Please use this identifier to cite or link to this item:
http://dspace.univ-temouchent.edu.dz/handle/123456789/5935
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | MEGTAITI, Sihem | - |
dc.contributor.author | HAMMOUDI, Ahmed | - |
dc.date.accessioned | 2024-12-15T10:49:00Z | - |
dc.date.available | 2024-12-15T10:49:00Z | - |
dc.date.issued | 2020 | - |
dc.identifier.uri | http://dspace.univ-temouchent.edu.dz/handle/123456789/5935 | - |
dc.description.abstract | The principle of fractional derivation has many applications. It intervenes in the resolution of several nonlinear fractional problems in particular, in the study of existence and uniqueness. This paper discusses different appliquations of this principle as well as some of its extensions and generalizations that involve in the resolution of nonlinear fractional differential problems.We demonstrate the existence and uniqueness of solutions using the principle of Banach contactions and the fixed point theorems of Schaefer and Kranoselskii. | en_US |
dc.language.iso | fr | en_US |
dc.subject | Equation différentielle fractionnaire non linéaire, problème aux limites,dérivée fractionnaire de Riemann, dérivée fractionnaire de Caputo, dérivée fractionnaire de Grunwald-Letnikov, intégrale fractionnaire de Riemann-Liouville,théorie du point fixe. | en_US |
dc.subject | Nonlinear fractional differential equation,boundary condition problem, Riemann fractional derivative,Caputo fractional derivative,fractional derivative of Grunwald-Letnikov,fractional integral of Riemann-Liouville, fixed-point theory. | en_US |
dc.title | DÉRIVATION FRACTIONNAIRE APPLIQUÉE À L’ÉTUDE DE DEUX PROBLÈMES DIFFÉRENTIELS FRACTIONNAIRES NON-LINÉAIRES | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | Mathématique |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
sihemzineb.pdf | 490,65 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.