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Abstract. This article deals with some existence of random solutions and Ulam stability results for a class
of Caputo-Fabrizio random fractional differential equations with boundary conditions in Banach spaces.
Our results are based on the fixed point theory and random operators. Two illustrative examples are pre-
sented in the last section.

Mathematics Subject Classification (2010). 26A33
Key words and phrases. Fractional differential equation, Caputo–Fabrizio integral of fractional order,
Caputo–Fabrizio fractional derivative, Random solution, Ulam stability, fixed point.

1. Introduction

Fractional calculus and fractional differential equations have recently been applied in various
areas of engineering, mathematics, physics and bio-engineering, and other applied sciences
[1, 25]. In recent years, several works and development of fractional differential equation and
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inclusions are cited to the monographs [1, 3, 4, 5, 15, 17, 24, 27, 29, 30], the papers [2, 6, 7, 18,
20, 29] and the references therein.

There are different definitions of fractional derivatives. The popular derivatives of fractional
order we mention Riemann-Liouville, Caputo, Hadamard, and Hilfer. For example; the Caputo
fractional derivative of order 0 < α < 1 of a function g ∈ L1[0, T]; T > 0, is given by

cDα
0 g(t) =

1
Γ(1− α)

∫ t

0
(t− s)−αg′(s)ds.

Caputo and Fabrizio developed and proposed a new version of fractional derivative by chang-
ing the Kernel (t − s)−α by the function (t, s) 7→ exp( (−α(t−s))

(1−α)
) and 1

Γ(1−α)
by (2−α)M(α)

2(1−α)
. For

more details; see [11].

The question of stability for functional differential equations was introduced by Ulam and
Hyers. Thereafter; this type of stability is called the Ulam-Hyers stability [16, 23]. In 1978,
Rassias provided a remarkable generalization of the Ulam-Hyers stability of mappings by con-
sidering variables of stability for a functional equation arises when we replace the functional
equation by an inequality. For more details; see the monographs [5, 9, 12, 13], the papers
[8, 14, 19, 21, 22, 23, 26, 27, 28], and the references therein

In [19], the authors used the Laplace transform method and established the existence and
HyersUlam stability of initial value problems of linear Caputo–Fabrizio fractional differential
equations. In the present paper we investigate the following class of random Caputo–Fabrizio
fractional differential equation

(CFDα
0 u)(t, w) = f (t, u(t, w), w); t ∈ I := [0, T], w ∈ Ω, (1.1)

with the boundary conditions

au(0, w) + bu(T, w) = c(w); w ∈ Ω, (1.2)

where T > 0, f : I× E×Ω→ E is a given function, a, b ∈ R, , c : Ω→ E, with a+ b 6= 0, CFDα
0

is the Caputo–Fabrizio fractional derivative of order α ∈ (0, 1), and Ω is the sample space in a
probability space (Ω, F), and E is a real (or complex) Banach space with a norm ‖ · ‖.

2. Preliminaries

Let C := C(I, E) be the Banach space of all continuous functions from I into E with the norm

‖u‖∞ = sup{‖u(t)‖ : t ∈ I}.

By L1(I, E) we denote the Banach space of measurable function u : I → E with are Bochner
integrable, equipped with the norm

‖u‖L1 =
∫ T

0
‖u(t)‖dt.
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Definition 2.1. [11] The Caputo-Fabrizio fractional integral of order 0 < α < 1 for a function h ∈
L1(I) is defined by

CF Iαh(τ) =
2(1− α)

M(α)(2− α)
h(τ) +

2α

M(α)(2− α)

∫ τ

0
h(x)dx, τ ≥ 0,

where M(α) is normalization constant depending on α.

Definition 2.2. [11] The Caputo-Fabrizio fractional derivative for a function h ∈ C1(I) of order 0 <
α < 1, is defined by

CFDαh(τ) =
(2− α)M(α)

2(1− α)

∫ τ

0
exp(− α

1− α
(τ − x))h′(x)dx; τ ∈ I.

Note that (CFDα)(h) = 0 if and only if h is a constant function.

Lemma 2.1. Let h ∈ L1(I, E). A function u ∈ C is a solution of problem{
(CFDα

0 u)(t) = h(t); t ∈ I := [0, T]
au(0) + bu(T) = c, (2.1)

where a, b ∈ R, c ∈ E with a + b 6= 0, if and only if, u satisfies the following integral equation

u(t) = C0 + aαh(t) + bα

∫ t

0
h(s)ds +

bbα

a + b

∫ T

0
h(s)ds, (2.2)

where

aα =
2(1− α)

(2− α)M(α)
, bα =

2α

(2− α)M(α)
,

C0 =
1

a + b
[c− baα(h(T)− h(0))]− aαh(0).

Proof. Suppose that u satisfies (2.1). From Proposition 1 in [11]; the equation (CFDα
0 u)(t) =

h(t) implies that

u(t)− u(0) = aα(h(t)− h(0)) + bα

∫ t

0
h(s)ds.

Thus,

u(T) = u(0) + aα(h(T)− h(0)) + bα

∫ T

0
h(s)ds.

From the mixed boundary conditions au(0) + bu(T) = c, we get

au(0) + b(u(0) + aα(h(T)− h(0)) + bα

∫ T

0
h(s)ds) = c.

Hence,

u(0) =
c− b(aα(h(T)− h(0))− bα

∫ T
0 h(s)ds)

a + b
.

So; we get (2.2).
Conversely, if u satisfies (2.2), then (CFDα

0 u)(t) = h(t); for t ∈ I := [0, T], and au(0) + bu(T) =
c.
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From the above lemma, we can conclude with the following lemma:

Lemma 2.2. A function u is a random solution of problem (1.1)-(1.2), if and only if u satisfies the
following integral equation:

u(t, w) = C0(w) + aα f (t, u(t, w), w)

+bα

∫ t

0
f (s, u(s, w), w)ds +

bbα

a + b

∫ T

0
f (s, u(s, w), w)ds,

where

C0(w) =
1

a + b
[c(w)− baα( f (T, u(T, w), w)− f (0, u(0, w), w))]− aα f (0, u(0, w), w).

Let βE be the σ−algebra of Borel subsets of E. A mapping v : Ω→ E is said to be measurable
if for any B ∈ βE , one has

v−1(B) = {w ⊂ Ω : v(w) ⊂ B} ⊂ A.

To define integrals of sample paths of random process, it is necessary to define a jointly mea-
surable map.

Definition 2.3. A mapping T : Ω× E→ E is called jointly measurable if for any B ⊂ βE , one has

T−1(B) = {(w, v) ⊂ Ω× E : T(w, v) ⊂ B} ⊂ A× βE

where A× βE is the direct product of the σ−algebras A and βE those defined in Ω and E respectively.

Lemma 2.3. Let T : Ω × E → E be a mapping such that T(·, v) is measurable for all v ⊂ E, and
T(w, ·) is continuous for all w ⊂ Ω. Then the map (w, v)→ T(w, v) is jointly measurable.

Definition 2.4. A function f : I × E×Ω → E is called random Carathéodory if the following condi-
tions are satisfied:

• (i) The map (t, w)→ f (t, u, w) is jointly measurable for all u ⊂ E, and
• (ii) The map u→ f (t, u, w) is continuous for almost all t ∈ I and w ⊂ Ω.

Definition 2.5. T : Ω × E → E be a mapping. then T is called a random operator if T(w, u) is
measurable in w for all u ⊂ E and it id expressed as T(w)u = T(w, u). In this case we also say that
T(w) is random operator on E. A random operator T(w) on E is called continuous (resp. compact,
totally bounded and completely continuous) if T(w, u) is continuous (resp. compact, totally bounded
and completely continuous)in u for all w ⊂ Ω. The details of completely continuous random operators
in Banach spaces and their properties appear in Itoh.

Definition 2.6. Let P(Y) be the family of all nonempty subsets of Y and C be a mapping from Ω into
P(Y). A mapping T : {(w, u) : w ⊂ Ω, y ⊂ C(w)} → Y is called random operator with stochastic
domain C if C is measurable (i.e for all closed A ⊂ Y, {w ⊂ Ω, C(w) ∩ A 6= ∅} is measurable) and
for all open D ⊂ Y and all u ⊂ Y, {w ⊂ Ω : u ⊂ C(w), T(w, u) ⊂ D} is measurable. T will be called
continuous if every T(w) is continuous. For a random operator T , a mapping u : Ω → Y is called
random (stochastic) fixed point of T if for P-almost all w ⊂ Ω, u(w) ⊂ C(w) and T(w)u(w) = u(w)
and for all open D ⊂ Y, {w ⊂ Ω : u(w) ⊂ D} is measurable.
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Now, we consider the Ulam stability for the problem (1.1)-(1.2). Let ε > 0 and Φ : I ×Ω →
R+ be a measurable function. We consider the following inequalities

‖(CFDα
0 u)(t, w)− f (t, u(t, w), w)‖ ≤ ε; t ∈ I, w ∈ Ω. (2.3)

‖(CFDα
0 u)(t, w)− f (t, u(t, w), w)‖ ≤ Φ(t, w); t ∈ I, w ∈ Ω. (2.4)

‖(CFDα
0 u)(t, w)− f (t, u(t, w), w)‖ ≤ εΦ(t, w); t ∈ I, w ∈ Ω. (2.5)

Definition 2.7. [5] The problem(1.1)-(1.2) is Ulam-Hyers stable if there exists a real number c f > 0
such that for each ε > 0 and for each solution u(·, w) ∈ C(I) of the inequality (2.3), there exists a
solution v() ∈ C(I) of (1.1)-(1.2) with

‖u(t)− v(t)‖ ≤ εc f ; t ∈ I.

Definition 2.8. [5] The problem (1.1)-(1.2) is generalized Ulam-Hyers stable if there exists c f ∈
C(R+, R+) with c f (0) = 0 such that for each ε > 0 and for each solution u(w) ∈ C(I) of the
inequality (2.3), there exists a solution v ∈ C(I) of (1.1)-(1.2) with

‖u(t)− v(t)‖ ≤ c f (ε); t ∈ I.

Definition 2.9. [5] The problem (1.1)-(1.2) is Ulam-Hyers-Rassias stable with respect to φ if there
exists a real number c f ,φ > 0 such that for each ε > 0 and for each solution u(w) ∈ C(I) of the
inequality (2.5), there exists a solution v ∈ C(I) of (1.1)-(1.2) with

‖u(t)− v(t)‖ ≤ εc f ,φφ(t, w); t ∈ I.

Definition 2.10. [5] The problem (1.1)-(1.2) is generalized Ulam-Hyers-Rassias stable with respect to
φ if there exists a real number c f ,φ > 0 such that for each solution u ∈ C(I) of the inequality (2.4),
there exists a solution v(w) ∈ C(I) of (1.1)-(1.2) with

‖u(t)− v(t)‖ ≤ c f ,φφ(t, w); t ∈ I.

Remark 2.1. A function u(·, w) ∈ C is a solution of the inequality (2.4) if and only if there exist a
function g(·, w) ∈ C (which depend on u) such that

‖g(t, w)‖ ≤ Φ(t, w),

and

(CFDα
0 u)(t, w) = f (t, u(t, w)) + g(t, w); f or t ∈ I, and w ∈ Ω.

In the sequel, we will use the following fixed point Theorem:

Theorem 2.1. [10] Let X be a nonempty, closed convex bounded subset of the separable Banach space
X and let N : Ω× X → X be a compact and continuous random operator. Then the random equation
N(w)u = u has a random solution.



RANDOM CAPUTO-FABRIZIO FRACTIONAL DIFFERENTIAL EQUATIONS 223

3. Existence of solutions

Definition 3.1. By a random solution of problem (1.1)-(1.2), we mean a function u ∈ C that satisfies
the equation

u(t, w) = C0(w) + aα f (t, u(t, w), w)

+bα

∫ t

0
f (s, u(s, w), w)ds +

bbα

a + b

∫ T

0
f (s, u(s, w), w)ds,

where

C0(w) =
1

a + b
[c(w)− baα( f (T, u(T, w), w)− f (0, u(0, w), w))]− aα f (0, u(0, w), w).

The following hypotheses will be used in the sequel:
(H1): The function f is random Carathéodory.
(H2): There exist measurable and bounded functions pi : Ω→ C(I, [0, ∞)); i = 1, 2 such that

‖ f (t, u, w)‖ ≤ p1(t, w) + p2(t, w)‖u‖;
for all u ⊂ E and t ∈ I with

p∗i (w) = sup
t∈I

pi(t, w); i = 1, 2, w ∈ Ω.

Now, we prove an existence result for the problem (1.1)-(1.2) based on Itoh’s fixed point theo-
rem.

Theorem 3.1. Assume that the hypotheses (H1)− (H2) hold. If(
aα + Tbα + T

bbα

a + b

)
p∗2(w) < 1, (3.1)

then the problem (1.1)-(1.2) has at least one random solution defined on I.

Proof. From Lemma 2.2 for any w ∈ Ω and each t ∈ I, the problem (1.1)-(1.2) is equivalent
to the operator equation (Nw)u = u, where N : Ω × C → C be the operator defined by
(Nu)(t, w) = C0(w) + aα f (t, u(t, w), w)

+ bα

∫ t

0
f (s, u(s, w), w)ds +

bbα

a + b

∫ T

0
f (s, u(s, w), w)ds. (3.2)

Since the function f is absolutely continuous for all w ∈ Ω and t ∈ I, then u is a random
solution for the problem (1.1)-(1.2) if and only if u = (Nu)(t, w). Set

R(w) >
‖C0(w)‖+

[
aα + Tbα + T bbα

a+b

]
p∗1(w)

1−
[

aα + Tbα + T bbα
a+b

]
p∗2(w)

w ∈ Ω. (3.3)

Define the ball
BR = B(0, R(w)) := {u ∈ C : ‖u‖ ≤ R(w)}.



224 F. BEKADA, S. ABBAS AND M. BENCHOHRA

For any w ∈ Ω and each t ∈ I, we have

‖(Nu)(t, w)‖ ≤ ‖C0(w)‖+ ‖aα f (t, u(t, w), w)‖

+

∥∥∥∥bα

∫ t

0
f (s, u(s, w), w)ds

∥∥∥∥+ ∥∥∥∥ bbα

a + b

∫ T

0
f (s, u(s, w), w)ds

∥∥∥∥
≤ ‖C0(w)‖+ aα‖ f (t, u(t, w), w)‖

+ bα

∫ t

0
‖ f (s, u(s, w), w)‖ds +

bbα

a + b

∫ T

0
‖ f (s, u(s, w), w)‖ds

≤ ‖C0(w)‖+
[

aα + Tbα + T
bbα

a + b

]
(p∗1(w) + p∗2(w)R(w))

≤ R(w).

This proves that N(w) transforms the ball BR into itself. We shall prove in three steps that the
operator N : Ω× BR → BR satisfies all the assumptions of Theorem 2.1.

Step 1. N(w) is a random operator.
Since f (t, u, w) is random Carathéodory, the map w −→ f (t, u, w) is measurable in view Def-
inition 2.6 and further the integral is a limit of a finite sum of measurable functions therefore
the map

w 7→ C0(w) + aα f (t, u(t, w), w)

+ bα

∫ t

0
f (s, u(s, w), w)ds +

bbα

a + b

∫ T

0
f (s, u(s, w), w)ds,

is measurable. As a result, N(w) is a random operator.

Step 2. N(w) is continuous and bounded.
Let un be a sequence such that un → U in C. Then, for each t ∈ I we have

‖(Nun)(t, w)− (Nu)(t, w)‖ ≤ ‖aα( f (t, u(t, w), w)− f (t, un(t, w), w))‖

+

∥∥∥∥bα

∫ t

0
( f (t, u(t, w), w)− f (t, un(t, w), w))ds

∥∥∥∥
+

∥∥∥∥ bbα

a + b

∫ T

0
( f (t, u(t, w), w)− f (t, un(t, w), w))

∥∥∥∥
≤ aα‖ f (t, u(t, w), w)− f (t, un(t, w), w)‖

+ bα

∫ t

0
‖ f (t, u(t, w), w)− f (t, un(t, w), w)‖ds

+
bbα

a + b

∫ T

0
‖ f (t, u(t, w), w)− f (t, un(t, w), w)‖ds.

Since f is Carathéodory, then by the Lebesgue dominated convergence theorem, we get

‖(Nun)(·, w))− (Nu)(·, w)‖∞ → 0 as n→ ∞.

Since N(w) is a continuous random operator with stochastic domain. We can conclude that
N(w)BR ⊂ BR is bounded.
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Step 3. N(w)BR is equicontinuous.
For 1 ≤ t1 ≤ t2 ≤ T, and u ∈ BR, we have

‖(Nu)(t2, w) − (Nu)(t1, w)‖ ≤
∥∥∥aα f (t2, u(t2, w), w) + bα

∫ t2
0 f (s, u(s, w), w)ds

+
bbα

a + b

∫ T

0
f (s, u(s, w), w)ds− aα f (t1, u(t1, w), w)

− bα

∫ t1

0
f (s, u(s, w), w)ds− bbα

a + b

∫ T

0
f (s, u(s, w), w)ds

∥∥∥∥
≤ aα‖ f (t2, u(t2, w), w)− f (t1, u(t1, w), w)‖

+ bα

∫ t2

t1

‖ f (s, u(s, w), w)ds‖
≤ aα‖ f (t2, u(t2, w), w)− f (t1, u(t1, w), w)‖

+ bα(t2 − t1)(p∗1(w) + p∗2(w)R(w))
→ 0 as t2 → t1.

As a consequence of the above steps and the Arzelá-Ascoli theorem, we can conclude that
N : Ω × BR → BR is continuous and compact. From an application of Theorem 2.1, the
operator equation Nu(w) = u has a random solution.

4. Ulam stability results

Now, we are concerned with the generalized Ulam-Hyers-Rassias stability of our problem
(1.1)-(1.2). The following hypotheses will be used in the sequel.
(H3): Φ(·, w) ∈ L1(R+), and there exists a measurable and bounded function q : Ω →

C(I, [0, ∞)); such that

(1 + ‖u− v‖)‖ f (t, u(t, w), w)− f (t, v(t, w), w)‖ ≤ q(t, w)Φ(t, w)‖u− v‖;
for all u, v ∈ E and each t ∈ I, with

q∗(w) = sup
t∈I

q(t, w); w ∈ Ω.

(H4): There exists a constant λΦ > 0, such that for any w ∈ Ω, and each t ∈ I we have∫ T

0
Φ(t, w)dt ≤ λΦΦ(t, w).

Remark 4.1. From (H3), for any w ∈ Ω, and each t ∈ I, and u ∈ E, we have that

‖ f (t, u, w)‖ ≤ ‖ f (t, 0, w)‖+ q(t, w)Φ(t, w)‖u‖.
So, (H3) implies (H2), with p1(t, w) = ‖ f (t, 0, w)‖, and p2(t, w) = q(t, w)Φ(t, w),

Lemma 4.1. If u ∈ C is a solution of the inequality (2.4) then u is a solution of the following integral
inequality

‖u(t, w)− C0(w)− aα f (s, u(s, w), w)− bα

∫ t

0
f (s, u(s, w), w)ds



226 F. BEKADA, S. ABBAS AND M. BENCHOHRA

− bbα

a + b

∫ T

0
f (s, u(s, w), w)ds‖ ≤

(
aα + λΦbα + λΦ

bbα

a + b

)
Φ(t, w); t ∈ I; w ∈ Ω. (4.1)

Proof. By Remark 2.1; for any w ∈ Ω and each t ∈ I, we have

u(t, w) = C0(w) + aα[ f (s, u(s, w), w) + g(s, w)]

+ bα

∫ t

0
[ f (s, u(s, w), w) + g(s, w)]ds

+
bbα

a + b

∫ T

0
[ f (s, u(s, w), w) + g(s, w)]ds.

Thus, we get

‖u(t, w) − C0(w)− aα f (s, u(s, w), w)− bα

∫ t

0
f (s, u(s, w), w)ds

− bbα

a + b

∫ T

0
f (s, u(s, w), w)ds‖

≤ aα‖g(s, w)‖+ bα

∫ t

0
‖g(s, w)‖ds +

bbα

a + b

∫ T

0
‖g(s, w)‖ds

≤
(

aα + λΦbα + λΦ
bbα

a + b

)
Φ(t, w).

Theorem 4.1. Assume that the hypotheses (H1), (H3), (H4) and the condition (3.1) hold. Then the
problem (1.1)-(1.2) has at least one solution on I and it is generalized Ulam-Hyers-Rassias stable.

Proof. From Remark 4.1, there exists a random solution v of the random problem (1.1)-(1.2).
That is

v(t, w) = C0(w) + aα f (t, v(t, w), w)

+ bα

∫ t

0
f (s, v(s, w), w)ds +

bbα

a + b

∫ T

0
f (s, v(s, w), w)ds.

Let u be a solution of the inequality (2.4), then from Lemma 4.1, for any w ∈ Ω, and each t ∈ I,
we have

‖u(t, w) − C0(w) + aα f (t, u(t, w), w)− bα

∫ t

0
f (s, u(s, w), w)ds

− bbα

a + b

∫ T

0
f (s, u(s, w), w)ds

∥∥∥∥ ≤ (aα + λΦbα + λΦ
bbα

a + b

)
Φ(t, w).

Then, for any w ∈ Ω, and each t ∈ I, we obtain

‖u(t, w)− v(t, w)‖ ≤ ‖u(t, w)− C0(w)− aα f (t, u(t, w), w)− bα

∫ t

0
f (s, u(s, w), w)ds

− bbα

a + b

∫ T

0
f (s, u(s, w), w)ds + aα f (t, u(t, w), w)
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+ bα

∫ t

0
f (s, u(s, w), w)ds +

bbα

a + b

∫ T

0
f (s, u(s, w), w)ds

− aα f (t, v(t, w), w)− bα

∫ t

0
f (s, v(s, w), w)ds

− bbα

a + b

∫ T

0
f (s, v(s, w), w)ds‖.

This implies that,

‖u(t, w)− v(t, w)‖ ≤ ‖u(t, w)− C0(w)− aα f (t, u(t, w), w)− bα

∫ t

0
f (s, u(s, w), w)ds

− bbα

a + b

∫ T

0
f (s, u(s, w), w)ds‖

+ ‖aα f (t, u(t, w), w) + bα

∫ t

0
f (s, u(s, w), w)ds− aα f (t, v(t, w), w)

− bα

∫ t

0
f (s, v(s, w), w)ds− bbα

a + b

∫ T

0
f (s, v(s, w), w)ds‖

≤
(

aα + λΦbα + λΦ
bbα

a + b

)
Φ(t, w)

+ aα‖ f (t, u(t, w), w)− f (t, v(t, w), w)‖

+ bα

∫ t

0
‖ f (s, u(s, w), w)− f (s, v(s, w), w)‖ds

+
bbα

a + b

∫ T

0
‖ f (s, u(s, w), w)− f (s, v(s, w), w)‖ds.

Thus,

‖u(t, w)− v(t, w)‖ ≤
(

aα + λΦbα + λΦ
bbα

a + b

)
Φ(t, w)

+ aαq∗(w)Φ(t, w)
‖u(t, w)− v(t, w)‖

1 + ‖u(t, w)− v(t, w)‖

+ bα

∫ t

0
q∗(w)Φ(t, w)

‖u(s, w)− v(s, w)‖
1 + ‖u(s, w)− v(s, w)‖ds

+
bbα

a + b

∫ T

0
q∗(w)Φ(t, w)

‖u(s, w)− v(s, w)‖
1 + ‖u(s, w)− v(s, w)‖ds

≤
(

aα + λΦbα + λΦ
bbα

a + b

)
Φ(t, w)

+ aαq∗(w)Φ(t, w) + bαq∗(w)
∫ t

0
Φ(t, w)ds

+
bbαq∗(w)

a + b

∫ T

0
Φ(t, w)ds.
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Hence, from (H4), we get

‖u(t, w)− v(t, w)‖ ≤
(

aα + λΦbα + λΦ
bbα

a + b

)
Φ(t, w) + aαq∗(w)Φ(t, w)

+

(
bαq∗(w) +

bbαq∗(w)

a + b

) ∫ T

0
Φ(s, w)ds

≤
(

aα + λΦbα + λΦ
bbα

a + b

)
(1 + q∗(w))Φ(t, w)

:= c f ,ΦΦ(t, w).

This conclude that our problem (1.1)-(1.2) is generalized Ulam-Hyers-Rassias stable.

5. Examples

Let Ω = (−∞, 0) be equipped with the usual σ-algebra consisting of Lebesgue measurable
subsets of (−∞, 0), and

E = l1 =

{
u = (u1, u2, . . . , un, . . .),

∞

∑
n=1
|un| < ∞

}
be the Banach space with the norm

‖u‖E =
∞

∑
n=1
|un|.

Example 1. Consider the Caputo-Fabrizio fractional differential equation

(CFDα
0 un)(t, w) =

cw2(2−n + un(t, w))

exp(t + 3)(1 + w2 + |un(t, w)|) ; t ∈ [0, 1], w ∈ Ω, (5.1)

with the boundary conditions

un(0, w) + un(1, w) =
1

1 + w2 ; w ∈ Ω. (5.2)

Set 0 < c < 2
2aα+3bα

, and

f (t, u(t, w), w) =
cw2(2−n + un(t, w)))

exp(t + 3)(1 + w2 + |u(t, w)|) ; t ∈ [0, 1], w ∈ Ω.

The hypothesis (H2) is satisfied with

p1(t, w) = p2(t, w) =
cw2

1 + w2 e−t,

and then
p∗1(w) = p∗2(w) = c.
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The condition (3.1) is satisfied. Indeed;(
aα + Tbα + T

bbα

a + b

)
p∗2(w) = c

(
aα +

3bα

2

)
< 1,

Consequently, Theorem 3.1 implies that the problem (5.1)-(5.2) has at least one random solution
defined on [0, 1].

Example 2. Consider now the Caputo-Fabrizio fractional differential equation

(CFDα
0 un)(t, w) =

cw22−n

exp(t + 3)(1 + w2 + |un(t, w)|) ; t ∈ [0, 1], w ∈ Ω, (5.3)

with the boundary conditions

un(0, w) + un(1, w) =
w

1 + w2 ; w ∈ Ω. (5.4)

Set

f (t, u(t, w), w) =
cw22−n

exp(t + 3)(1 + w2 + |u(t, w)|) ; t ∈ [0, 1], w ∈ Ω.

The hypothesis (H3) is satisfied with

q(t, w) =
cw2

1 + w2 and Φ(t) = e−t.

The condition (3.1) is satisfied with a good choice of the constant c.
Also; the hypotheses (H4) is satisfied with λΦ = e− 1. Indeed;∫ T

0
Φ(t, w)dt =

∫ T

0
e−tdt = 1− e−1 ≤ λΦe−t = λΦΦ(t, w); t ∈ [0, 1].

Consequently, Theorem 4.1 implies that the problem (5.3)-(5.4) has at least one random solution
and it is generalized-Ulam-Hyers-Rassias stable.
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