Please use this identifier to cite or link to this item: http://dspace.univ-temouchent.edu.dz/handle/123456789/5881
Title: Extraction des connaissances à partir d’une base de données (application à la détection de fraude dans la consommation d’électricité et du gaz)
Authors: OUNANE, Amina
MESSABIHI, Meriem
BOUHALOUAN, Djamila
Keywords: Extraction de connaissances, intelligence artificielle, apprentissage automatique détection de fraudes, consommation d'électricité et de gaz, Base de données révérencielle STEG, classificateurs XGBoost et LightGBM, challenge Zindi
Knowledge extraction, artificial intelligence, machine learning fraud detection, electricity and gas consumption, Rev.STEG database, XGBoost and LightGBM classifiers, Zindi challenge
Issue Date: 2023
Abstract: Our work involves combining the fields of knowledge extraction and artificial intelligence to develop a sophisticated system for detecting fraud related to electricity and gas consumption. To achieve this, we leveraged the online database of STEG and implemented two state-of-the-art classifiers, XGBoost and LightGBM, which are among the top machine learning algorithms for solving such problems. After conducting a comparative evaluation, we selected the most performant model, LightGBM, taking into account several metrics demonstrating its superiority. Using this model, we achieved a precision rate of 95.00% and a score of 88.71%, resulting in an excellent 19th position out of 295 participants in the Zindi challenge. These results showcase the effectiveness of our innovative approach and our dedication to tackling challenges in energy fraud detection.
URI: http://dspace.univ-temouchent.edu.dz/handle/123456789/5881
Appears in Collections:Mathématique

Files in This Item:
File Description SizeFormat 
Mémoire_PFE_OUNANE.A&MESSANIHI.M_Enc_NOUHALOUAN.pdf13,38 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.