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1. Introduction

The history of fractional calculus dates back to the 17th century. So many mathematicians define
the most used fractional derivatives, Riemann-Liouville in 1832, Hadamard in 1891 and Caputo in
1997 [24, 28, 34]. Fractional calculus plays a very important role in several fields such as physics,
chemical technology, economics, biology; see [2,24] and the references therein. In 2011, Katugampola
introduced a derivative that is a generalization of the Riemann-Liouville fractional operators and the
fractional integral of Hadamard in a single form [21,22].

There are several articles dealing with different types of fractional operators; see [1,3,9-13,16,32].
Various results about existence of solutions as well as Ulam stability are provided in [6-8,14,15,17,19,
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20,23,25-31,33]. In this article we investigate the following class of Katugampola random fractional
differential equation

“Dyx) € w) = f(& x(€w),w); §€1=[0,T], weQ, (1.1)

with the terminal condition
x(T,w) = xr(w);, weQ, (1.2)

where x7 : Q — E is a measurable function, ¢ € (0,1], T > 0, f : IXEXQ — E, PDg is the
Katugampola operator of order ¢, and Q is the sample space in a probability space, and (E, || - ||) is a
Banach space.

2. Preliminaries

By C(I) := C(I, E) we denote the Banach space of all continuous functions x : I — E with the
norm

lIxlleo = sup [lx(E)Il,

tel

and L'(I, E) denotes the Banach space of measurable function x : I — E with are Bochner integrable,
equipped with the norm

lals = [ @
1
Let C..,(I) be the weighted space of continuous functions defined by

CopD) = {x: (0,T] = E : &'7x(£) € C(D),

with the norm
llxllc := sup €7 x(E)I.
&el

Definition 2.1. [2]. The Riemann-Liouville fractional integral operator of the function h € L'(I, E) of
order ¢ € R, is defined by

. 1
R h(E) = o j; (& — 5)" ' h(s)ds.

Definition 2.2. [2]. The Riemann-Liouville fractional operator of order ¢ € R, is defined by

RLDSh(€) = ! (i) f: & — )" h(s)ds.

I'(n-¢)\ds

Definition 2.3. (Hadamard fractional integral) [4]. The Hadamard fractional integral of order r is

defined as
c 1 £yl ds
o) = 75 f(log ;) < 6>0,

provided that the left-hand side is well defined for almost every & € (0, T).
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Definition 2.4. (Hadamard fractional derivative ) [4]. The Hadamard fractional derivative of order r

is defined as
e 1 d ff gyt ds
Doh(¢) = f—o (f—d f) 1 (log S) h(s)~. ¢>0,

provided that the left-hand side is well defined for almost every & € (0, T).

Definition 2.5. (Katugampola fractional integral) [21]. The Katugampola fractional integrals of order
(¢ > 0) is defined by

i pl—g Sp—l

I = d 2.1
M= T f @ — sy O @D
for p > 0and ¢ € I, provided that the left-hand side is well defined for almost every & € (0, T).

Definition 2.6. (Katugampola fractional derivative) [21]. The Katugampola fractional derivative of
order ¢ > 0 is defined by:

d n
’Dyu(§) (51_’) E) 15" u)(©)

pr—n+1 . d n Sp_l
T(n—r) (5 p%) fmu(ﬂds,

provided that the left-hand side is well defined for almost every & € (0, T).

We present in the following theorem some properties of Katugampola fractional integrals and
derivatives.

Theorem 2.7. [21] Let 0 < Re(s) < 1 and 0 < Re(n) < 1 andp > 0, fora > 0:

e Index property:

CDHEDI@) = PDTh(t)
CLCEM®@® = PI7h()

e Linearity property:

PDI(h+g)
PII(h+g)

D h(t) +° D, g(1)

a

PIDA() +° Ig(1)

and we have

- d r —-r
(" pE)IO(Ig Yu(s)ds.
Theorem 2.8. [21] Let r be a complex number, Re(r) > 0, n = [Re(r)] and p > 0. Then, fort > a;

(1) limy 1 CLA) = i [ =7 h(D)dr.
(2) limyo: CI;h)(®) = 75 [ (log £y~ h(r) 4.
(3) lim, D)0 = (4 175 [ R,

(4) tim, (DD = (e [ (log £y~ h(r):.
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Remark 2.9.

(1) lim,_; ("Ih)(0) = (FEIEh)(1).
(2) lim, o+ PILA)(1) = (TI;R)(0).
(3) lim,_;(°DLh)(1) = (REDLh)(0).
(4) lim,_o: (°DLR)(D) = (HDLR)(2).

Lemma 2.10. Let O < r < 1. The fractional equation (° Djv)(t) = 0, has as solution
v(t) = ct*" Y, (2.2)
with ¢ € R.
Lemma 2.11. Let 0 < r < 1. Then
PI'(CDu)(t) = u(t) + ct*" P,

Proof. We have

d
I,Dyu(t) = (tlpE) I, Dju(r)

- i p—r t Sp_l )
oD [ o)

14 p oot d\ .
(t pE)(r(r +1) Jy (P —sP)" [(S p%) (1 ”)(S)] dS)
d -r t d
(tl_pa)(r(;i ) fo @ =y [g(lé”u)(s)] ds).

Thus, I§D{u(t) = 1) + I, with

h= (tl_p%) r(f: 0 ([(Ip ) Sp)r[é_r”(s)];)’

and

d - '
L= (tl_pzt) r(f D f ros” T (#* — )y T u(s)ds.
0

Hence, we get
I = etV

and

L = tl‘pi P f[sp_l(tp—sp)r_lll"u(s)ds
? dt] T(r) J, 0

(rl-f’%) Iy u(s)ds
u(t).

Finally we obtain
(I)(Dyu)(t) = u(t) + ct*" V.
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Lemma 2.12. The problem

*Dyu)(t) = h(t); tel:=[0,T]
{ W(T) = 1y (2.3)
has the following solution
B pl—r ! Sp—l _ 1)
u(t) = o) j(: > Sp)l_rh(t)ds cr (2.4)

where

I-r T ol
€= T"(lr‘l) (l/i(l’) j(; (Tr S_ )T WT)ds - ur |.
Proof. Solving the equation
(" Dou)(t) = h(t),
we get

u(t) =° Ihh(t) — e,

From the condition, we get
PISN(T) — ur
T Tee-D
hence, we obtain (2.4).

Definition 2.13. By a random solution of problem (1.1) and (1.2), we mean a measurable function
x(w, ) € C¢,(I) which satisfies (1.1) and (1.2).

Lemma 2.14. u is a random solution of (1.1) and (1.2), if and only if it satisfies

_ pl_g ’ s d o(s—1) 25
x(fa W) - F(g) o ('fp _ Sp)l—cf(f’ X, W) s — C(W)é: ( . )

where

1 pl—g T Sp—l
Cw) = 7o (F(r) ‘[0 T7 Sp)l_gf(T, x,wyds — xp(w)|.

Lemma 2.15. [4,13] Let T : Q X E — E be a mapping such that T(-,v) is measurable for all v C E,
and T'(w, -) is continuous for all w C Q. Then the map (w,v) — T (w, V) is jointly measurable.

Definition 2.16. A function f : I X E X Q — E is called random Carathéodory if the following
conditions are satisfied:

o (i) The map (s,w) — f(s,x,w) is jointly measurable for all x € E, and
e (ii) The map x — f(s,x,w) is continuous for almost all s € I and w C Q.

Lete > 0and ® : Q x I — R, be a jointly measurable function. We consider the following
inequality
I Dyx)(&, w) = (&, u(E, w), wll < O, w); for&el, andw € Q. (2.6)
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Definition 2.17. [5] The problem (1.1) and (1.2) is generalized Ulam-Hyers-Rassias stable with
respect to @ if there exists cy4 > 0 such that for each solution x(-,w) € C.,(I) of the inequality (2.6),

there exists y(-,w) € C,(I) satisfies (1.1) and (1.2) with

€71 x(E, w) — EOYE W) < crapEw); E€T; we Q.

Theorem 2.18. [I18] Let X be a nonempty, closed convex bounded subset of the separable Banach
space E and let G : Q X X — X be a compact and continuous random operator. Then the random

equation G(w)u = u has a random solution.
3. Existence and Ulam stability results

We shall make use of the following hypotheses:

(H;) f1is arandom Carathéodory function.

(H,) There exist measurable and essentially bounded functions /; : Q — C(I); i = 1,2 such that

£ x, Wl < Lt w) + L@ w1,
forall x € E and r € I with

Lw) =supli(t,w); i=1,2, we Q.

tel

Theorem 3.1. If (H,) and (H;) hold, and

pSTP

Bk <1

then there exists a random solution for (1.1) and (1.2).

Proof. Let N : Q x C, ,(I) — C,,(I) be the operator defined by

— p]_g t s d P~
(Nx)(t,w) = I fo = sp)l_gf(s, x(s,w),w)ds — C(w) ,

and set -
ICW)II + == (w)
R(w) > ;,EIJ:) P oweqQ,
F(1+g)l( w)
and define the ball

Br = B(0,R(w)) :={x € C;,(I) : |Ixllc £ R(w)}.

For any w € Q and each ¢ € I, we have

(1=g) pl—ch(l—c) sl
I (N, wll < (ICw)I| + |] r'o f(zp— p)l_gf(s,x(s,W),W)dSIl
pl sTr-¢)

IConl+ = jkﬁ wgmumws

IA

3.1

(3.2)

(3.3)
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pl_gTP(l—C) sp—l .
T f =yl s wix(s, wllds
pl S‘Tp(l S) TSP .
Coll+ —F——1
< [[CwIl + o o “(w)
L l-sp(l=g) 1 o1
' 2(W)pm) f s wlds
< col+ L now + 2 g
hS )l + T(1 + ) (w) + ﬁz(w)xc
p‘g pSTP
< R(w).

Thus
INw)(ullc < R(w).

Hence N(w)(Bg) C Bg. We shall prove that N : Q X Br — By satisfies the assumptions of Theorem

2.18.
Step 1. N(w) is a random operator.

From (H,), the map w — f(t, x, w) is measurable and further the integral is a limit of a finite sum

of measurable functions therefore the map

o [ (1)
I'(s) ﬁ (1 — sp)l—gf(s’ x(s, w), wyds — C(w)t™" 7,

is measurable.
Step 2. N(w) is continuous.
Consider the sequence (x,), such that x, — uin C,.

Set
va(t,w) = PO (Nx) (8, w), and v(t,w) = #7O(Nx)(t, w).
Then
v, (2, w) = v(t, W)l
I-¢7p(1-¢) 1 -1
- . F](Z) f (1 _spsp)1_§(f(S, Xn(8, W), w) — £(s, x(s,w), w))ds
pl=sTPI-9) o1
e f =y (s a5, W), w) = fls, x(s, W), wlds.
By (H;) we obtain

[V w) = v, Wlle = 0asn — oo,

Consequently, N(w) : Bg C By is continuous.
Step 3. N(w)Bg is equicontinuous. For 1 <t <t, < T, and x € Bg, we have

125 (N x) (12, w) — £ (Nx) (81, |
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pl—s~,§(1—s‘) 2 Pl J
< S, x(s,w),w)ds
b I'(s) 0 (tg _ sﬂ)l—s‘f( ( ) )

- -1
pl—ct/lJ(l <) fl Sp
- —=— ——f(s, x(s,w),w)ds
I'(s) 0 (lll’ _ Sp)l—g‘f
e p(1- 12 p—1

pl 51/2)(1 ) Ky

< (s, x(s,w),w)ds
I'(r) . (t’; — Sp)l—gf

|—;Z/IJ(1—;) d sl
_ °r L f (—t"— v f(s, x(s,w), w)ds

- 1
pl—gtp(l ) sP
e Y fsx(s ) w)ds
0

(tp — p)l s
< o= CFZ;I o) f (lﬂ p)l ||f(s, x(s,w), w)||ds
Lot cr{zgl o) f (lf’ p)l ||f(s, x(s,w), w)||ds

p'=sTP1-9)

t T f (Zp )< ——||f(s, x(s, w), w)||ds

y 5+ + 206 - )¢ - R
< ST+ o) (l1(w) + Lw)R(w))
- 0; as t, > 1.

Arzela-Ascoli theorem implies that N : Q X By — By is continuous and compact. Hence; from
Theorem 2.18, we deduce the existence of random solution to problem (1.1) and (1.2).
Now, we prove a result concerning the generalized Ulam-Hyers-Rassias stability of (1.1) and (1.2).
We introduce the following additional hypotheses:

(H3) Forany w € Q, @(t,-) C L'[0, o), and there exists a measurable and essentially bounded function
q:Q — C(,]0, 0)); such that

(1 + Il = YIDIF (2, (2, w), w) = £t y(2, w), Wl < g(t, WD, w)# = lx = yIl.

(H4) There exists Ag > 0 such that
PIED(t, w) < ApD(t, w).

Remark 3.2. Hypothesis (Hs) implies (H,) with
ll(W9 t) = f(t’ 0’ W)a lZ(W) = q(t’ W)q)(t’ W)
Set
@ (w) = sup (1, w), ¢"(w) = supq(t,w); w € Q.
tel tel

Theorem 3.3. If (H,), (H3), (H,) and

o ST
I'l+¢)

O (w)g"(w) < 1, (3.4)

hold. Then the problem (1.1) and (1.2) has random solutions defined on I, and it is generalized Ulam-
Hyers-Rassias stable.
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Proof. From (H;), (H;) and Remark 3.2; the problem (1.1) and (1.2) has at least one random solution
y. Then, we have

— pl_g t s Oy
Y(t, W) - I—-(g) f(; (tp _ Sp)l_gf(s’y(sa W),W)ds - C(W) .

Assume x be a random solution of (2.6). We obtain

WW%mw>—‘*W“Qf (s, v(s. ) wids + COnl
I'(s) (1 = sP)1=s

< TPOCED)w).
From hypotheses (H3) and (H,), we have

170 x(t, w) — #0y(E, w|

1 —s0(1=¢)
< 1P x(t, w) — I f " sP)‘ gf(s x(s,w), wyds + C(w)||
pl_CtP(l—G) g1
o I'(¢) (tP - sﬂ)l—s‘f(s’ x(s, w),w)ds — C(w)
1 Stp(l 9]
- I'(¢) f (1 — sp)] g f(s,y(s,w),w)ds + C(w)||
< TPrU= §)(plgq))(t, w)
l—¢p(l-¢) t o1
+ P I“(g) L (tp j Sp)l—Cllf(S’ .X'(S, W), W) — f(s,y(s’ W), W)||ds
< Tp(l—c)(p ng))(l, w)

l—¢p(1-r) 1 _
+ P i f > q w)D(s, w)sp(l_G)—”x il ds
I'() o (' —sP)l=s L+ lx = yll
TPI=9 26 D(t, w) + T 1o D(2, w)g* (w).

IA

Thus, we get

171 x(t, w) — £y, |

IA

(1 + 779G W) TPI9 25 D(2, w)
Cf,q)q)(l, w).

Hence, problem (1.1) and (1.2) is generalized Ulam-Hyers-Rassias stable.
4. An example

Let Q = (—o00,0) be equipped with the usual o-algebra consisting of Lebesgue measurable subsets

of (—00,0), and let
ﬂ={x:cnﬁbuqu”m}]uA<«}
n=1
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be the Banach space with the norm
Il = i i)
n=1
Consider the Katugampola random fractional differential equation
("D x,)(t,w) = fu(t, x(t,w),w); t € [0, 1], w € Q, 4.1)
with the terminal condition
x(T,w) = (L+w)™,0,0,---); weQ, (4.2)

with x = (x1, x0, ..., X . )y [ = (1 foseeos fune e o),

PDix = °Dgoxy, ... L Dyixy, .. ),
and
w20+ x, W) (5., ]
al, X(t,w), w) = 4 — ) te[0,1], we Q.
Jalts X W) W) = — e N A 1D (e et+5) (0,11, w
We have

w2 -y
T+l =yl

1£ (5, %, w) = f(t,y, Wl < (77 +e7)

Hence, hypotheses (H3) and (H,) are satisfied with

q(t,w) = e ke Dt w) = wh
Hence by theorems 3.1 and 3.3, problem (4.1) and (4.2) admits a random solution, and is generalized

Ulam-Hyers-Rassias stable.

5. Conclusions

In this paper, we provided some sufficient conditions ensuring the existence of random solutions and
the Ulam stability for a class of fractional differential equations involving the Katugampola fractional
derivative in Banach spaces. The techniques used are the random fixed point theory and the notion of
Ulam-Hyers-Rassias stability.
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