power index P and the non-local parameter 𝜇. 

Our observations reveal that increasing 𝜇 has a significant effect on the nondimensional 

frequencies 𝜔̅. Furthermore, it is important to note that the nondimensional frequencies 𝜔̅  show 

an inverse relationship with the power index P in our results. 

0.1 15.3340 15.1860 

0.15 15.5730 15.3260 

0.2 15.8380 15.4730 

0.2 

0.05 14.7730 14.6990 

14.574 
0.1 14.9930 14.8300 

0.15 15.2360 14.9660 

0.2 15.5060 15.1080 
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Table IV. 9:The first four nondimensional frequencies  𝜔 ̅̅̅of rectangular nano-plates (with (b/a=2 et 
a/h=10) 

 

B- Perfect and imperfect FG nano-plates resting on the Winkler-Pasternak elastic 

foundation 

Table IV.10 highlights the influence of the Winkler-Pasternak foundation, the non-local 

parameter, and the porosity distribution on the nondimensional frequency 𝜔̅  of square FG nano-

plates with P=1 and a geometric ratio h/a =0.1. The obtained results reveal the combined impact 

of these factors on the nondimensional frequency 𝜔̅  of the plates. 

𝜇 Mode (m,n) 
P 

0 0,5 1 2 5 8 10 

0 

1(1,1) 3.6488 3.0972 2.7917 2.5342 2.3895 2.3384 2.3078 

2(1,2) 5.7622 4.8969 4.4145 4.0036 3.7632 3.6780 3.6290 

3(1,3) 9.1702 7.8007 7.0399 6.3754 5.9640 5.8180 5.7383 

4(2,1) 11.8024 10.0627 9.0743 8.2091 7.6527 7.4552 7.3511 

0,1 

1(1,1) 3,6511 3,0991 2,7935 2,5358 2,3910 2,3398 2,3094 

2(1,2) 5,7679 4,9018 4,4189 4,0076 3,7669 3,6817 3,6326 

3(1,3) 9,1850 7,8203 7,0512 6,3856 5,9735 5,8274 5,7475 

4(2,1) 11,8273 10,0838 9,0344 8,2264 7,6688 7,4709 7,3666 

0,2 

1(1,1) 3,6579 3,1048 2,7987 2,5405 2,3954 2,3442 2,3135 

2(1,2) 5,7851 4,9164 4,4321 4,0195 3,7781 3,6926 3,6434 

3(1,3) 9,2296 7,8583 7,0855 6,4167 6,0026 5,8557 5,7755 

4(2,1) 11,9027 10,1482 9,1514 8,2789 7,7177 7,5186 7,4135 

0,3 

1(1,1) 3,6693 3,1145 2,8074 2,5484 2,4029 2,3515 2,3207 

2(1,2) 5,8141 4.9410 4.4543 4,0396 3.7970 3.7111 3.6617 

3(1,3) 9,3055 7.9229 7,1437 6,4694 6.0519 5.9039 5.8230 

4(2,1) 12.0317 10.2582 9.2506 8,3686 7.8014 7.6001 7.4939 

0,4 

1(1,1) 3,6854 3.1282 2.8197 2.5596 2.4135 2.3618 2.3309 

2(1,2) 5.8554 4.9761 4.4860 4.0684 3.8240 3.7375 3,6877 

3(1,3) 9,4150 8.0161 7,2278 6,5455 6,1231 5,9733 5.8915 

4(2,1) 12.2196 10.4184 9,3950 8.4993 7,9232 7.7187 7,6109 
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Table IV. 10:Variations of the frequency parameters "ωˉ" of perfect and imperfect square FG 

nano-plates with respect to the stiffness of Winkler-Pasternak foundations (p=1) and (h/a=0.1). 

0 1( , )K K  𝝁 𝝃 
Even 

porosity 

Uneven 

porosity 
Perfct 

(0,0) 

0 

0.05 8.7792 8.9408 

9.030 
0.1 8.5535 8.8470 

0.15 8.4598 8.8882 

0.2 8.3058 8.9006 

0.1 

0.05 8.7893 8.9509 

9.130 
0.1 8.5635 8.8570 

0.15 8.4698 8.8982 

0.2 8.3158 8.9106 

0.2 

0.05 8.7903 8.9609 

9.143 
0.1 8.5735 8.8671 

0.15 8.4735 8.9082 

0.2 8.3258 8.9206 

0.3 

0.05 8.8003 8.9709 

9.149 
0.1 8.5835 8.8771 

0.15 8.4835 8.9182 

0.2 8.3358 8.9306 

(100,0) 

0 

0.05 9.3248 9.4560 

9.276 
0.1 9.2032 9.4752 

0.15 9.0696 9.4960 

0.2 8.9192 9.5176 

0.1 

0.05 9.3348 9.4660 

9.298 
0.1 9.2132 9.4852 

0.15 9.0796 9.5060 

0.2 8.9292 9.5276 
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Figure IV.4 illustrates the variation of the first five modes of the nondimensional frequency 𝜔∗ 

of simply supported isotropic square FG plates as a function of modes for different values of 

the geometric ratio a/h.  

The plots in Figure IV.4 show that the frequency 𝜔∗ increases with the increase in mode. 

0.2 

0.05 9.3448 9.4760 

9.301 
0.1 9.2232 9.4952 

0.15 9.0896 9.5860 

0.2 8.9392 9.5376 

0.3 

0.05 9.3448 9.4760 

9.311 
0.1 9.2232 9.4952 

0.15 9.0896 9.5860 

0.2 8.9392 9.5376 

(100,100) 

0 

0.05 15.6210 15.5700 

15.326 
0.1 15.8270 15.7100 

0.15 16.0580 15.8570 

0.2 16.3140 16.0100 

0.1 

0.05 15.6214 15.5710 

15.420 
0.1 15.8370 15.7200 

0.15 16.0680 15.8670 

0.2 16.3244 16.0111 

0.2 

0.05 15.6314 15.5810 

15.430 
0.1 15.8470 15.7300 

0.15 16.0780 15.8870 

0.2 16.3344 16.0411 

0.3 

0.05 15.6414 15.5910 

15.444 
0.1 15.8570 15.7400 

0.15 16.0880 15.8970 

0.2 16.3444 16.0511 
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 It can also be observed that the variation of frequency 𝜔∗ differs depending on the geometric 

ratio a/h. This indicates that the geometry of the plate significantly influences the vibration 

frequency.  

 

 

The variation of the nondimensional frequency 𝜔̂ of AL/AL2O3 FG square plates as a 

function of the power index parameter is presented in Figure IV.5. A decrease in the 

nondimensional frequency is observed with an increase in the power index parameter (P) for 

all geometric ratios a/h. The plots indicate that the change in the nondimensional frequency of 

FG plates is strongly influenced by the ratio a/h. For moderately thick plates (a/h=10), the effect 

of the parameter (P) on the frequency is less pronounced than for thick plates a/h=2. This 

suggests that the ratio a/h of the plate plays a crucial role in accurately predicting the vibrational 

behavior of the plates. 
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Figure IV. 4:The variation of the first five modes of the nondimensional frequency 𝜔∗ of simply 

supported isotropic square FG plates. 
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Figure IV.6 illustrates the relationship between the nondimensional frequency "𝜔̅" of the 

perfect rectangular FG plate and the power index "p" for various a/h ratios. It is noted that the 

highest frequencies are observed for the thin plate with an a/h ratio of 20 

Figure IV. 6: The variation of the nondimensional frequency 𝜔̅ of rectangular FG plates as a function 

of the power index parameter. 
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Figure IV. 5: The variation of the nondimensional frequency 𝜔̂ of AL/AL2O3 FG square plates as a 

function of the power index parameter. 
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Figure IV.7 illustrates the effect of the elastic foundation and the power index on the 

nondimensional frequency 𝜔̃  of moderately thick plates with a/h = 10, with a notable influence 

of the power index. 

The results show a decrease in frequency with an increase in the power index (P). Specifically, 

the results indicate that the highest frequencies are associated with plates resting on a Pasternak 

foundation, characterized by 0 1( , ) 100K K  . In contrast, the lowest frequencies are recorded for 

plates without a foundation, where 0 1( , ) 0K K  . However, the results for the Winkler foundation 

show slightly higher frequencies compared to plates without a foundation. This highlights the 

significant impact of the foundation nature on the vibrational properties of moderately thick 

plates. 
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Figure IV. 7:the effect of the elastic foundation and the power index on the nondimensional frequency 

𝜔̃  of plates with a/h = 10. 
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The variation of the nondimensional frequency "𝜔̅" of imperfect FG plates with h/a =10, 

resting on a Pasternak elastic foundation 0 1( , ) 100K K  , as a function of the porosity index, is 

presented in Figures IV.8 and IV.9. The results indicate that the frequency "𝜔̅" increases with 

an increase in the porosity index 𝜉 , whether the porosity distribution is even or uneven. It is 

observed that the frequency is slightly higher in the case of uneven porosity compared to even 

porosity.  
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Figure IV. 8:The variation of the nondimensional frequency 𝜔̅ of imperfect FG plates, resting on a 

Pasternak elastic foundation as a function of the porosity index for even porosities. 
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Figure IV.10 illustrates the variation of the nondimensional frequency of both perfect and 

imperfect FG plates resting on a Pasternak elastic foundation, as a function of different porosity 

variations with a porosity index of 0.2. 

According to the curves, it can be observed that the frequency is inversely proportional to the 

geometric ratio h/a. It is also evident that different porosity distributions result in different 

frequencies. These results emphasize the importance of considering porosity in the analysis of 

plates resting on a Pasternak elastic foundation. 
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Figure IV. 9: The variation of the nondimensional frequency "𝜔̅" of imperfect FG plates, resting on a 

Pasternak elastic foundation as a function of the porosity index for uneven porosities 
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The analysis of figures IV.11 and IV.12 highlights the significant impact of the non-local 

parameter on the vibrational behavior of functionally graded nano-plates. It is noteworthy that 

the variation in nondimensional frequency is directly related to the power index, suggesting that 

the mechanical properties of nano-plates can be finely tuned by modifying this parameter. Our 

work with an extended range of values 𝜇 (from 0 to 2.5) in figure IV.9 provides an in-depth 

understanding of non-local theory and its influence on the dynamics of nano-scale structures. 
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Figure IV. 10:the variation of the nondimensional frequency 𝜔̅  of perfect and imperfect FG plates 

resting on a Pasternak elastic foundation, as a function of different porosity variations with 𝜉 = 0.2. 
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Figure IV. 11 The effect of non-local parameter (with 𝜇 values less than 0.5) on the variation of 
nondimensional frequencies of nano-plates without a foundation for different power index values. 

Figure IV. 12: The effect of non-local parameter (with 𝜇 values ranging from 0 to 2.5) on the variation 

of nondimensional frequencies of nano-plates without a foundation for different power index values. 
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Figure IV.13illustrates the variation of the nondimensional frequency of the nano-plates 

(h/a=0.1). resting on different types of foundations. These data are analyzed based on non-

local parameters, with a fixed porosity index of 0.2, and power index p=1. 

The Pasternak elastic foundation type yields higher nondimensional frequency results 

compared to the other types of foundations studied. This suggests that this foundation offers 

better performance and greater stiffness in supporting the nano-plates.  

Results for the Winkler foundation are lower than those for the Pasternak foundation but 

higher than those without a foundation.  

Nano-plates without a foundation display the lowest nondimensional frequency results. This 

highlights the crucial importance of an appropriate foundation in enhancing the performance 

of nanoscale structures and reinforcing their dynamic response. 
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IV.2. Conclusion:  

In this chapter, the analysis of free vibrations of functionally graded (FG) plates has been 

conducted at different scales, macroscopic and nanometric, using an improved version of the 

first-order shear deformation theory (FSDT). 

The mechanical properties of FG plates have been examined, considering a through-

thickness variation following a power law tailored to include the effect of micro-voids. The 

accuracy and efficiency of the model have been confirmed through comparison with other 

established theories, demonstrating good agreement in all cases studied. 

The Pasternak foundation theory approach has proven to be the most effective in 

explaining the stiffness of FG plates compared to Winkler foundations. It emerges from this 

analysis that several parameters, such as the non-local parameter, the volume fraction exponent, 

the porosity parameter, as well as geometric ratios and types of foundations, exert a significant 

influence on the dynamic response of functionally graded nanoplates. 
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Throughout the duration of this thesis, our exploration traversed the intricate landscape of 

structural mechanics, where we intricately applied the First Order Shear Deformation Theory 

(FSDT) with four unknowns to meticulously analyze the behavior of a functionally graded 

metal-ceramic nano plate (P-FGM). This investigation was not merely confined to theoretical 

realms but extended to practical applications, as the plate was carefully positioned atop an 

elastic Winkler-Pasternak foundation, adding another layer of complexity to our analytical 

endeavors. Recognizing the multifaceted nature of FG plates, we embarked on a journey of 

comprehensive analysis, integrating a vast array of equations encompassing equilibrium, 

compatibility, and structure-related boundary conditions into our calculations. Through 

painstaking scrutiny, we unearthed a treasure trove of insights, each shedding light on the 

intricate interplay of factors governing the behavior of these composite structures. 

The ramifications of our findings were far-reaching, touching upon fundamental aspects of 

material science and structural engineering. Notably, we observed that the position within the 

plate's thickness emerged as a pivotal factor influencing its material characteristics, thereby 

exerting a profound influence on its mechanical and thermal behavior. This nuanced 

understanding enabled us to discern the intricate relationship between material composition and 

structural response, paving the way for optimized design methodologies in the realm of 

composite materials. 

Furthermore, our investigation delved deep into the realm of porosity, revealing its 

profound impact on the mechanical properties of FG plates. The presence and size of porosities 

within the material matrix emerged as critical determinants of structural integrity, with micro-

voids notably altering deflection patterns and stress distributions in simply supported 

configurations. This newfound awareness of the role of porosity in composite materials 

represents a significant advancement in our understanding of material behavior under varying 

loading conditions. 

Additionally, our examination illuminated the pivotal role played by the shear layer within 

the Pasternak foundation in shaping the dynamic response of FG plates. The intricate interplay 

between foundation characteristics and plate dynamics was laid bare, with the shear layer 

emerging as a key mediator of vibration frequencies and mode shapes. This insight into the 
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dynamic behavior of FG plates offers invaluable guidance for the design and optimization of 

structures subjected to dynamic loading conditions. 

In conclusion, our comprehensive analysis, spanning theoretical derivations and practical 

applications, has yielded profound insights into the behavior of functionally graded plates 

resting on Winkler-Pasternak foundations. By unraveling the complex interplay of material 

composition, porosity, and foundation characteristics, we have laid the groundwork for 

advanced design methodologies that promise enhanced structural performance and resilience in 

a diverse array of engineering applications. 
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