Please use this identifier to cite or link to this item: http://dspace.univ-temouchent.edu.dz/handle/123456789/5289
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBENIANI, ABDERRAHMANE-
dc.date.accessioned2024-09-25T11:36:57Z-
dc.date.available2024-09-25T11:36:57Z-
dc.date.issued2024-12-31-
dc.identifier.citationSaber, H.; Braik, A.; Bahri, N.; Beniani, A.; Alraqad, T.; Jawarneh, Y.; Zennir, K. Decay Properties for Transmission System with Infinite Memory and Distributed Delay. Fractal Fract. 2024, 8, 94. https:// doi.org/10.3390/fractalfract8020094en_US
dc.identifier.urihttp://dspace.univ-temouchent.edu.dz/handle/123456789/5289-
dc.description.abstractWe consider a damped transmission problem in a bounded domain where the damping is effective in a neighborhood of a suitable subset of the boundary. Using the semigroup approach together with Hille–Yosida theorem, we prove the existence and uniqueness of global solution. Under suitable assumption on the geometrical conditions on the damping, we establish the exponential stability of the solution by introducing a suitable Lyapunov functionalen_US
dc.language.isoenen_US
dc.publisherFractal and Fractionalen_US
dc.subjectexponential stability; multiplier method; convexity; partial differential equationsen_US
dc.titleDecay Properties for Transmission System with Infinite Memory and Distributed Delayen_US
dc.typeArticleen_US
Appears in Collections:Département mathématique et informatique

Files in This Item:
File Description SizeFormat 
fractalfract-2024-1.pdf374,42 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.