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1. Introduction 
 

Plates are vastly used in industry and new fields of 

technology such as aeronautical, marine, civil and 

mechanical engineering. The transverse shear and 

transverse normal deformation effects are definite in shear 

flexible plates which may be made up of isotropic, 

orthotropic, anisotropic or laminated composite materials. 

In company with investigations of stability response of 

plate, a great number of plate models have been proposed.  

The simplest one is the classical plate theory (CPT), 

which ignores the transverse shear influences, provides 

reasonable results for thin and isotropic plates. In order to 

overcome the limitations of CPT, the shear deformation 

theories accounted for the effect of transverse shear 

deformation have been recommended. The first-order shear 

deformation theory (FSDT) assumes linear variation of in-

planed in placements through the thickness. The FSDT 

which is known as the Reissner (1945) and Mindlin (1951) 

and consider the transverse shear influences by the way of 
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linear distribution of the displacements across the thickness. 

In this theory, the relation between the resultant shear forces 

and the shear strains depends on shear correction factors. 

Many investigations have been presented in different 

scientific articles by employing FSDT for the free vibration  

behavior of composite plates (Yan et al. 1966, Whitney 

1969, Whitney and Pagano 1970, Ambartsumyan 1970, Sun 

and Whitney 1973, Bert and Chen 1978, Reddy 1979, Kant 

and Swaminathan 2001). Some other plate theories, e.g., 

higher-order shear deformation theories (HSDT), which 

include the effect of transverse shear strains, are reported in 

the literature. Reddy (1984) has put forward a modified 

third-order theory which considers not only the transverse 

shear strains, but also their parabolic variation across the 

plate thickness. As a result, there is no need to use shear 

correction coefficients in computing the shear stresses. 

Touratier et al. (1991) has used trigonometric functions for 

describing the parabolic distribution of transverse shear 

strains across the plate thickness. Mantari and Granados 

(2015) proposed a new FSDT with four variables in which 

integral terms in the plate kinematics are utilized. Since 

FSDTs do not respect equilibrium conditions at the top and 

bottom surfaces of the plate, shear correction coefficients 

are needed to correct the unrealistic distribution of the shear 

strain/stress within the thickness. For these reasons, many  
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Abstract.  This work presents a simple exponential shear deformation theory for the flexural and free vibration responses of 

thick bridge deck. Contrary to the existing higher order shear deformation theories (HSDT) and the first shear deformation 

theory (FSDT), the proposed model uses a new displacement field which incorporates undetermined integral terms and involves 

only two variables. Governing equations and boundary conditions of the theory are derived by the principle of virtual work. The 

simply supported thick isotropic square and rectangular plates are considered for the detailed numerical studies. Results of 

displacements, stresses and frequencies are compared with those of other refined theories and exact theory to show the efficiency 

of the proposed theory. Good agreement is achieved of the present results with those of higher order shear deformation theory 

(HSDT) and elasticity theory. Moreover, results demonstrate that the developed two variable refined plate theory is simple for 

solving the flexural and free vibration responses of thick bridge deck and can achieve the same accuracy of the existing HSDTs 

which have more number of variables. 
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Fig. 1 Plate geometry and co-ordinate system 

 

 

studies have used HSDTs to improve the limitations of 

FSDT such as Shahrjerdi et al. (2011), Viswanathan et al. 

(2013), Swaminathan and Naveenkumar (2014), Avcar 

(2019), Madenci (2019), Zouatnia and Hadji (2019) and 

Boulal et al (2020). Some studies on the mechanical 

characteristics of composite plate structure can be given by 

Ghodrati et al. (2017), Ton-That (2020), Pinto et al (2020), 

Koochi and Goharimanesh (2021). Recently, more attention 

has been paid to Artificial Neural Network using Arithmetic 

Optimization Algorithm for damage assessment in 

functionally graded material (FGM) plate structures such as 

Khatir et al. (2019), Zenzen et al. (2020), Tran-Ngoc et al. 

(2020), Khatir et al. (2021). 

A three-dimensional (3D) solution for free vibration and 

buckling of annular plate, conical, cylinder and cylindrical 

shell of FG porous-cellular materials using Isogeometric 

analysis is presented by Cuong-Le et al. (2021). Damage 

detection on rectangular laminated composite plates using 

wavelet based Convolutional Neural Network Technique by 

Saadatmorad et al. (2021).   

This paper presents the flexural and free vibration 

behaviors of thick isotropic bridge deck using a simple 

HSDT with two variables in which instead of derivative 

terms in the displacement field, integral terms are 

employed. The equations of motion are derived using 

Hamilton’s principle. The fundamental frequencies are 

found by solving an eigenvalue equation. The results 

obtained by the present method are compared with solutions 

derived from other models known from the literature and 

are found to be in good agreement with them. 

 

 
2. Theoretical formulation 
 

2.1 Plate under consideration 
 

Consider a plate (of length a, width b, and thickness h) 

made up of homogenous material. The plate occupies (in O-

x-y-z right-handed Cartesian coordinate system) a region: 

0 ≤ x ≤ a ;             0 ≤ y ≤ b ;             −h/2 ≤ z ≤ h/2 

 

2.2 Kinematics and strains 
 

The field of displacement of the present model is 

expressed by the following relation 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = −𝑧
𝜕𝑤0
𝜕𝑥

+ 𝐾1𝑓(𝑧)∫𝜃(𝑥, 𝑦, 𝑡) 𝑑𝑥 (1a) 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = −𝑧
𝜕𝑤0
𝜕𝑦

+ 𝐾2𝑓(𝑧)∫𝜃(𝑥, 𝑦, 𝑡) 𝑑𝑦 (1b) 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡) (1c) 

In this work, the present higher-order shear deformation 

plate theory is obtained by setting 

𝑓(𝑧) = 𝑧 exp [−2(
𝑧

ℎ
)
2

] (2) 

The coefficients k1 and k2 depends on the geometry. It 

can be seen that the kinematic in Eq. (1) introduces only 

two unknowns (w0 and θ). 

The strain-displacement relations of the present theory 

can be obtained as follows 

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
} = 𝑧 {

𝑘𝑥
𝑏

𝑘𝑦
𝑏

𝑘𝑥𝑦
𝑏

} + 𝑓(𝑧) {

𝑘𝑥
𝑠

𝑘𝑦
𝑠

𝑘𝑥𝑦
𝑠
} , {

𝛾𝑦𝑧
𝛾𝑥𝑧
} = 𝑔(𝑧) {

𝛾𝑦𝑧
0

𝛾𝑥𝑧
0
} (3) 

where 

{

𝑘𝑥
𝑏

𝑘𝑦
𝑏

𝑘𝑥𝑦
𝑏

} =

{
  
 

  
 −

𝜕2𝑤0
𝜕𝑥2

−
𝜕2𝑤0
𝜕𝑦2

−
𝜕2𝑤0
𝜕𝑥𝜕𝑦}

  
 

  
 

 ,  

{

𝑘𝑥
𝑠

𝑘𝑦
𝑠

𝑘𝑥𝑦
𝑠
} =

{
 

 
𝑘1𝜃
𝑘2𝜃

𝑘1
𝜕

𝜕𝑦
∫𝜃 𝑑𝑥 + 𝑘2

𝜕

𝜕𝑥
∫𝜃 𝑑𝑦

}
 

 
, 

{
𝛾𝑦𝑧
0

𝛾𝑥𝑧
0
} = {

𝑘2∫𝜃 𝑑𝑦

𝑘1∫𝜃 𝑑𝑥
} 

(4a) 

𝑔(𝑧) =
𝑑𝑓(𝑧)

𝑑𝑧
 (4b) 

The integrals used in the proposed kinematics must be 

determined by Navier’s solution and can be given as 

follows 

𝜕

𝜕𝑦
∫𝜃 𝑑𝑥 = 𝐴́

𝜕2𝜃

𝜕𝑥𝜕𝑦
 ,
𝜕

𝜕𝑥
∫𝜃 𝑑𝑦 = 𝐵́

𝜕2𝜃

𝜕𝑥𝜕𝑦
  ,  

∫𝜃 𝑑𝑥 = 𝐴́
𝜕𝜃

𝜕𝑥
 , ∫𝜃 𝑑𝑦 = 𝐵́

𝜕𝜃

𝜕𝑦
 

(5) 

In Eq. (5), the coefficients A′ and B′ are considered 

according to the type of solution used, in this case via 

Navier. Therefore, A′, B′, k1 and k2 are expressed as follows 

𝐴́ = −
1

𝜆2
 , 𝐵́ = −

1

𝜇2
 , 𝑘1 = 𝜆

2 , 𝑘2 = 𝜇
2 (6) 

where 𝜆 and 𝜇 are defined in expression (24). 

For elastic and isotropic plate, the stress-strain relations 

can be expressed as follows 
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 (7) 

where ‘σ, τ’ and ‘ε, γ’ are stresses and strains. 

The elastics stiffness’s Cij, can be given as 

𝐶11 = 𝐶22 =
𝐸

1 − 𝜈2
 , 𝐶12 =

𝜈𝐸

1 − 𝜈2
 , 

𝐶44 = 𝐶55 = 𝐶66 =
𝐸

2(1 + 𝜈)
 

(8) 

where E is the Young modulus and 𝜈 is the Poisons ration 

 

2.3 Equations of motion 
 

The Hamilton principle is used to determine the 

equations of motion  

0 = ∫(𝛿𝑈 + 𝛿𝑉 − 𝛿𝐾)𝑑𝑡 

𝑡

0

 (9) 

where δU is the variation of strain energy; δV is the 

variation of potential energy; and δK is the variation of 

kinetic energy. 

The variation of the strain energy of the isotropic plate 

is expressed as      

𝛿𝑈 = ∫ [𝜎𝑥𝛿𝜀𝑥 + 𝜎𝑦𝛿𝜀𝑦 + 𝜏𝑥𝑦𝛿𝛾𝑥𝑦 + 𝜏𝑦𝑧𝛿𝛾𝑦𝑧 +𝑉

𝜏𝑥𝑧𝛿𝛾𝑥𝑧]𝑑𝑉  

= ∫    
𝐴

[𝑀𝑥𝛿𝑘𝑥
𝑏 +𝑀𝑦𝛿𝑘𝑦

𝑏 +𝑀𝑥𝑦𝛿𝑘𝑥𝑦
𝑏 + 𝑁𝑠𝑥𝛿𝑘𝑥

𝑠 +

𝑁𝑠𝑦𝛿𝑘𝑦
𝑠 +𝑁𝑠𝑥𝑦𝛿𝑘𝑥𝑦

𝑠 +𝑁𝑇𝑐𝑥𝛿𝛾𝑥𝑧
0 + 𝑁𝑇𝑐𝑦𝛿𝛾𝑦𝑧

0 ]𝑑𝑉  

(10) 

where A is the top surface and the stress resultants N, M are 

given by 

(𝑀𝑥, 𝑀𝑦, 𝑀𝑥𝑦) = ∫ (𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦)𝑧𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

  , 

(𝑁𝑠𝑥, 𝑁𝑠𝑦, 𝑁𝑠𝑥𝑦) = ∫ (𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦)𝑓(𝑧)𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 

(𝑁𝑇𝑐𝑥, 𝑁𝑇𝑐𝑦, ) = ∫ (𝜏𝑥𝑧, 𝜏𝑦𝑧)𝑔(𝑧)𝑑𝑧   

ℎ 2⁄

−ℎ 2⁄

 

(11) 

The variation in external work can be expressed as 

𝛿𝑉 = −∫ 𝑞(𝑥, 𝑦)𝛿𝑤0𝑑𝐴   

𝐴

 (12) 

where 𝑞(𝑥, 𝑦) is transversal mechanical load  

The variation of kinetic energy of the plate can be 

expressed as 

𝛿𝐾 = ∫ (𝑢̈ 𝛿𝑢̈ + 𝑣̈ 𝛿𝑣̈ + 𝑤̈ 𝛿𝑤̈)
𝑉

𝜌𝑑𝑉   

= ∫ {𝐼1𝑤̈0𝜕𝑤̈0 + 𝐼2 (
𝜕𝑤̈0

𝜕𝑥

𝜕𝛿𝑤0

𝜕𝑥
+

𝜕𝑤̈0

𝜕𝑦

𝜕𝛿𝑤0

𝜕𝑦
) −

𝐴

𝐼3 (𝐾1𝐴́
𝜕𝑤̈0

𝜕𝑥

𝜕𝛿𝜃

𝜕𝑥
+ 𝐾1𝐴́

𝜕𝜃̈

𝜕𝑥

𝜕𝛿𝑤0

𝜕𝑥
+ 𝐾2𝐵́

𝜕𝑤̈0

𝜕𝑦

𝜕𝛿𝜃

𝜕𝑦
+

𝐾2𝐵́
𝜕𝜃̈

𝜕𝑦

𝜕𝛿𝑤0

𝜕𝑦
) + 𝐼4 ((𝐾1𝐴́)

2 𝜕𝜃̈

𝜕𝑥

𝜕𝛿𝜃

𝜕𝑥
+

(𝐾2𝐵́)
2 𝜕𝜃̈

𝜕𝑦

𝜕𝛿𝜃

𝜕𝑦
)} 𝑑𝐴  

(13) 

where dot-superscript convention indicates the 

differentiation with respect to the time variable t; 𝜌 is the 

mass density; and 𝐼𝑖 are mass inertias expressed by  

(𝐼1, 𝐼2, 𝐼3, 𝐼4) = ∫ (1, 𝑧2, 𝑧𝑓(𝑧), 𝑓(𝑧)2)𝜌𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 (14) 

By substituting Eqs. (10), (12) and (13) into Eq. (9), the 

equations of motion can be derived as follows: 

𝛿𝑤0: −
𝜕2𝑀𝑥

𝜕𝑥2
−

𝜕2𝑀𝑦

𝜕𝑦2
− 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
− 𝑞 = −𝐼1

𝜕2𝑤0

𝜕𝑡2
+

𝐼2 (
𝜕4𝑤0

𝜕𝑥2𝜕𝑡2
+

𝜕4𝑤0

𝜕𝑦2𝜕𝑡2
) − 𝐼3 (𝐾1𝐴́

𝜕4𝜃

𝜕𝑥2𝜕𝑡2
+ 𝐾2𝐵́

𝜕4𝜃

𝜕𝑦2𝜕𝑡2
)  

𝛿𝜃: 𝐾1𝐴́
𝜕2𝑁𝑠𝑥

𝜕𝑥2
+ 𝐾2𝐵́

𝜕2𝑁𝑠𝑦

𝜕𝑦2
+ (𝐾1𝐴́ + 𝐾2𝐵́)

𝜕2𝑁𝑠𝑥𝑦

𝜕𝑥𝜕𝑦
−

𝐾1𝐴́
𝜕𝑁𝑇𝑐𝑥

𝜕𝑥
− 𝐾2𝐵́

𝜕𝑁𝑇𝑐𝑦

𝜕𝑦
= −𝐼3 (𝐾1𝐴́

𝜕4𝑤0

𝜕𝑥2𝜕𝑡2
+

      𝐾2𝐵́
𝜕4𝑤0

𝜕𝑦2𝜕𝑡2
) + 𝐼4 ((𝐾1𝐴́)

2 𝜕4𝜃

𝜕𝑥2𝜕𝑡2
+ (𝐾2𝐵́)

2 𝜕4𝜃

𝜕𝑦2𝜕𝑡2
)  

(15) 

Substituting Eq. (3) Into Eq. (7) and the subsequent 

results into Eq. (11), the equations of motion are obtained in 

terms of displacements (𝑤0, 𝜃) as follows compact form 

{
𝑀
𝑁𝑆
} = {

𝐴 𝐵
𝐵 𝐴𝑠

} {𝑘
𝑏

𝑘𝑠
}, 𝑁𝑇𝑐 = 𝐻𝛾 (16) 

in which   

𝑀 = {𝑀𝑥 , 𝑀𝑦, 𝑀𝑥𝑦}
𝑡
, 𝑁𝑠 = {𝑁𝑠𝑥 , 𝑁𝑠𝑦, 𝑁𝑠𝑥𝑦}

𝑡
 (17a) 

𝑘𝑏 = {𝑘𝑥
𝑏 , 𝑘𝑦

𝑏, 𝑘𝑥𝑦
𝑏 }

𝑡
, 𝑘𝑠 = {𝑘𝑥

𝑠  , 𝑘𝑦
𝑠 , 𝑘𝑥𝑦

𝑠 }
𝑡
 (17b) 

𝐴 = [

𝐴11 𝐴12 0
𝐴12 𝐴22 0
0 0 𝐴66

], 

𝐵 = [

𝐵11 𝐵12 0
𝐵12 𝐵22 0
0 0 𝐵66

] , 𝐴𝑠 = [

𝐴𝑠11 𝐴𝑠12 0
𝐴𝑠12 𝐴𝑠22 0
0 0 𝐴𝑠66

] 

(18a) 

𝑁𝑇𝑐 = {𝑁𝑇𝑐𝑥 , 𝑁𝑇𝑐𝑦}
𝑡
, 𝛾 =  {𝛾𝑥𝑧

0  , 𝛾𝑦𝑧
0 }

𝑡
, 

𝐻 = [
𝐻44 0
0 𝐻55

] 
(18b) 

and stiffness components are given as 

(𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐴𝑠𝑖𝑗) = ∫ (𝑧2, 𝑧𝑓(𝑧), 𝑓(𝑧)2)𝐶𝑖𝑗𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 , 

( 𝑖, 𝑗 = 1,2,6) 

(19a) 

𝐻𝑖𝑗 = ∫ 𝑓́(𝑧)2𝐶𝑖𝑗𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

 , ( 𝑖, 𝑗 = 4,5) (19b) 

Introducing Eq. (16) into Eq. (15), the equations of 
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motion can be expressed in terms of displacements (w0and 

θ). and the appropriate equations take the form 

𝐴11𝑑1111𝑤0 − 𝐵11𝐾1𝐴́𝑑1111𝜃 + 2𝐴12𝑑1122𝑤0 −

𝐵12(𝐾1𝐴́ + 𝐾2𝐵́)𝑑1122𝜃 + 𝐴22𝑑2222𝑤0 −

  𝐵22𝐾2𝐵́𝑑2222𝜃 + 4𝐴66𝑑1122𝑤0 − 2𝐵66(𝐾1𝐴́ +

𝐾2𝐵́)𝑑1122𝜃 − 𝑞 = −𝐼1𝑤0̈ + 𝐼2(𝑑11𝑤0̈ +  𝑑22𝑤0̈) −

 𝐼3(𝐾1𝐴́𝑑11𝜃̈ + 𝐾2𝐵́𝑑22𝜃̈)  

(20a) 

(−𝐵11𝑑1111𝑤0 + 𝐴𝑠11𝐾1𝐴́𝑑1111𝜃 − 𝐵12𝑑1122𝑤0 +

𝐴𝑠12𝐾2𝐵́𝑑1122𝜃)𝐾1𝐴́ + (−𝐵12𝑑1122𝑤0 +

   𝐴𝑠12𝐾1𝐴́𝑑1122𝜃 − 𝐵22𝑑2222𝑤0 +

𝐴𝑠22𝐾2𝐵́𝑑2222𝜃)𝐾2𝐵́ + (−2𝐵66𝑑1122𝑤0 +

𝐴𝑠66(𝐾1𝐴́ +    𝐾2𝐵́)𝑑1122𝜃)(𝐾1𝐴́ + 𝐾2𝐵́) −

(𝐾1𝐴́)
2
𝐻55𝑑11𝜃 − (𝐾2𝐵́)

2
𝐻44𝑑22𝜃 =

−𝐼3(𝐾1𝐴́𝑑11𝑤0̈ +    𝐾2𝐵́𝑑22𝑤0̈) + 𝐼4 ((𝐾1𝐴́)
2
𝑑11𝜃̈ +

(𝐾2𝐵́)
2
𝑑22𝜃̈)  

(20b) 

where 𝑑𝑖𝑗 , 𝑑𝑖𝑗𝑙  and 𝑑𝑖𝑗𝑙𝑚  are the following differential 

operators 

𝑑𝑖𝑗 =
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
 ,𝑑𝑖𝑗𝑙 =

𝜕3

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑙
 , 

𝑑𝑖𝑗𝑙𝑚 =
𝜕4

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑙𝜕𝑥𝑚
, 𝑑𝑖 =

𝜕

𝜕𝑥𝑖
 ,( 𝑖, 𝑗, 𝑙, 𝑚 = 1,2) 

(21) 

The shear stresses (𝜏𝑥𝑧, 𝜏𝑦𝑧) can be expressed by the 

constitutive relations Eq. (7) or by the integration of the 

equilibrium equations of 3D elasticity with respect to 

thickness coordinate 

𝜕𝜎𝑥
𝜕𝑥

+
𝜕𝜏𝑥𝑦
𝜕𝑦

+
𝜕𝜏𝑥𝑧
𝜕𝑧

= 0  and 
𝜕𝜏𝑥𝑦
𝜕𝑥

+
𝜕𝜎𝑦
𝜕𝑦

+
𝜕𝜏𝑦𝑧
𝜕𝑧

= 0 (22) 

Integrating Eq. (22) with respect to thickness coordinate 

z and applying the following boundary conditions at the 

upper and lower surfaces of the plate 

[𝜏𝑥𝑧]𝑧=±ℎ 2⁄ = 0      ,        [𝜏𝑦𝑧]𝑧=±ℎ 2⁄
= 0   (23) 

In this article it should be noted that: 

𝜏𝑥𝑧
𝐶𝑅  and 𝜏𝑦𝑧

𝐶𝑅  are the stresses obtained by the 

constitutive relations and (𝜏𝑥𝑧
𝐸𝐸  , 𝜏𝑦𝑧

𝐸𝐸)  are the stresses 

calculated by the equilibrium equations. 

 

2.4 Analytical solution for simply-supported FG plates 
 

The Navier solution procedure is employed to determine 

the analytical solutions for which the displacement 

variables are expressed as product of arbitrary parameters 

and known trigonometric functions to respect the equations 

of motion and boundary conditions. 

{
𝑤0
𝜃
} = ∑∑{

𝑤𝑚𝑛sin(𝜆𝑥)sin(𝜇𝑦)sin(𝜔𝑚𝑛𝑡)

𝜃𝑚𝑛sin(𝜆𝑥)sin(𝜇𝑦)sin(𝜔𝑚𝑛𝑡)
}

∞

𝑛=1

∞

𝑚=1

 (24) 

with 

𝜆 =
𝑚𝜋

𝑎
   , 𝜇 =

𝑛𝜋

𝑏
 (25) 

Where 𝑤𝑚𝑛 ;  𝜃𝑚𝑛 arbitrary parameters to be 

determined m, n are mode numbers and 𝜔 is frequency of 

free vibration of the plate, 𝑖 = √−1 the imaginary unit.  

The transverse load q  is also expanded in the double-

Fourier sine series as 

-Bending analysis of isotropic plates subjected to 

uniformly distributed load 

𝑞(𝑥, 𝑦) = ∑∑𝑞𝑚𝑛𝑠𝑖𝑛 (
𝑚𝜋

𝑎
𝑥) 𝑠𝑖𝑛 (

𝑛𝜋

𝑏
𝑦)

∞

𝑛=1

∞

𝑚=1

 (26a) 

where  

𝑞𝑚𝑛 =
16𝑞0
𝑚𝑛𝜋2

  𝑓𝑜𝑟  𝑚 = 1,3,5, …𝑎𝑛𝑑  𝑛 = 1,3,5, … (26b) 

𝑞𝑚𝑛 = 0  𝑓𝑜𝑟 𝑚 = 2,4, …… . . 𝑎𝑛𝑑  𝑛 = 2,4, … .. (26c) 

-Bending analysis of isotropic plates subjected to 

sinusoidal load 

𝑞(𝑥, 𝑦) = 𝑞0sin (
𝜋

𝑎
𝑥) sin (

𝑛𝜋

𝑏
𝑦) (27) 

-Bending analysis of isotropic plates subjected to 

linearly varying load 

𝑞(𝑥, 𝑦) = ∑∑𝑞𝑚𝑛sin (
𝑚𝜋

𝑎
𝑥) sin (

𝑛𝜋

𝑏
𝑦)

∞

𝑛=1

∞

𝑚=1

 (28a) 

where  

𝑞𝑚𝑛 = −(8𝑞0 𝑚𝑛𝜋2⁄ )cos(𝑚𝜋) 𝑓𝑜𝑟 𝑚 

= 1,3,5, …… . . 𝑎𝑛𝑑  𝑛 = 1,3,5, …. 
(28b) 

Substituting Eq. (24) into Eq. (20), the following 

problem is obtained:   

𝑞(𝑥, 𝑦) = 𝑞0sin (
𝜋

𝑎
𝑥) sin (

𝑛𝜋

𝑏
𝑦) 

([
𝐾11 𝐾12
𝐾12 𝐾22

] − 𝜔2 [
𝑚11 𝑚12

𝑚12 𝑚22
]) {

𝑤𝑚𝑛
𝜃𝑚𝑛

} = {
𝑞𝑚𝑛
0
} 

(29) 

where [𝐾] = [
𝐾11 𝐾12
𝐾12 𝐾22

] stiffness matrices  

and [𝑀] = [
𝑚11 𝑚12

𝑚12 𝑚22
] mass matrices. 

In which   

𝐾12 = −2(𝐾1𝐴́ + 𝐾2𝐵́)𝐵66𝜆
2𝜇2 − (𝐾1𝐴́ +

𝐾2𝐵́)𝐵12𝜆
2𝜇2 − 𝐾1𝐴́𝐵11𝜆

4 − 𝐾2𝐵́𝐵22𝜇
4  

𝐾22 = (𝐾1𝐴́𝜆
4𝐴𝑠11 + 𝐾2𝐵́𝜆

2𝜇2𝐴𝑠12)𝐾1𝐴́ +

(𝐾1𝐴́)
2
𝜆2𝐻55 + (𝐾1𝐴́𝜆

2𝜇2𝐴𝑠12 + 𝐾2𝐵́𝜇
4𝐴𝑠22)𝐾2𝐵́ +

(𝐾2𝐵́)
2
𝜇2𝐻44 + (𝐾1𝐴́𝜆

2𝜇2𝐴𝑠66 +

𝐾2𝐵́𝜆
2𝜇2𝐴𝑠66)(𝐾1𝐴́ + 𝐾2𝐵́)  

𝑚11 = −𝐼1 − 𝐼2(𝜆
2 + 𝜇2) 

𝑚12 = 𝐼3(𝐾1𝐴́𝜆
2 + 𝐾2𝐵́𝜇

2) 

𝑚22 = −𝐼4 ((𝐾1𝐴́)
2
𝜆2 + (𝐾2𝐵́)

2
𝜇2) 

(30) 

 

 
3. Numerical results and discussion 
 

In this section, the results obtained by the present higher 

order shear deformation theory are compared with those 

obtained by the other higher order shear deformation  

(23) 
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theories of (Reddy 1984, Ghugal and Sayyad 2010, Ghugal 

and Pawar 2011, Sayyad and Ghugal 2012), and the results 

determined by first order shear deformation theory (FSDT) 

of Mindlin (1951), classical plate theory (CPT) of Kirchhoff 

(1850) and the exact elasticity solution of Pagano (1970). 

For convenience, the numerical results for bending and 

vibration are presented in non-dimensional form by the 

following relations 

𝑢̅ =
𝑢𝐸2

𝑞ℎ𝑆3
,𝑤̅ =

100𝐸𝑤

𝑞ℎ𝑆4
, (𝜎̅𝑥, 𝜎̅𝑦) =

(𝜎𝑥,𝜎𝑦)

𝑞𝑆2
, 

𝜏̅𝑧𝑥 =
𝜏𝑥𝑧

𝑞𝑆
, 𝜔̅ = 𝜔𝑚𝑛ℎ√𝜌 𝐺⁄  

(31) 

 

 

 

where S (a/h)=Thickness ratio. 

The material properties of the isotropic plate are used 

𝐸 = 210 GPa, 𝜇 = 0.3, 𝐺 =
𝐸

2(1+𝜇)
 and 𝜌 =

7800Kg m3⁄  

where E is the Young’s modulus, G is the shear modulus, μ 

is the Poisson’s ratio and ρ is density of the material. 

Example 1: Table1 demonstrates the comparison of 

inplane displacement, transverse deflection, inplane normal 

stress, inplane shear stress and transverse shear stress for 

the isotropic square plate subjected to uniformly distributed 

load for the various aspect ratios. For aspect ratios (S=a/h) 4 

the proposed theory and order theories overestimate the  

Table 1 Comparison of non-dimensional inplane displacement (𝑢̅) at (𝑥 = 0, 𝑦 = 𝑏 2⁄ , 𝑧 = ±ℎ 2⁄ ), transverse 

displacement (𝑤̅) (𝑥 = 𝑎 2⁄ , 𝑦 = 𝑏 2⁄ , 𝑧 = 0) , inplane normal stress (𝜎̅𝑥) (𝑥 = 𝑎 2⁄ , 𝑦 = 𝑏 2⁄ , 𝑧 = ±ℎ 2⁄ ) , 

inplane shear stress (𝜎̅𝑥𝑦) (𝑥 = 0, 𝑦 = 0, 𝑧 = ±ℎ 2⁄ ) and transverse shear stress (𝜎̅𝑧𝑥) (𝑥 = 0, 𝑦 = 𝑏 2⁄ , 𝑧 = 0) 

in isotropic square plate subjected to uniformly distributed load 

S Theory Model 𝑢̅ 𝑤̅ 𝜎̅𝑥 𝜎̅𝑥𝑦 𝜏̅𝑧𝑥
𝐶𝑅 𝜏̅𝑧𝑥

𝐸𝐸 

4 

Present ESDT 0.079 5.858 0.300 0.223 0.483 0.451 

Sayyad and Ghugal (2012) ESDT 0.079 5.816 0.300 0.223 0.481 0.472 

Reddy (1984) HSDT 0.079 5.869 0.299 0.218 0.482 0.452 

Ghugal and Sayyad (2010) TSDT 0.074 5.680 0.318 0.208 0.483 0.42 

Ghugal and Pawar (2011) HPSDT 0.079 5.858 0.297 0.185 0.477 0.451 

Mindlin (1951) FSDT 0.074 5.633 0.287 0.195 0.330 0.495 

Kirchhoff (1850) CPT 0.074 4.436 0.287 0.195 - 0.495 

Pagano (1970) Elasticity 0.072 5.694 0.307 - 0.460 - 

10 

Present ESDT 0.075 4.664 0.289 0.200 0.506 0.484 

Sayyad and Ghugal (2012) ESDT 0.075 4.658 0.289 0.204 0.494 0.490 

Reddy (1984) HSDT 0.075 4.666 0.289 0.203 0.492 0.486 

Ghugal and Sayyad (2010) TSDT 0.073 4.625 0.307 0.195 0.504 0.481 

Ghugal and Pawar (2011) HPSDT 0.074 4.665 0.289 0.193 0.489 0.486 

Mindlin (1951) FSDT 0.074 4.670 0.287 0.195 0.330 0.495 

Kirchhoff (1850) CPT 0.074 4.436 0.287 0.195 - 0.495 

Pagano (1970) Elasticity 0.073 4.639 0.289 - 0.487 - 

Table 2 Comparison of non-dimensional inplane displacement (𝑢̅) at(𝑥 = 0, 𝑦 = 𝑏 2⁄ , 𝑧 = ±ℎ 2⁄ ), transverse 

displacement (𝑤̅) at(𝑥 = 𝑎 2⁄ , 𝑦 = 𝑏 2⁄ , 𝑧 = 0), inplane normal stress(𝜎̅𝑥)at (𝑥 = 𝑎 2⁄ , 𝑦 = 𝑏 2⁄ , 𝑧 = ±ℎ 2⁄ ), 

inplane shear stress (𝜎̅𝑥𝑦) at (𝑥 = 0, 𝑦 = 0, 𝑧 = ±ℎ 2⁄ )  and transverse shear stress (𝜎̅𝑧𝑥)  at (𝑥 = 0, 𝑦 =

𝑏 2⁄ , 𝑧 = 0) in isotropic square plate subjected to sinusoidal load 

S Theory Model 𝑢̅ 𝑤̅ 𝜎̅𝑥 𝜎̅𝑥𝑦 𝜏̅𝑧𝑥
𝐶𝑅 𝜏̅𝑧𝑥

𝐸𝐸 

4 

Present ESDT 0.046 3.778 0.210 0.113 0.252 0.234 

Sayyad and Ghugal (2012) ESDT 0.046 3.748 0.213 0.114 0.238 0.236 

Reddy (1984) HSDT 0.046 3.787 0.209 0.112 0.237 0.226 

Ghugal and Sayyad (2010) TSDT 0.044 3.653 0.226 0.133 0.244 0.232 

Ghugal and Pawar (2011) HPSDT 0.047 3.779 0.209 0.112 0.236 0.235 

Mindlin (1951) FSDT 0.044 3.626 0.197 0.106 0.159 0.239 

Kirchhoff (1850) CPT 0.044 2.803 0.197 0.106 - 0.238 

Pagano (1970) Elasticity 0.049 3.662 0.217 - 0.236 - 

10 

Present ESDT 0.044 2.959 0.200 0.108 0.254 0.238 

Sayyad and Ghugal (2012) ESDT 0.044 2.954 0.200 0.108 0.239 0.238 

Reddy (1984) HSDT 0.044 2.961 0.199 0.107 0.238 0.229 

Ghugal and Sayyad (2010) TSDT 0.044 2.933 0.212 0.110 0.245 0.235 

Ghugal and Pawar (2011) HPSDT 0.044 2.959 0.199 0.107 0.237 0.238 

Mindlin (1951) FSDT 0.044 2.934 0.197 0.106 0.169 0.239 

Kirchhoff (1850) CPT 0.044 2.802 0.197 0.106 - 0.238 

Pagano (1970) Elasticity 0.044 2.942 0.200 - 0.238 - 
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Fig. 2 Through thickness variation of inplane displacement 

of isotropic plate subjected to uniformly distributed load for 

aspect ratio 4 

 

 

results as compared to those of exact solution. For aspect 

ratio 10, the results obtained are in close agreement with the 

elasticity solution. Through thickness variations of 

displacements and stresses are shown in Figs. 2-5. Present 

theory is in good agreement with the elasticity solution . 

Example 2: Table2 shows the displacements and stress 

for the plate under sinusoidal load. For aspect ratios 4, the 

current theory and order theories underestimate the results 

as compared to those of “exact solution”, The result of 

inplane displacement predicted by present theory and exact 

solution is identical for the aspect ratio 10. The thickness 

variation of “inplane displacement” of the plate is presented 

in Fig. 6. 

Example 3: The displacements and stresses of “simply 

supported square plate” under linearly varying load are 

shown in Table 3 and a very good agreement is 

demonstrated with exact solution for the aspect ratio 10. 

 

 

Fig. 3 Through thickness variation of transverse 

displacement of isotropic plate subjected to uniformly 

distributed load for aspect ratio 4 

 

 

Fig. 4 Through thickness variation of inplane normal stress 

of isotropic plate subjected to uniformly distributed load for 

aspect ratio 4 
 
 

Table 3 Comparison of non-dimensional inplane displacement (𝑢̅) at (𝑥 = 0, 𝑦 = 𝑏 2⁄ , 𝑧 = ±ℎ 2⁄ ), transverse 

displacement (𝑤̅)  at (𝑥 = 𝑎 2⁄ , 𝑦 = 𝑏 2⁄ , 𝑧 = 0) , inplane normal stress (𝜎̅𝑥)  at (𝑥 = 𝑎 2⁄ , 𝑦 = 𝑏 2⁄ , 𝑧 =

±ℎ 2⁄ ) , inplane shear stress (𝜎̅𝑥𝑦)  at (𝑥 = 0, 𝑦 = 0, 𝑧 = ±ℎ 2⁄ )  and transverse shear stress (𝜎̅𝑧𝑥)  at 

(𝑥 = 0, 𝑦 = 𝑏 2⁄ , 𝑧 = 0) in isotropic square plate subjected to linearly varying load 

S Theory Model 𝑢̅ 𝑤̅ 𝜎̅𝑥 𝜎̅𝑥𝑦 𝜏̅𝑧𝑥
𝐶𝑅 𝜏̅𝑧𝑥

𝐸𝐸 

4 

Present ESDT 0.0397 2.929 0.151 0.108 0.240 0.225 

Sayyad and Ghugal (2012) ESDT 0.0396 2.908 0.150 0.111 0.240 0.236 

Reddy (1984) HSDT 0.0395 2.935 0.150 0.109 0.241 0.226 

Ghugal and Sayyad (2010) TSDT 0.0370 2.840 0.159 0.104 0.241 0.210 

Ghugal and Pawar (2011) HPSDT 0.0395 2.929 0.148 0.092 0.239 0.225 

Mindlin (1951) FSDT 0.0370 2.817 0.144 0.097 0.165 0.247 

Kirchhoff (1850) CPT 0.0370 2.218 0.144 0.097 - 0.247 

Pagano (1970) Elasticity 0.0360 2.847 0.153 - 0.230 - 

10 

Present ESDT 0.0373 2.332 0.145 0.099 0.253 0.243 

Sayyad and Ghugal (2012) ESDT 0.0375 2.329 0.144 0.102 0.247 0.245 

Reddy (1984) HSDT 0.0375 2.333 0.144 0.101 0.246 0.243 

Ghugal and Sayyad (2010) TSDT 0.0365 2.313 0.153 0.097 0.252 0.241 

Ghugal and Pawar (2011) HPSDT 0.0370 2.332 0.144 0.096 0.245 0.243 

Mindlin (1951) FSDT 0.0370 2.335 0.143 0.097 0.165 0.248 

Kirchhoff (1850) CPT 0.0370 2.213 0.143 0.097 - 0.248 

Pagano (1970) Elasticity 0.0365 2.320 0.144 - 0.244 - 
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Fig. 5 Through thickness variation of transverse shear stress 

of isotropic plate subjected to uniformly distributed load for 

aspect ratio 4 

 

 
Fig. 6 Through thickness variation of inplane displacement 

of isotropic plate subjected to single sine load for aspect 

ratio 4 

 

 
Fig. 7 Through thickness variation of transverse 

displacement of isotropic plate subjected to single sine load 

for aspect ratio 4 

 

 

Through thickness variations of displacements and stress 

are plotted in Figs. 10-13. 

Example 4: The comparison of natural flexural mode 

frequencies (𝜔̅𝑤) and “thickness shear mode 

 

Fig. 8 Through thickness variation of inplane normal stress 

of isotropic plate subjected to single sine load for aspect 

ratio 4 

 

 

Fig. 9 Through thickness variation of transverse shear stress 

of isotropic plate subjected to single sine load for aspect 

ratio 4 

 

 

Fig. 10 Through thickness variation of inplane displacement 

of isotropic plate subjected to linearly varying load for 

aspect ratio 4 

 

 

frequencies” (𝜔̅𝜃) for simply supported isotropic square 

plates are presented in Table 4. Present theory is in  
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Fig. 11 Through thickness variation of transverse 

displacement of isotropic plate subjected to linearly varying 

load for aspect ratio 4 

 

 

Fig. 12 Through thickness variation of inplane normal stress 

of isotropic plate subjected to linearly varying load for 

aspect ratio 4 

 

 

“excellent agreement” of flexural frequencies for different 

vibrational modes compared to those of “exact results”, 

 

 

Fig. 13 Through thickness variation of transverse shear 

stress of isotropic plate subjected to linearly varying load 

for aspect ratio 4 

 

 

Comparison of natural flexural mode frequencies (𝜔̅𝑤) of 

simply supported isotropic rectangular plate is shown in 

Table 5. Present theory and theory of Reddy (1984) show 

good accuracy of results, whereas CPT overestimates the 

flexural frequencies due to neglecting transverse shear 

deformation influences. 

 
 
4. Conclusions 

 

The accuracy and efficiency of the present theory has 

been demonstrated for the flexural and free vibration 

responses of thick bridge deck. The conclusions of this 

proposed model are as follows: 

• The values of displacements and stresses calculated via 

the current formulation for different considered loads 

are in “good agreement” with those of “exact solution”, 

• The frequencies of flexure and thickness shear modes  

Table 4 Comparison of natural bending mode frequencies (𝜔̅𝑤) and thickness shear mode frequencies (𝜔̅𝜃) of 

simply supported isotropic square plates (𝑆 = 10) 

a/b 𝜔̅ (m,n) Present 
Exact 

(1970) 

Sayyad and 

Ghugal (2012) 

Ghugal and 

Sayyad (2011) 

Reddy 

(1984) 

Mindlin 

(1951) 

CPT 

(1850) 

1 

𝜔̅𝑤 

(1,1) 0.0930 0.0932 0.0931 0.0933 0.0931 0.0930 0.0955 

(1,2) 0.2220 0.2226 0.2223 0.2231 0.2219 0.2219 0.236 

(1,3) 0.4153 0.4171 0.4163 0.4184 0.4150 0.4149 0.4629 

(2,2) 0.3408 0.3421 0.3415 0.3431 0.3406 0.3406 0.3732 

(2,3) 0.5213 0.5239 0.5228 0.5258 0.5208 0.5206 0.5951 

(2,4) 0.7464 0.7511 0.7499 0.7542 0.7453 0.7446 0.8926 

(3,3) 0.6848 0.6889 0.6874 0.6917 0.6839 0.6834 0.809 

(4,4) 1.0807 1.0889 1.0872 1.0945 1.0785 1.0764 1.3716 

𝜔̅𝜃 

(1,1) 3.2555 3.2465 3.2428 3.2469 3.2555 3.2538 - 

(1,2) 3.4123 3.3933 3.3994 3.394 3.4125 3.4112 - 

(1,3) 3.6513 3.6160 3.6381 3.6178 3.6517 3.6510 - 

(2,2) 3.5586 3.5298 3.5455 3.5312 3.5589 3.558 - 

(2,3) 3.7842 3.7393 3.7709 3.7414 3.7848 3.7842 - 

(2,4) 4.0712 4.0037 4.0576 4.0082 4.072 4.072 - 

(3,3) 3.9921 3.9310 3.9786 3.9351 3.9928 3.9926 - 

(4,4) 4.5082 4.4013 4.4944 4.4102 4.5092 4.5098 - 

732



 

Flexural and free vibration responses of thick isotropic bridge deck using a novel two variable refined plate theory 

 

 

 

of vibration predicted by the proposed model are in 

“good agreement” with the exact results for simply 

supported rectangular plate.  

• Compared to the elasticity solution, the novel theory 

gives more accurate results of bending frequencies for 

all modes of vibration than the higher order theories.  

In conclusion, it can be said that the proposed theory 

with only two unknowns accurate and simple in solving the 

bending and vibration responses of thick bridge deck. 
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Abstract: This parametric study investigates the RC Beams Rehabilitated with angle-ply composite 

laminate plate [n/90m]s. This work is based on a simple theoretical model to estimate the interfacial 

stresses developed between the concrete beam and the composite with taking into account the 

hygrothermal effect. Fibre orientation angle, effects of number of 90° layers and effects of plate 

thickness and length on the distributions of interfacial stress in the concrete beams reinforced with 

composite plates have also been studied.  

Keywords: Interfacial stresses, Concrete beam, Angle-ply laminates, hygrothermal effects, Fibre 
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1. Introduction 

The use of the composite fiber-reinforced plastic (FRP) become more and more very effective 

given its simplicity. Many studies have been conducted, to predict the interfacial stresses, see, for 

example, those by Tounsi et al. [1], Tounsi [2], Benyoucef et al. [3], Vilnay [4], Roberts [5], 

Roberts et al. [6], Malek et al. [7], Robinovitch et al. [8], Ye [9], Smith et al. [10], Barnes et al. 

[11], Stratford et al. [12]. Bouazaoui [13] have studied the interfacial shear strength between the 

steel bar surface and concrete surface of steel rods bonded into concrete. Many approximate 

closed-form solutions have been developed in the past decade for the interfacial stresses in beams 

bonded with FRP plate [14-17]. 

The solution presented by Smith et al [18] seems to be the more accurate widely applicable 

solution, particularly when the flexural stiffness of the bonded plate becomes significant. 

Rabinovich et al. [8] have presented a higher order analysis in which the adhesive layer was treated 

as an elastic medium with negligible longitudinal stiffness.  

This leads to uniform stresses and linearly varying normal stresses through the thickness of the 

adhesive layer. The significance of their solution is that it is the first solution that satisfies the stress-

free boundary condition at the ends of the adhesive layer. Using the same approach, they investigated 

the effects of an uneven adhesive layer and material nonlinearity [19]. Shen et al. [20] proposed an 

alternative analytical complementary energy approach, which resulted in closed-form expressions.   

Recently, many authors have conducted a numerical study in different directions to illustrate the 

principal parameters in order to estimate the distributions of interfacial stress in beams reinforced 

with composite plates [21-27].  

The analytical models present often the assumption of constant environment conditions, while the 

RC beam and the FRP are subjected to changing temperature and moisture conditions and it should 

be including in the analysis [28]. In this paper, the hygrothermal effects in the concrete beam and 

the soffit plate will be included to estimate the interfacial shear and normal stresses.  

For this case, we introduce an analytical solution which include the mechanical properties of the 

beam, the plate and the adhesive layer under thermal (temperature effect) and hygroscopic 

(moisture effect) conditions. The most used solution is Teng’s solution Smith et al. [18].  
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This solution doesn’t consider the fibre volume fractions and orientation contrary to Tounsi 

solution [2] which will be used in this paper. The total interfacial stress is the sum of Tounsi 

solution and the additional one due to the hygrothermal deformation of the beam and the plate.  

2. Governing equations 

Fig. 1 shows, a concrete beam (Adherend 1) strengthened by FRP plate (Adherend 2) and bounded 

by an adhesive layer. This beam is simply supported reinforced beam and subjected to a uniform 

distributed load.  

 

Fig.1. Soffit-plated beam 

The following assumptions are used: 

⁃ The materials concrete beam, FRP plate and adhesive are linear elastic. 

⁃ Shear and normal stresses in the adhesive layer are constant across its thickness. 

⁃ The curvature in the beam and the plate are same.   

The Fig. 2 represents a differential segment of plated beam. τ(x) and σ(x) are the interfacial shear 

and normal stresses respectively with positive sign convention for the bending moment, shear 

force, axial force and applied loading. The derivation of the new solution below is described in 

terms of adherends 1 and 2, where adherend 1 is the beam and adherend 2 is the soffit plate. 

 

Fig.2. Differential segment of a soffit-plated beam 

The shear strain ϒ in the adhesive layer can be written as 

 
    (1) 

u(x,y) and v(x,y) are the horizontal and vertical displacements of the adhesive layer respectively. 

τ(x) is given as 
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    (2) 

where Ga is the shear modulus of the adhesive layer. Differentiating the expression (2) with respect 

to x gives 

 
    (3) 

The curvature is function of the applied moment MT(x)   

 
   (4) 

where (EI)t is the total flexural rigidity of the composite section. u(x,y) must vary linearly across 

the adhesive thickness ta , then 

𝑑𝑢

𝑑𝑦
=

1

𝑡𝑎

[𝑢2(𝑥) − 𝑢1(𝑥)]        
(5) 

 

   

where u1(x) and u2(x) are the longitudinal displacements at the base of adherend 1 and the top of 

adherend 2, respectively. Eq. (3) can be rewritten as 

 
(6) 

The third term in parentheses in Eq. (6) can be ignored Smith et al. [10] in the following derivation. 

The strains at the base of adherend 1 and the top of adherend 2 taking account the hygrothermal 

deformations are given as 

 
              (7) 

Where α1 is the coefficient of thermal expansion and β1 is the coefficient of hygroscopic expansion 

of the RC beam. ΔT and ΔC are the temperature and percent moisture change respectively. 

The laminate theory is used to estimate the strain of the symmetrical composite plate [28], i.e. 

 
   (8) 

[A’] is the inverse of the extensional matrix [A]; [D’] is the inverse of the flexural matrix; b2 is a 

width of FRP plate. Using CLT, the strain at the top of the FRP plate 2 is given as 

 
         (9) 

Substituting Eq. (9) in (10) gives the following equation: 

 
(10) 

Considering horizontal equilibrium gives 

 
(11) 

where 

  (12) 

 

And the moment equilibrium of the differential segment of the plated beam in Fig. 2 gives 

 (13) 

The bending moment in each adherend is function of the total applied moment and the interfacial 

shear stress as 

  (14) 

  (15) 
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0
)(

2

2


dx

xVd T

The first derivative of the bending moment in each adherend gives 

  (16) 

  (17) 

Substituting Eqs. (7) and (9) into Eq. (6) and differentiating the resulting equation once yields 

      (18) 

Substitution of the shear forces [Eqs. (16) and (17)] and axial forces [Eq. (12)] in both adherends 

into Eq. (18) gives the following governing differential equation for the interfacial shear stress: 
 

d2τ(x)

dx2
-

Ga

ta

(A11
' +

b2

E1I1

+
(y1 + y2)(y1 + y2+ta)

E1I1D11
' + b2

b2D11
' τ(x))

+   
Ga

ta

(
(y1 + y2)

E1I1D11
' + b2

D11
' ) VT(x) = 0 

 (19) 

For simplicity and for such loading,  

                       , the general solution of Eq. (19) is given by 

 (20) 

where 

  (21) 

and 

 
(22) 

The general solution for the interfacial shear stress for a simply supported beam subjected to a 

uniformly distributed load is given as 

   (23) 

The constants of integration need to be determined by applying suitable boundary conditions. 

At x=0. Here, the moment at the plate end M2(0) =N1(0) =N2(0) =0 and as a result 

 
(24) 

Substituting Eqs. (7) and (10) into Eq. (6) with the third term ignored, and applying the above 

boundary condition, gives 

 

(25) 

where 

 
              (26) 

By substituting Eq. (23) into Eq. (28), B2 can be determined as 

  (27) 

The normal stress in the adhesive layer, σ(x), is given as 

                (28) 

where v1(x) and v2(x) are the vertical displacements of adherend 1 and 2, respectively. 

Differentiating Eq. (28) twice results in 

 
              (29) 
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Considering the moment–curvature relationships for the beam to be strengthened and the external 

reinforcement, respectively: 

                 ;                                                  
 (30) 

The equilibrium of adherend 1 and 2, leads to the following relationships: 

Adherend 1: 

                                                  
           (31) 

Adherend 2: 

                                            

 

  (32) 

Based on the above equilibrium equations, the governing differential equations for the deflection 

of adherends 1 and 2, expressed in terms of the interfacial shear and normal stresses, are given as 

follows: 

Adherend 1: 

 
         (33) 

Adherend 2: 

 
           (34) 

Substitution of Eqs. (33) and (34) into the fourth derivation of the interfacial normal stress 

obtainable from 

Eq. (28) gives the following governing differential equation for the interfacial normal stress: 

     (35) 

The general solution to this fourth-order differential equation is 

  qn
dx

xd
nxCxCex x

2121

)(
)sin()cos()(   

 

                                                         (36) 

where 

 

            (37) 

and 

 
            (38) 

 
            (39) 

As is described by Smith et al. [18], the constants C1 and C2 in Eq. (36) are determined using the 

appropriate boundary conditions: 

  
           

(40) 

 
(41) 

where 

 
           (42) 
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3. Results and discussion of the parametric study 

Numerical results, obtained by programming with Maple, are presented to illustrate and examine 

both thermal and hygroscopic effects on the interfacial shear and normal stresses. We consider an 

RC beam of 3000 mm of length, a soffit plate of LP=2400mm, a uniform distributed load 

q=50KN/ml. The other geometric parameters and mechanicals properties are resumed in Table1.  

Table 1 

 Geometric and mechanicals properties 

Component Width       

(mm) 

Depth   

(mm) 

Young’s Modulus 

(GPa) 

Poisson’s ratio 

RC beam 200 300 30  

Soffit plate 200 4 50  

Adhesive layer 200 4 2 0.35 

3.1. Fibre orientation 

The fibre orientation affect significantly the development if interfacial stresses. It’s shown in Fig. 

3 and Fig. 4 that the shear and normal stresses decrease when the temperature ΔT and percent 

moisture ΔC decrease and the angle of orientation  increases. 
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Fig.3. Effect of fibre orientations on shear stress for different hygroscopic cases 
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Fig.4. Effect of fibre orientations on normal stress for different hygroscopic cases 

3.2. Effect of fibre volume fractions 

It is well known in many studies [29-31] that the material properties are function of temperature 

and moisture. In terms of a micro-mechanical model of laminate, the material properties may be 

written as [32] 
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In the above equations, Vf and Vm are the fibre and matrix volume fractions and are related by : 

1 mf VV
 

Ef , Gf and f  are the Young’s modulus, shear modulus and poisson’s ration, respectively, of the 

fibre, and   

Em , Gm and m are corresponding properties for the matrix. 

It is assumed that Em is a function of temperature and moisture, then EL, ET and GLT are also 

functions of temperature and moisture. 

The thickness of each ply is 0.125mm and the material properties adopted are [32] : Ef=230 GPa, 

Gf=9.0 GPa, f =0.203, 
m =0.34 et Em= (3.51-0.003T-0.142C)GPa.In which T=T0+∆T and 

T0=25°C (room temperature), and C=C0+∆C and C0=0 wt% H2O. 

In addition, three values of fibre volume fractions Vf= (0.5 ; 0.6 et 0.7) are considered. 

Fig. 5 and Fig. 6 show the effect of fiber volume fractions Vf on the development of interface 

constraints. 

It can be noted that the shear stress increases by increasing the fiber volume fractions, while no 

significant change was observed in the normal stresses for the two hygrothermal cases. 
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Fig.5. Effect of fibre volume fractions on the shear stresses for a reinforced concrete beam with bonded plate in 

laminated composite [0/90]s for different hygrothermal cases. 
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Fig.6. Effect of fibre volume fractions on the normal stress for a reinforced concrete beam with bonded plate in 

laminated composite [0/90]s for different hygrothermal cases. 
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3.3. Plate thickness 

Fig. 7 and Fig. 8 show the effects of the plate thickness t2 on the interfacial stresses. It seen that 

this plate considerably the normal stress and hardly the shear stress concentration. The normal 

stress increase with increasing the plate thickness. 
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Fig.7 Effect of plate thickness on shear stress for an RC beam with a bonded composites laminates plate [0/90]s 

under hygrothermal effect. 
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Fig.8 Effect of plate thickness on normal stress for an RC beam with a bonded composites laminates plate [0/90]s 

under hygrothermal effect. 

4. Conclusion  

The interfacial stresses of retrofitted RC beam strengthened with a soffit plate under hygrothermal 

and mechanical loads with taking into account the fibre volume fractions and orientation . The 

main conclusions found: 

The hygrothermal effect increases considerably the maximum interfacial shear and normal stresses 

the interfacial stresses increase with increasing the fibre volume fractions and with decreasing the 

angle of fibre orientation 

The interfacial stresses increase with increasing the thickness of the FRP plate 

Acknowledgements  

The research described in this paper was supported by University of Sidi Bel Abbes and University 

center of Ain Temouchent in Algeria. 



21 

 

References 

[1] Tounsi A, Benyoucef S., Int. J. Adhes. Adhes., (2007), 27: 207–215, doi:10.1016/j.ijadhadh.2006.01.009 

[2] Tounsi A., Int. J. Solids. Struct., (2006), 43: 4154–4174, doi: 10.1016/j.ijsolstr.2005.03.074 

[3] Benyoucef S, Tounsi A, Meftah S A and Adda Bedia EA., Compos. Interfaces., (2006), 13(7): 561–571, doi: 

10.1163/156855406778440758 

[4] Vilnay O., Int. J. Cem. Compos. Light. Weight. Concr., (1988), 10 (2): 73–78, doi: 10.1016/0262-5075(88)90033-4 

[5] Roberts TM., (1989).  Approximate analysis of shear and normal stress concentrations in the adhesive layer of 

plated RC beams. Struct. Eng. 1989, 67 (12): 229–233.  

[6] Roberts TM, and Haji-Kazemi H. (1989). Theoretical study of the behavior of reinforced concrete beams 

strengthened by externally bonded steel plates. Proc. Inst. Civil. Eng., 87(2): 39–55 

[7] Malek AM, Saadatmanesh H, and Ehsani MR.( 1994). Prediction of failure load of RC beams strengthened with 

FRP plate due to stress concentration at the plate end. ACI. Struct. Journal., 95(1):142–152 

[8] Robinovitch O. and Frostig Y. ,(200). Closed-form higher-order analysis of beams strengthened with FRP strips. 

J. Compos. Constr-ASCE, 4(2): 65–74  

[9] Ye JQ. Cem. Concr. Compos. (2001). 23(4–5), 411–417, doi:10.1016/S0958-9465(01)00015-4 

[10] Smith ST., and Teng JG., Eng. Struct. (2001). 23(7), 857–871, doi: 10.1016/S0141-0296(00)00090-0  

[11] Barnes RA., and Mays GC., Int. J. Adhes. (2001). 21, 495–502, doi: 10.1016/S0143-7496(01)00031-8 

[12] Stratford T., and Cadei J., Constr. Build. Mater. (2006). 20, 34–45, doi: 10.1016/j.conbuildmat.2005.06.041 

[13] Bouazaoui Li A., Int. J. Adhes. (2008). 28, 101–108, doi: 10.1016/j.ijadhadh.2007.02.006 

[14] Taljsten B., J. Mater. Civil. Eng. ASCE. (1997). 9(4), 206–12, doi: 10.1061/(ASCE)0899-1561(1997)9:4(206) 

[15] Smith ST., and Teng JG., Eng. Struct. (2002). 24(4), 385–395, doi: 10.1016/S0141-0296(01)00105-5 

[16] Smith ST., and Teng JG., Eng. Struct. (2002). 24(4), 397–417, doi: 10.1016/S0141-0296(01)00106-7 

[17] Denton SN, (2001). Analysis of stresses developed in FRP plated beams due to thermal effects. FRP. Compos. 

In. civil. Eng., 527–536  

[18] Smith ST., Teng JG., Eng Struct. (2001). 23(7), 857–871, doi: 10.1016/S0141-0296(00)00090-0 

[19] Robinovitch O, and Frostig Y. (2001). Nonlinear higher-order analysis of cracked RCbeams strengthened with 

FRP strips. J. Struct. Eng- ASCE. 127(4): 381–389 

[20] Shen HS., Teng JG., and Yang J., J. Eng. Mech. ASCE (2001). 127(4), 399–406, doi: 10.1061/(ASCE)0733-

9399(2001)127:4(399) 

[21] Hassaine Daouadji T. Advan. Comput. Design. (2017). 2(1), 57-69, doi: 10.12989/acd.2017.2.1.057 

[22] Bouakaz K, Hassaine Daouadji T, Meftah SA, Ameur M, and Adda Bedia EA (2014). A numerical analysis of 

steel beams strengthened with composite materials. Mech. Compos. Mater. 50(4): 685-696 

[23] Krour B, Bernard F, and Tounsi A. Eng. Struct. (2014). 56, 218-227, doi: 10.1016/j.engstruct.2013.05.008 

[24] Touati M, Tounsi A, and Benguediab M. Comput. Concrete. (2015). 15(3), 141-166, doi: 

10.12989/cac.2015.15.3.337 

[25] Hadji L, Hassaine Daouadji T, Meziane AM, and Adda Bedia EA. Steel. Compos. Struct. Int. J. (2016). 20(2), 

413-429, doi: 10.12989/scs.2016.20.2.413 

[26] Kara IF. Struct. Eng. Mech. Int. J. (2016). 59(4), 775-793, doi: 10.12989/sem.2016.59.4.775 

[27] Elamary AS, Abd-ELwahab RK. Struct. Eng. Mech. Int. J. (2016). 57(5), 937-949, doi: 

10.12989/sem.2016.57.5.937 

[28] Gibson R.F., (1994). Principles of composites material mechanics. McGraw-Hill Inc. 

[29] Benkeddad. A, Grediac.M, Vautrin. A, (1995).On the transient hygroscopic stresses in laminated composite 

plates, composite Structures, Elsevier Applied Science, 30 (2), 201-205 

[30] Benkeddad. A, Grediac.M, Vautrin. A, (1996). Computation of transient hygroscopic stresses in laminated 

composite plates, Composites Science and Technology, 56, 869-876 

[31] Tounsi. A and Edda Bedia. E.A, (2003). Some observations on the evolution of transversal hygroscopic stresses 

in laminated composites plates: effect of anisotropy, Composite Structures, 59, 445-454 

[32] Shen. C.H, (1981). Environmental effects in the elastic moduli of composite material. Environmental Effects on 

composite Materials, Springer.G.S, Ed, Technomic Publiching Company, 94-108. 

http://dx.doi.org/10.1016/j.ijadhadh.2006.01.009
https://doi.org/10.1016/j.ijsolstr.2005.03.074
http://dx.doi.org/10.1163/156855406778440758
http://dx.doi.org/10.1163/156855406778440758
https://doi.org/10.1016/0262-5075(88)90033-4
http://dx.doi.org/10.1016%2FS0958-9465(01)00015-4
https://doi.org/10.1016/S0141-0296(00)00090-0
https://doi.org/10.1016/S0143-7496(01)00031-8
https://doi.org/10.1016/j.conbuildmat.2005.06.041
https://doi.org/10.1016/j.ijadhadh.2007.02.006
https://doi.org/10.1061/(ASCE)0899-1561(1997)9:4(206)
https://doi.org/10.1016/S0141-0296(01)00105-5
https://doi.org/10.1016/S0141-0296(01)00106-7
https://doi.org/10.1016/S0141-0296(00)00090-0
https://doi.org/10.1061/(ASCE)0733-9399(2001)127:4(399)
https://doi.org/10.1061/(ASCE)0733-9399(2001)127:4(399)
http://dx.doi.org/10.12989/acd.2017.2.1.057
https://doi.org/10.1016/j.engstruct.2013.05.008
http://dx.doi/
http://dx.doi.org/10.12989/scs.2016.20.2.413
http://dx.doi.org/10.12989/sem.2016.59.4.775
http://dx.doi.org/10.12989/sem.2016.57.5.937
http://dx.doi.org/10.12989/sem.2016.57.5.937

