
 الجمهورية الجزائرية الديمقراطيـة الشعبيــة

People's Democratic Republic of Algeria

 وزارة التـعليــم العالـي والبحــث العلمــــي

Ministry of Higher Education and Scientific Research

 جامعة عين تموشنت بلحاج بوشعيب

Ain Temouchent – University Belhadj Bouchaib

Faculty of Science and Technology

Department of Mathematics & Computer Science

End of Cycle Project

To obtain Master degree in Networks and Data Engineering

Specialty: Computer Systems

Theme

Submitted by:

 Walid TOUIL

In front of the jury composed of:

DR. Fatima BEDAD ATU.B.B (Ain Temouchent) President
DR. Hakim BENDIABDALLAH ATU.B.B (Ain Temouchent) Examiner
DR. Ali BENZERBADJ ATU.B.B (Ain Temouchent) Supervisor

Academic Year: 2022/2023

Optimization of Constrained Relay Node Deployment using a Metaheuristic

ACKNOWLEDGMENT

All praises to Allah and His blessing for the completion of this thesis. I thank God

for all the opportunities, trials and strength that have been showered on me to finish

writing the thesis. I experienced so much during this process, not only from the aca-

demic aspect but also from the aspect of personality.

First and foremost, I would like to sincerely thank my supervisor Dr. Ali Benzerbadj

for his guidance, understanding, patience and most importantly, he has provided posi-

tive encouragement and a warm spirit to finish this thesis. It has been a great pleasure

and honour to have him as my supervisor.

My deepest gratitude goes to all of my family members. It would not be possible

to write this thesis without the support from them. I would like to thank my dearest

mother for listening to me with so much patience, for encouraging me and for her

abundant moral support, my sister Kawtar, my brother Zakaria, my nephews Kamel

and Hichem.

Acknowledgment

I would sincerely like to thank all my dear friends who were with me and support

me through thick and thin. In particular I am tryly grateful to Chems Eddine and

Khaled for their unwavering friendship. Your presence in my life has brought countless

moments of laughter, inspiration, and motivation.

Lastly, I would like to acknowledge all the individuals, whether mentioned explic-

itly or not, who have played a role in shaping my thinking and helping me reach this

milestone.

Thank you all for being a part of this incredible journey and for your unwavering

support. Your belief in me has been the driving force behind my achievements. I am

grateful beyond words.

Regards,
Touil Walid

CONTENTS

General Introduction 1

1 Deployment of Wireless Sensor Networks for Surveillance Applica-

tions 3

1.1 Introduction . 3

1.2 WSNs: Constraints and Challenges . 4

1.2.1 Constraints . 4

1.2.2 Challenges . 5

1.3 WSNs deployment approaches . 5

1.3.1 Deployment stategies to meet coverage and connectivity in WSNs 7

1.4 Surveillance applications . 9

1.5 Conclusion . 11

2 Meta-Heuristic based Multi-Objective Optimization For WSN De-

ployment 12

2.1 Introduction . 12

2.2 Combinatorial Optimisation . 13

Contents

2.3 Problems of Combinatorial Optimisation 13

2.3.1 Combinatorial problems . 13

2.4 Techniques to resolve Combinatorial Optimisation Problems 17

2.4.1 Exact Methods . 18

2.4.2 Approximate Methods . 28

2.5 Conclusion . 34

3 Implementation and Performance Results 35

3.1 Introduction . 35

3.2 Implementation details . 36

3.2.1 Hardware . 36

3.2.2 Software . 36

3.2.3 Algorithm employed . 36

3.3 Experimental parameters . 37

3.3.1 The surveyed fenced area scenario 37

3.3.2 Experimental setup parameters 39

3.3.3 Performance measures . 39

3.4 Performance Results . 39

3.5 Conclusion . 42

General Conclusion 43

Abstract . 44

Bibliography 46

LIST OF FIGURES

1.3.1 Random node deployment strategies in WSN 6

1.3.2 Triangular Lattice . 8

1.3.3 Hexagonal Grid . 8

1.3.4 Square Grid Pattern where nodes are placed in the corners 8

1.3.5 Square Grid Pattern where nodes are placed in the middle 8

1.4.1 Fenced military area that use WSNs for surveillance 9

1.4.2 WSN based surveillance model . 10

2.3.1 Complexity classes labeled from Easy to Hard scale 15

2.4.1 Optimization methods classification . 17

2.4.2 Example of 0-1 Knapsack Problem . 19

2.4.3 Constraint programming optimization methods 20

2.4.4 The feasible set of solutions . 22

2.4.5 The optimal solution . 22

2.4.6 8-Puzzle problem . 23

2.4.7 The solution to 8-Puzzle problem . 24

2.4.8 Job assignment problem . 25

Figures

2.4.9 Job assignment problem worker A . 26

2.4.10Job assignment problem worker B . 26

2.4.11Job assignment problem worker C,D 27

2.4.12Branch and bound diagram of Job assignment problem 27

2.4.13Comparison between Greedy and Exact algorithm 29

2.4.14A visualisation of Global and Local optima 31

2.4.15Two neighborhood structures of VNS comparaison 32

3.3.1 Example of a surveilled fenced area . 38

3.4.1 Relays and Hops Comparaison between Greedy algorithm and BVNS . 41

3.4.2 Initial and BVNS fitness comparaison 41

3.4.3 Total execution time of each grid . 42

LIST OF ABBREVIATIONS

WSN Wireless Sensor Network

MAC Media Access Control

PDF Probability Density Function

THT Tri-Hexagon Tiling

MOO Multi-Objective Optimization

P Polynomial

NP Non-deterministic Polynomial

COP Combinatorial Optimization Problems

DP Dynamic programming

CP Constraint Programming

List of Abbreviations

LP Linear Programming

A* A Star

BB Branch and Bound

GA Genetic Algorithm

PSO Particle Swarm Optimization

ABC Artificial Bee Colony

CRO Chemical Reaction Optimization

SA Simulated Annealing

TS Tabu Search

VNS Variable Neighborhood Search

ILS Iterative Local Search

VND Variable Neighborhood Descent

GVNS General Variable Neighborhood Search

SVNS Skewed Variable Neighborhood Search

BVNS Basic Variable Neighborhood Search

RN Relay Node

GENERAL INTRODUCTION

Wireless Sensor Networks (WSNs) have emerged as a versatile and efficient

technology for a wide range of applications, including surveillance. The deployment

of WSNs for surveillance applications requires careful consideration of various factors

such as coverage, connectivity, energy efficiency, and latency which related to the hop

count in the network. In order to address these challenges, this thesis focuses on the

optimization of constrained relay node deployment using a meta-heuristic approach.

The project consists of three chapters. The first chapter provides an overview of the

deployment of wireless sensor networks specifically tailored for surveillance

applications. It explores the fundamental concepts and requirements of surveillance

systems, emphasizing the need for efficient and reliable WSN deployments. The

chapter discusses the key factors influencing the deployment process, including

coverage requirements, communication constraints, and energy limitations. It also

reviews existing approaches and techniques used for WSN deployment in surveillance

applications, highlighting their limitations and the need for further optimization.

1

General Introduction

Chapter 2 delves into the core of this thesis, introducing the concept of

metaheuristic-based multi-objective optimization for WSN deployment. It presents

an in-depth exploration of various exact and approximate algorithms and their

application to combinatorial optimization problems. It explores different types of

combinatorial optimization problems and discusses techniques to resolve these

problems. This chapter sets the groundwork for utilizing metaheuristic algorithms to

tackle the relay node deployment problem.

The last chapter focuses on the practical implementation of the proposed

meta-heuristic-based optimization framework. It describes the design and

development of the optimization algorithm, namely the Variable Neighborhood

Search (VNS) algorithm, including the formulation of objectives, constraints, and the

integration of meta-heuristic techniques. The chapter also presents the experimental

setup and methodology used for evaluating the performance of the proposed

approach. It discusses the metrics employed to measure the effectiveness of the

optimized relay node deployment, such as network coverage, connectivity, energy

efficiency, and latency.

At the end of the manuscript, we provide a general conclusion and some future works

to explore

2

CHAPTER 1

DEPLOYMENT OF WIRELESS SENSOR

NETWORKS FOR SURVEILLANCE

APPLICATIONS

1.1 Introduction

Wireless Sensor Networks (WSNs) have recently emerged as a premier research topic.

They have great long-term economic potential, ability to transform lives, and pose

many system-building challenges; a WSN can be defined as a network of tiny devices,

denoted as sensor or relay nodes. Sensor nodes sense the environment and

communicate the information gathered, from a monitored field (e.g., sensitive areas

such as airports, oil fields, frontiers, country border, etc.) through wireless links. The

3

1.2. WSNs: Constraints and Challenges Chapter 1

data are then forwarded, eventually via multiple hops and through other sensors or

relay nodes, to one or multiple sink nodes (also called base stations). The sink

node(s) processes the data locally or sends it to a remote decision centre through a

high throughput network. The WSN nodes can be stationary or mobile, aware of

their location or not and homogeneous or not [14].

In the following sections we are going to tackle the deployment problematic of such

networks.

1.2 WSNs: Constraints and Challenges

Now that we have established the context and importance of WSNs, let’s discuss

significant constraints that can undermine their reliability in various ways, despite

their usefulness. It is crucial to consider these unique issues as they can have a

significant impact on the overall performance and efficiency of the network,

potentially making it unusable.

1.2.1 Constraints

Energy: Nodes in WSNs are typically powered by batteries, which are not easily

replaceable or rechargeable. As a result, the available energy of each network

node is limited. For instance, optimal node deployment, energy-efficient routing

and Media Access Control (MAC) design, etc., are crucial design criteria for

WSNs because the power failure of a node not only affects the node itself but

also its capacity to forward packets on behalf of other nodes [8].

Bandwidth: WSNs often operate in a constrained frequency spectrum, resulting in

limited bandwidth. This limitation can restrict the amount of data that can be

transmitted within a given time, potentially affecting the timeliness and

accuracy of data collection [8].

4

1.3. WSNs deployment approaches Chapter 1

Unreliable wireless connections: It can be a result of various factors, including

interference, signal strength issues, and packet loss. These problems can lead to

inconsistent connectivity between nodes.

Furthermore, in addition to the discussed challenges, WSNs also face other crucial

issues such as fault tolerance, scalability, coverage and connectivity, among others.

1.2.2 Challenges

WSNs deployment

The process of optimally placing sensor nodes in a given area to achieve specific

objectives. The node deployment problem in WSNs involves determining the optimal

locations for deploying the sensor nodes to optimize network performance and

coverage while considering various constraints. Node deployment can be

deterministic or stochastic (random) [5].

1.3 WSNs deployment approaches

Random Deployment

WSN Random deployment refers to the process of placing sensor nodes in an

arbitrary or stochastic manner within a target area, in other words it involves

scattering the nodes randomly or using a probabilistic distribution across the

deployment region although their density can be controlled [10], sensor positions are

defined by a Probability Density Function (PDF). Depending on the deployment

strategy, the coordinates of the sensor positions may follow a particular distribution.

We categorise the random placement strategies into simple and compound [27] as

illustrated in Figure 1.3.1.

5

1.3. WSNs deployment approaches Chapter 1

Figure 1.3.1: Random node deployment strategies in WSN

Random deployment is suitable for applications where the details of the regions are

not known, inaccessible or hostile. An example of random deployment of sensor

nodes would be within a disaster region [6].

Logically, random deployments result in sub-optimal WSN performance in terms of

coverage, connectivity, delay and energy efficiency.

Deterministic Deployment

In this approach each sensor node is placed at pre-determined coordinates, this type

of deployment is usually pursued when nodes are expensive or when their operation

is significantly affected by their position. In contrast to random deployment,

deterministic deployment offers an optimal network configuration since the

positioning of nodes is determined beforehand to meet the design goals (such as

reducing costs and energy usage while enhancing coverage, connectivity, delay and

lifetime). From performance and cost point of view, deterministic deployment is

6

1.3. WSNs deployment approaches Chapter 1

considered a smart deployment approach in comparison to the random one [31].

WSNs deterministic deployment strategies consider the optimization of one or more

objectives related to the application needs. Among these objectives, coverage is

considered the most important metric in the literature. The research community has

extensively investigated methods to maximize the coverage rate while minimizing

node usage. In addition to coverage, maintaining connectivity and energy saving are

another concerns in WSNs [31].

1.3.1 Deployment stategies to meet coverage and

connectivity in WSNs

A sensor’s prime function is to sense the environment for any occurrence of the event

of interest. Therefore as mentioned before coverage is one of the major concerns in

WSN. In fact it is a key for evaluating the quality of service in WSN [32].

Connectivity and coverage problems are caused by the limited communication and

sensing range. The solution lies in how the sensors are positioned with respect to

each other. To solve both problems, the sensors need to be placed optimally. In order

to maximize coverage, the sensors should not be positioned too close to each other,

allowing the sensing capability of the network to be fully utilized. At the same time,

they should not be located too far apart to avoid gaps or areas without coverage.

From a connectivity standpoint, the sensors should be placed close enough to ensure

they are within each other’s communication range, thus ensuring connectivity [4].

Some researchers believe that by positioning the node in a particular location and

keeping it stationary, it will provide equal and consistent sensing or monitoring

capabilities at every point throughout the sensor field because of its deterministic

architecture. Poe and Schmitt presented three deployments for large-scale WSNs

namely, a uniform random, a square grid, and a pattern-based Tri-Hexagon Tiling

(THT) node deployment [34]. The figures below show the different grid techniques of

node positioning.

7

1.3. WSNs deployment approaches Chapter 1

In a triangular lattice sensor nodes are

positioned at the vertices of equilateral

triangles The distance between neigh-

boring nodes in the lattice is kept uni-

form, ensuring a regular distribution

throughout the network.

Figure 1.3.2: Triangular Lattice

In a hexagonal grid the arrangement

of sensor nodes are positioned at the

vertices of regular hexagons, with each

node equidistant from its neighboring

nodes.

Figure 1.3.3: Hexagonal Grid

In a Square Grid pattern the given area

of interest is divided into equal squares

and nodes are placed at the corners.

It is assumed that the sensing range is

equal to the length of a cell.

Figure 1.3.4: Square Grid Pattern
where nodes are placed in the corners

Same as the square grid in the left fig-

ure, but the nodes are placed at the

middle of the squares instead.

Figure 1.3.5: Square Grid Pattern
where nodes are placed in the middle

8

1.4. Surveillance applications Chapter 1

1.4 Surveillance applications

Security problems are a major concern in several domains, and surveillance

applications, especially those that rely on WSNs, are no exception. WSNs are widely

employed in surveillance systems due to their ability to monitor and gather data

from distributed sensor nodes and transmit it to a central monitoring station

through relay nodes. These surveillance applications can be found in various

scenarios For example intrusion detection systems, traffic surveillance or sensitive

fenced areas (see Figure 1.4.1).

Figure 1.4.1: Fenced military area that use WSNs for surveillance

9

1.4. Surveillance applications Chapter 1

Surveillance applications have special requirements such an extended network

lifetime, a reasonable latency which is generally related to the hop count and a high

degree of coverage and connectivity.

In this thesis, we have tackled the problem of the surveillance of fenced sensitive

areas using two-tiered topology based WSNs. The latter are composed of sensor and

relay nodes. Sensor nodes are used as sentinel to monitor the border of the fenced

sensitive area while the relay nodes are used to forward alert messages until the

unique sink node as illustrated by Figure 1.4.2

Figure 1.4.2: WSN based surveillance model

10

1.5. Conclusion Chapter 1

1.5 Conclusion

In summary, node deployment is a critical aspect of WSN design, influencing

network performance and resource utilization. Random deployment offers simplicity

and broad coverage in emergency situations, while deterministic deployment provides

better control and optimization. By understanding the characteristics of both

strategies and tailoring them to the application’s needs, we can enhance the

effectiveness and efficiency of Wireless Sensor Networks in various domains (Multi

objective, exact approximte, heuristic metaheuristic).

In the upcoming chapter, we delve into the details of Meta-Heuristic based

Multi-Objective Optimization for WSN deployment and explore its potential to

improve network performance and resource utilization. Specifically, we investigate

how metaheuristic algorithms can be employed to tackle the complex trade-offs

involved in WSN design, ultimately leading to more effective and efficient

deployments.

11

CHAPTER 2

META-HEURISTIC BASED

MULTI-OBJECTIVE OPTIMIZATION

FOR WSN DEPLOYMENT

2.1 Introduction

Multi-Objective Optimization (MOO) is a computational approach that aims to

optimize multiple conflicting objectives simultaneously. In the context of WSNs, by

employing MOO techniques, it becomes possible to balance objectives such as

maximizing network coverage while minimizing energy consumption or ensuring

reliable communication. MOO algorithms seek to identify a set of Pareto optimal

solutions (Pareto optimality is a state in which no improvement can be made in one

12

2.2. Combinatorial Optimisation Chapter 2

objective without degrading another, named after the Italian polymath Vilfredo

Pareto). Researchers continue to explore new MOO algorithms, protocols, and

approaches to address the challenges faced by WSNs where the aim is to develop

smarter and more autonomous WSNs that can optimize multiple objectives

simultaneously, leading to improved performance and resource utilization [41] [33].

One emerging area of research that complements the MOO approach in WSNs is

combinatorial optimization which will be covered in the next sections.

2.2 Combinatorial Optimisation

Combinatorial optimization is a branch of mathematical optimization that has

applications in artificial intelligence, applied mathematics, software engineering, and

many other domains. A main motivation is that thousands of real-life problems can

be formulated as abstract combinatorial optimization problems and it involves

identifying the best solution from a finite set of possible solutions for an objective

function with a discrete domain and a vast configuration space. Although

Combinatorial optimization is about solving optimization problems it doesn’t give

specific instructions on how to turn real-world problems into mathematical questions

[16] [25]. Today, combinatorial optimization finds widespread application in the

study of algorithms, and it holds particular relevance in our case for optimizing WSN

nodes deployment.

2.3 Problems of Combinatorial Optimisation

2.3.1 Combinatorial problems

Combinatorial problems are encountered in many areas of computer science and

various other disciplines that utilize computational methods. Well known

combinatorial problems are cases such as planning, scheduling and resource

allocation. The essence of these problems lies in identifying optimal groupings,

13

2.3. Problems of Combinatorial Optimisation Chapter 2

orderings, or assignments for a discrete, finite set of objects, all while abiding to

specific conditions or constraints. Combinations of these solution components form

the potential solutions of a combinatorial problem [13].

Decision problems

Many combinatorial problems can naturally be characterized as decision problems,

where the solutions of a given instance are determined by a set of logical conditions

[13]

• The search variant is a problem-solving approach that involves finding a

solution or determining the non-existence of a solution given a specific problem

instance.

• The decision variant refers to a scenario where one needs to determine whether

a solution exists for a given problem instance.

These variants are closely related because algorithms solving the search variant can

always be used to solve the decision variant. Interestingly, this holds true for many

combinatorial decision problems [13].

Combinatorial Optimization problems

Optimization problems can be viewed as generalizations of decision problems, where

solutions are evaluated based on an objective function, and the goal is to find

solutions with optimal objective function values. The objective function is often

defined for both candidate solutions and solutions, and the value of the objective

function for a given candidate solution (or solution) is also referred to as its solution

quality [13]. For each combinatorial optimisation problem, we distinguish two

variants:

• The search variant: given a problem instance, find a solution with minimal (or

maximal, respectively) objective function value.

14

2.3. Problems of Combinatorial Optimisation Chapter 2

• The evaluation variant: given a problem instance, find the optimal objective

function value (i.e., the solution quality of an optimal solution).

Many combinatorial optimisation problems are defined based on an objective

function as well as on logical conditions (Constraint) [13].

Complexity issues

In theoretical computer science, the classification and complexity of common problem

definitions have two major sets, P which is “Polynomial” time and NP which

“Non-deterministic Polynomial” time. There are also NP-Hard and NP-Complete

sets, which we use to express more sophisticated problems as depicted in Figure 2.3.1.

Figure 2.3.1: Complexity classes labeled from Easy to Hard scale

➢ P: The class of problems that have polynomial-time deterministic algorithms.

That is, they are solvable in O(P(n)), where P(n) is a polynomial on n. A

deterministic algorithm is essentially one that always computes the correct

answer [28].

15

2.3. Problems of Combinatorial Optimisation Chapter 2

➢ NP: The second set of problems cannot be solved in polynomial time. However,

they can be verified (or certified) in polynomial time [2] For example, we’ll see

complexities like O(nn), O(2n), O(20.000001×n) [28].

➢ NP-Complete: This set is very similar to the previous set. Taking a look at the

diagram, all of these all belong to NP , but are among the hardest in the set.

What makes them different from other NP problems is a useful distinction

called completeness. For any NP problem that’s complete, there exists a

polynomial-time algorithm that can transform the problem into any other

NP-complete problem (In other words, an NP-complete problem is an

NP-hard problem that is also in NP). This transformation requirement is also

called reduction [2].

➢ NP-Hard: The last set of problems, it contains the hardest, most complex

problems in computer science. They are not only hard to solve but are hard to

verify as well, These algorithms have a property similar to ones in

NP-Complete they can all be reduced to any problem in NP . Because of that,

these are in NP-Hard and are at least as hard as any other problem in NP . A

problem can be both in NP and NP-Hard, which is another aspect of being

NP-Complete [2].

The P versus NP Problem

The P versus NP problem was introduced independently in 1971 by Stephen Cook

and Leonid Levin. Since that time, extensive efforts have been made to find a proof

for this problem, but no definitive solution has been discovered thus far it asks

whether P is equal to NP or not. In other words, it asks whether every problem for

which a solution can be verified in polynomial time can also be solved in polynomial

time [1] [39].

If P=NP , we could find solutions to search problems as easily as checking

whether those solutions are good. This would essentially solve all the

16

2.4. Techniques to resolve Combinatorial Optimisation Problems Chapter 2

algorithmic challenges that we face today and computers could solve almost

any task. However because there are problems for which no efficient algorithm

exists, and finding a solution requires an exponential amount of time [1]. In

this case, there would always be a gap between verifying a solution and finding

it thus P ≠ NP .

2.4 Techniques to resolve Combinatorial

Optimisation Problems

To tackle the complexity of combinatorial optimization problems, various techniques

have been developed to efficiently search through the vast solution space and find the

desired high-quality solutions. These techniques leverage different approaches,

ranging from exact methods that guarantee optimality to heuristic methods that

quickly find good solutions or metaheuristic methods that provide higher-level

strategies that guide the search process, while approximation algorithms offer

solutions with known bounds on their quality [36]. By applying these diverse

techniques, researchers can effectively address combinatorial optimization problems

and make significant strides in solving real-world challenges across multiple domains.

Now, let’s explore some of the most commonly employed techniques in more detail.

Figure 2.4.1: Optimization methods classification

17

2.4. Techniques to resolve Combinatorial Optimisation Problems Chapter 2

2.4.1 Exact Methods

Exact method algorithms provide a precise approach to solving combinatorial

optimization problems. This method guarantee finding the optimal solution by

exhaustively search through all possible solutions or utilize mathematical techniques

for every finite size instance of a COP within an instance dependent finite run time,

or show that no possible solution exists [36].

Let’s explore a few examples of exact method algorithms to better understand their

applications.

Dynamic programming

Dynamic programming is an algorithmic approach for investigating an optimization

problem by breaking it down into smaller, simpler sub-problems. A key aspect of

dynamic programming is the proper structuring of optimization problems into

multiple levels and solving them in a sequential manner, one level at a time. Each

level is solved using typical optimization techniques, and the solution obtained helps

to define the characteristics of the next level problem in the sequence. Typically,

these levels correspond to distinct time periods within the overall problem [29].

0-1 Knapsack Problem example: a thief robbing a store finds n items, the ith

item is worth vi algerian dinars and weights wi kilograms, where vi and wi are

positive integers. He wants to take as valuable a load as possible, but he can carry at

most W kilograms in his knapsack for some positive integer W. What items should

be taken? [3]

Formally, the 0-1 knapsack problem can be stated as follws:

Given: n items of values v1 , v2 , . . . , vn (positive integers) and of the weight

w1 , w2 , . . . , wn (positive integers), and a total weight W (positive integer).

Find: a subsect S ⊆ 1, 2, . . . , n of the items such that:

∑
i∈S

wi ≤W and
∑
i∈S

vi is maximized.

18

2.4. Techniques to resolve Combinatorial Optimisation Problems Chapter 2

In the Figure 2.4.2 below, we can see a visual example of the 0-1 Knapsack problem.

The problem involves a thief who needs to choose the best combination of items from

a selection of four different candies, each with different values and weights.

Figure 2.4.2: Example of 0-1 Knapsack Problem

This is called the 0-1 knapsack problem because each item must either be taken or

left behind the thief cannot take a fractional amount of an item or take an item more

than once [3].

Constraint Programming

Constraint Programming (CP) is a powerful paradigm for solving combinatorial

search problems that imposes restrictions on the possible solutions and reduce the

search space of a problem [20]. CP utilizes a mathematical/logical modeling language

to encode the formulation (translating the problem into a formal representation that

a computer can understand), enabling users to employ diverse search strategies.

These strategies can be adjusted to locate solutions effectively, making CP highly

flexible in terms of formulation power and solution approach but requires skill in

19

2.4. Techniques to resolve Combinatorial Optimisation Problems Chapter 2

declarative-style logic programming and in developing good search strategies [17].

The Figure 2.4.3 below shows the different types of constraint programming:

Figure 2.4.3: Constraint programming optimization methods

There are many different types of constraint programming, and the ones we’re

interested in are those that are used for optimization purposes such as Linear

Programming (also called Linear Optimization). In this type of constraint

programming, the goal is to to solve problems where we want to make the most or

the least of something, while following certain constraints. These constraints may be

equalities or inequalities. The optimization problems in linear programming involve

calculating profits and losses. Linear programming is a useful tool for finding a

feasible region to get the optimal solution within a given set of conditions, aiming for

the highest or lowest value of the thing we want to optimize.

In other words, linear programming helps us find the best outcome by maximizing or

minimizing the objective function for a given mathematical model, while taking into

account certain requirements that are expressed in terms of linear relationships. The

main goal of linear programming is to find the best possible solution (it is possible to

get either multiple optimal solutions or no solution) [26] [24].

20

2.4. Techniques to resolve Combinatorial Optimisation Problems Chapter 2

Element Characteristics
Examlpes

Acceptable NOT acceptable

Objective

function
Linear

minimize (2x+5y) minimize (2xy+5y)

maximize (6x+7y+8z) maximize (2x2+log(y))

Constraints
Linear 2x+5y ≤ 7 2xy +5y ≤ 7

Inequalities must be of

the form (≥ or ≤). No

strict inequalities (>or

<) are allowed

2x+5y ≤ 7 2x+5y <7

Decision

variables
Continuous

x ∈ [0,1] where x can

take any real value

ranging from 0 to 1

(The variable value

must alway be ≥0)

x ∈ (0,1) where x must

be either 0 or 1

Table 2.1: Characteristics of a linear program

An example of a production problem with telephones: A telephone company

produces and sells two kinds of telephones, namely desk phones and cellular phones.

Each type of phone is assembled and painted by the company. The objective is to

maximize profit, and the company has to produce at least 100 of each type of phone.

There are limits in terms of the company’s production capacity, and the company

has to calculate the optimal number of each type of phone to produce, while not

exceeding the capacity of the plant [24].

A possible descriptive model of the telephone production problem is as follows:

➢ Objective: Maximize profit.

➢ Desision varibles:

• Number of desk phones produced (DeskProduction).

• Number of cellular phones produced (CellProduction).

➢ Constraints:

21

2.4. Techniques to resolve Combinatorial Optimisation Problems Chapter 2

1. The DeskProduction should be greater than or equal to 100.

2. The CellProduction should be greater than or equal to 100.

3. The assembly time for DeskProduction plus the assembly time for

CellProduction should not exceed 400 hours.

4. The painting time for DeskProduction plus the painting time for

CellProduction should not exceed 490 hours.

Now for the mathematical model of the telephone production problem, the results

are as follows:

Maximize: 12 desk_production+20 cell_production

Subject to:

desk_production ≥ 100

cell_production ≥ 100

0.2 desk_production + 0.4+cell_production ≤ 400

0.5 desk_production+0.4 + cell_production ≤ 490

With the modeling phase complete, we can now delve into the results:

Figure 2.4.4: The feasible set of solutions Figure 2.4.5: The optimal solution

A* search algorithm

The A* algorithm, pronounced "A star" is a search algorithm used to find the

shortest path between an initial and final point. It is widely regarded as one of the

22

2.4. Techniques to resolve Combinatorial Optimisation Problems Chapter 2

best and most popular techniques for pathfinding and graph traversal. Unlike other

traversal techniques, A* is considered a smart algorithm due to its ability to

significantly reduce the search space therefore saving time [30].

The idea behind A* algorithm is really simple [23]:

f(n) = g(n) + h(n) where:

g(n): The cost of traversing from the start node to node n.

h(n): The cost to reach from node n to goal node.

f(n): Estimated cost of the cheapest solution.

8-puzzle problem example using A* algorithm: Find the most cost-effective

path to reach the final state from initial state using A* Algorithm where g(n) =

Depth of node and h(n) = Number of misplaced tiles [19].

The Figure 2.4.6 below shows the initial problem of 8-puzzle and the solution we

should be having:

Figure 2.4.6: 8-Puzzle problem

The Figure 2.4.7 below represents the A* algorithm steps to reach an optimal

solution:

23

2.4. Techniques to resolve Combinatorial Optimisation Problems Chapter 2

Figure 2.4.7: The solution to 8-Puzzle problem

24

2.4. Techniques to resolve Combinatorial Optimisation Problems Chapter 2

Branch and bound

Branch and bound (BB) algorithms are utilized to find optimal solutions for

combinatorial, discrete, and general mathematical optimization problems. Generally,

when faced with an NP-Hard problem, a branch and bound algorithm systematically

explores the entire search space of potential solutions and provides an optimal

solution. There are also other similar algorithms, such as Branch and Price (a hybrid

of branch and bound and column generation algorithms), which is used for solving

problems with large solution spaces, and Branch and Cut (a hybrid of branch and

bound and cutting planes algorithms), which is employed to solve mixed-integer

programming problems [9].

A branch and bound algorithm consist of stepwise enumeration of possible candidate

solutions by exploring the entire search space.

Job assignment problem using branch and bound example: Let there be N

workers and N jobs. Any worker can be assigned to perform any job, incurring some

cost that may vary depending on the work-job assignment. It is required to perform

all jobs by assigning exactly one worker to each job and exactly one job to each

agent in such a way that the total cost of the assignment is minimized [35].

The Figure 2.4.8 below shows an example of job assignment problem with a brief

explanation:

Figure 2.4.8: Job assignment problem

25

2.4. Techniques to resolve Combinatorial Optimisation Problems Chapter 2

For each worker, we’ll choose the job with minimum cost from the list of unassigned

jobs, Let’s take the Figure 2.4.9 below and try to calculate promising cost when Job

2 is assigned to worker A.

Figure 2.4.9: Job assignment problem worker A

Now we assign job 3 to worker B as it has minimum cost from list of unassigned jobs.

Cost becomes 2 + 3 = 5 and Job 3 and worker B also becomes unavailable as shown

in Figure 2.4.10.

Figure 2.4.10: Job assignment problem worker B

Finally in Figure 2.4.11, job 1 gets assigned to worker C as it has minimum cost

among unassigned jobs and job 4 gets assigned to worker C as it is only Job left.

Total cost becomes 2 + 3 + 5 + 4 = 14.

26

2.4. Techniques to resolve Combinatorial Optimisation Problems Chapter 2

Figure 2.4.11: Job assignment problem worker C,D

The below diagram (Figure 2.4.12) shows complete search space diagram showing

optimal solution path in green.

Figure 2.4.12: Branch and bound diagram of Job assignment problem

27

2.4. Techniques to resolve Combinatorial Optimisation Problems Chapter 2

2.4.2 Approximate Methods

Most optimization problems, including those arising in important application areas,

are NP-hard. Therefore, under the widely believed conjecture that P ≠ NP , their

exact solution is prohibitively time consuming so unless P = NP , there are no

efficient algorithms to find optimal solutions for such problems, because a wide class

of optimization problems cannot be solved exactly in polynomial time where waiting

for a solution isn’t worth it, expensive or impossible because the search space is too

large, Approximate algorithms came into existence that sacrifice results accuracy for

time efficiency to get a solution that is close to optimal while reducing the

computational resources required [38].

There are various options to choose from for solving NP-hard problems

sub-optimally, and the ones we’re interested in are heuristics and metaheuristics.

Heuristic algorithms

Heuristic algorithms were first introduced by G. Polya in 1945. They were proposed

as a means to solve problems more quickly than traditional methods. Heuristics

employ practical methods and shortcuts to generate solutions that may or may not

be optimal, but are satisfactory within a limited time frame [11] [22].

Greedy algorithm: Greedy algorithm is a simple approach used to solve

optimization problems. It is based on the principle of making locally optimal

choices at each step with the hope that the overall solution will be globally

optimal. The algorithm makes the best possible choice (greedy choice that

looks best at the time) at each step without considering the larger context or

looking ahead to future steps [7].

28

2.4. Techniques to resolve Combinatorial Optimisation Problems Chapter 2

The Figure 2.4.13 below depicts a comparison of the results obtained from the

Greedy algorithm heuristic and an optimal algorithm in finding the shortest path

from node A to node J in a weighted graph:

Figure 2.4.13: Comparison between Greedy and Exact algorithm

Metaheuristic

Metaheuristic algorithms are a class of optimization algorithms that are designed to

solve complex optimization problems for which traditional heuristic algorithms may

not be effective or efficient enough [18]. While heuristic algorithms typically use

specific problem-solving techniques to find good solutions, metaheuristic algorithms

29

2.4. Techniques to resolve Combinatorial Optimisation Problems Chapter 2

take a higher-level approach and provide a framework for guiding the search process

[37].

Metaheuristic algorithms often mimic natural or social phenomena to guide the

search process. By leveraging these concepts, metaheuristic algorithms explore the

solution space in an intelligent and adaptive manner, aiming to find near-optimal

solutions within a reasonable amount of time [37].

One of the key advantages of metaheuristic algorithms is their ability to handle

complex problems with large search spaces, non-linear constraints, and multiple

conflicting objectives [37].

Some popular examples of metaheuristic algorithms include Simulated Annealing

(SA) and Variable Neighborhood Search (VNS), which are single-solution

metaheuristics that aim to improve a single candidate solution. On the other hand,

Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are

population-based metaheuristics that strive to improve multiple candidate solutions.

These algorithms have been successfully applied to a wide range of optimization

problems in various fields such as engineering, logistics, finance, and scheduling.

Search Space: Before we proceed any further, it is important to have a clear

understanding of some terms. In optimization, the goal is often to find the global

minimum or maximum of a function, which represents the best or worst possible

solution to the problem being optimized, depending on the context of the solution.

The most favorable value of a solution is referred to as the optimum. However,

optimization algorithms may occasionally return a local optimum, which is a point in

the search space where the objective function has the highest or lowest value among

neighboring points, but it may not be the optimum value in the entire search space

[21].

30

2.4. Techniques to resolve Combinatorial Optimisation Problems Chapter 2

The Figure 2.4.14 below is an example of solutions made from a metaheuristic

algorithm depicted in a graph:

Figure 2.4.14: A visualisation of Global and Local optima

Variable Neighborhood Search (VNS) algorithm: VNS is a metaheuristic

algorithm used for solving optimization problems. It was proposed by

Mladenović and Hansen in 1997 as an extension of the Local Search method

[15].

The Variable Neighborhood Search algorithm is designed to explore different

neighborhoods around a given solution to improve its quality. It operates by

iteratively searching the solution space using a combination of local search and

perturbation techniques. It explores a set of neighborhoods either at random or

systematically to escape from local optima [37] [15].

31

2.4. Techniques to resolve Combinatorial Optimisation Problems Chapter 2

There are various types of VNS algorithms proposed by Mladenović and Hansen,

including Variable Neighborhood Descent (VND), General VNS (GVNS), and

Skewed VNS (SVNS). Each of these algorithms has its unique characteristics. There

is also Basic VNS variant, which is the type I have chosen for the practical

implementation [12].

The following Figure 2.4.15 shows 2 different solutions one initial and the other VNS

based:

Figure 2.4.15: Two neighborhood structures of VNS comparaison

MOO methods

The goal of MOO is to find a set of optimal solutions when there are multiple

conflicting objectives. In traditional single-objective optimization, there is only one

objective to be optimized. However, many real-world problems involve multiple

objectives that need to be considered simultaneously. In such cases, a user may need

only one solution, regardless of whether the associated optimization problem is

single-objective or multi-objective. When dealing with multi-objective optimization,

the user faces a dilemma in choosing among the optimal solutions. Ideally, in

multi-objective optimization, efforts should be made to find a set of trade-off optimal

solutions by considering all objectives as important. Once a set of such trade-off

32

2.4. Techniques to resolve Combinatorial Optimisation Problems Chapter 2

solutions is found, the user can then use higher-level qualitative considerations to

make a choice [33].

Weighted sum method : The weighted sum method is a technique that combines

multiple objectives into a single objective by assigning weights to each

objective. It is a straightforward approach and commonly used in classical

optimization methods. When dealing with multiple objectives, the weighted

sum method is often the first choice due to its simplicity and widespread

application [40].

The weighted sum method combines all the multi-objective functions into one

scalar, composite objective function using the weighted sum:

F(x) = w1 f1 (x) + w2 f2 (x) + ... + wM fM (x) where ∑M
i=1 wi = 1 , wi ∈ (0 , 1) [40]

For example, if we have two objective sets: one for minimizing the RN

deployment and the other for restricting the hop count, let’s say we prioritize

minimizing the RN deployment over the hops constraint. The multiobjective

function would be written as follows:

F(x) = 0 .7 ∗ total RN (x) + 0 .3 ∗ hop count now the Multiobjective function

will favor minimizing RNs over hops because we gave it a weight of 0.7 which is

bigger than 0.3 and ∑2
i=1 wi = 1

ϵ-Constraint Method: The method selects one main objective to maximize and

treats the other objectives as restrictions. The restrictions are defined using a

tolerance parameter, ϵ, which represents the acceptable deviation from the

optimal value of each objective.The ϵ-Constraint Method produces a set of

solutions by solving the optimization problem for the main objective multiple

times, each time using a different ϵ value. By adjusting ϵ, different levels of

compromise between the objectives can be attained. A smaller ϵ indicates a

stronger preference for the corresponding objective, while a larger ϵ value

allows for more flexibility and compromises [40].

33

2.5. Conclusion Chapter 2

2.5 Conclusion

In conclusion, this chapter delved into the fascinating field of Multi-objective

optimization, Combinatory optimization, and the various techniques used to solve

these complex problems. Through an exploration of both exact and approximate

methods, as well as discussed the role of metaheuristics and the VNS algorithm we

have gained valuable insights into the challenges and advancements in this area of

research. By understanding the characteristics, strengths, and limitations of these

methods, researchers and practitioners can make informed decisions when selecting

appropriate approaches for their specific problem domains. The next chapter will go

deep into the practical application of these concepts, focusing on their relevance in

real-world scenarios.

34

CHAPTER 3

IMPLEMENTATION AND

PERFORMANCE RESULTS

3.1 Introduction

In this chapter, we explore the practical implementation of VNS algorithm and

present the performance results obtained. The previous chapters have laid the

foundation by discussing WSNs deployment, Multi-Objective optimization and

metaheuristics. Now, it is time to showcase how these concepts were translated into

a tangible solution and evaluate its effectiveness.

35

3.2. Implementation details Chapter 3

3.2 Implementation details

3.2.1 Hardware

The details below show the hardware components used to run VNS algorithm:

Processor: : Intel® Core™ i5-6300U 2.40Ghz

Memory (RAM): 8GB DDR4 2400 MHz

Storage: : SSD M.2 256Gb SSD

Operating System: : Windows 10 PRO version 22H2

3.2.2 Software

The details below show the software components used to run VNS algorithm:

Programming language: : Python version 3.11

Integrated Development Environment (IDE): Pycharm 2023

3.2.3 Algorithm employed

For the optimization of constrained relay node Deployment I have chosen BVNS

algorithm (procedure depicted below) due to it’s simplicity. The primary objective is

to optimize the deployment of RNs while simultaneously minimizing the number of

hops in the network.

36

3.3. Experimental parameters Chapter 3

Algorithm 1 Basic Variable Neighborhood Search

Generate initial solution S (in our case we performed Greedy algorithm)

while Stopping condition not met do

k ← 1;

while k ≤ kmax do

S ′ ← Shake(S, k); ▷ Shaking or perturbation

S”← Local_Search(S ′, k);

if S” is better than S then

S ← S”; ▷ Neighborhood change

k ← 1;

else

k ← k + 1;

end if

end while

end while

3.3 Experimental parameters

3.3.1 The surveyed fenced area scenario

We are going to apply the Basic Variable Neighborhood Search algorithm to a

two-dimensional grid composed of sensor (sentinel) nodes that monitor the fenced

area along the entire border of the grid. The grid is initially generated by a greedy

algorithm including RNs that forward alert messages to a sink located in the middle

of the area. The Figure 3.3.1 below illustrates an example of the scenario being

discussed where sink is in red color, sentinels in orange and relays in black.

37

3.3. Experimental parameters Chapter 3

Figure 3.3.1: Example of a surveilled fenced area

The BVNS algorithm focuses on enhancing the performance of a solution space by

incorporating various operations such as adding, modifying, or removing elements.

Two important functions, perturbation and local search, leverage these operations to

navigate away from local optima and explore the adjacent neighborhood structures

in search of improved solutions.

38

3.3. Experimental parameters Chapter 3

3.3.2 Experimental setup parameters

Parameter Values

Grids 15x15 20x20 30x30 40x40 50x50

Single mesh size 20m

Surface area 90 KM2 160 KM2 360 KM2 640 KM2 1000 KM2

RN sensing range
30m

Sink, Sentinels and

RNs communication

range

Scenarios 5

Number of iterations

per scenario
10

Algorithm used for

the initial solution
Greedy algorithm

Table 3.1: Parameter values used before practical application of BVNS

3.3.3 Performance measures

Fitness: The overall fitness (or objective function) of the results will be calculated

using weighted sum MOO method: 0.7*total relays + 0.3*average hops count

Average total relays: total relays of each scenario/total of scenarios (which is 5 in

our case)

Average fitness: fitness value of each scenario/5

Average of average hops : average hops of each scenario/5

Average time : time elapsed for each scenario/5

3.4 Performance Results

After running the algorithm for an extended period, I have obtained the following

statistics: 39

3.3. Experimental parameters Chapter 3

G
ri

ds
A

ve
ra

ge
ti

m
e

sp
en

t
A

ve
ra

ge
in

it
ia

l
fit

ne
ss

A
ve

ra
ge

B
V

N
S

fit
ne

ss
A

vg
in

it
ia

l
to

ta
l

re
la

ys
A

vg
B

V
N

S
to

ta
l

re
la

ys
A

vg
of

in
it

ia
l

av
er

ag
e

ho
ps

A
vg

of
B

V
N

S
av

er
ag

e
ho

ps

15
x1

5
33

se
co

nd
s

18
5.

02
18

3.
52

58
58

8.
6

8.
51

20
x2

0
2

m
in

ut
es

33
se

co
nd

s
35

8.
56

35
7.

78
92

91
12

.8
9

12
.9

1

30
x3

0
28

m
in

ut
es

04
se

co
nd

s
79

1.
06

78
9.

5
15

9
15

8
19

.5
3

19
.5

1

40
x4

0
02

ho
ur

s
29

m
in

ut
es

52
se

co
nd

s
14

45
.3

14
44

.5
22

6
22

4
27

.5
1

27
.5

2

50
x5

0
10

ho
ur

s
16

m
in

ut
es

25
se

co
nd

s
21

67
.1

4
21

65
.8

6
31

4
31

0
33

.1
2

33
.1

4

Table 3.2: Statistics table containing after executing 5 scenarios for each grid

40

3.3. Experimental parameters Chapter 3

By using a maximum of 10 iterations as stopping condition, we observed that BVNS

still delivered encouraging outcomes for extremely expansive search scopes within rea-

sonable time frames. The Figure 3.4.1 below is a bar chart comparing the average total

relays and average of average hops of five different grids between the initial greedy so-

lution and the final optimal BVNS solution:

Figure 3.4.1: Relays and Hops Comparaison between Greedy algorithm and BVNS

In this other Figure 3.4.2 we are comparing the initial fitness value with BVNS for

each grid:

Figure 3.4.2: Initial and BVNS fitness comparaison

41

3.5. Conclusion Chapter 3

Finally, we’re going to determine the execution time each grid took to obtain the

final solutions in the Figure

Figure 3.4.3: Total execution time of each grid

3.5 Conclusion

In this final chapter, we implemented the BVNS algorithm with the Greedy

algorithm as the initial solution to optimize the deployment of RNs while minimizing

the hop count in a surveyed fenced area. The objective was to generate and optimize

relay nodes efficiently, ensuring optimal connectivity within the specified constraints.

Based on the results obtained, it is evident that metaheuristics play a crucial role in

the field of optimization. They provide indispensable approaches for tackling

complex optimization problems and achieving close to optimal solutions.

42

GENERAL CONCLUSION

In this thesis, we have addressed the challenges associated with the deployment of

WSNs for surveillance applications. The goal has been to optimize the number of relay

nodes deployed and the hop count in the network, under coverage and connectivity

constraints. We have tackled this problem using a meta-heuristic approach to be able

to solve a big instances in reasonable time.

We have implemented the VNS meta-heuristic and the greedy algorithm used to find

the initial solution of the problem by using python language. we also note that we have

used the weighted sum method as a technique to solve the multi-objective problem.

Finally, we have conducted extensive experiments to evaluate the performance of our

solution. The obtained results in terms of number of relay nodes deployed, hop count

and latency are very encouraging compared to exact method.

As an immediate future work, we have planned to explore the Pareto front to try to

enhance the solution. The comparison with a genetic based solution is also another

possible future work.

43

Chapter 3

Abstract:
Wireless Sensor Networks have emerged as a fascinating and rapidly growing area of research,
capturing the attention of numerous researchers across a wide range of scientific disciplines.
These networks, which consist of a collection of small, autonomous sensor and relay nodes
capable of wirelessly communicating with each other, hold immense value and offer an array
of limitless possibilities. In this thesis, our primary focus will revolve around the domain of
surveillance.
Our objective is to build a two-tierd topology where sensor nodes are deployed on the sensitive
site border to cover each point of we aim to minimize the number of relay nodes deployed while
ensuring communications between the all sensor nodes and the sink node, in addition to that we
strive to minimize the number of hops in the network.
The multi-objective combinatorial optimization problem described above has been resolved using
Variable Neighborhood Search metaheuristic algorithm and the wighted sum approach. The
obtained results are very encouraging since we can resolve a relative big instances of the problem
compared to the exact method. on the other hand, the results in terms of optimal number of
relay node to deploy and the average hop count are near optimal.

Keywords: WSN, Meta-heuristic, Constrained Relay Node Deployment, Node, Combinato-
rial Optimization, VNS, Multi-Objective Optimization, Hop count

Résumé:
Les réseaux de capteurs sans fil ont émergé en tant que domaine de recherche fascinant et en
croissance rapide, attirant l’attention de nombreux chercheurs issus d’une grande variété de
disciplines scientifiques. Ces réseaux, composés d’une collection de petits capteurs autonomes et
de nœuds relais capables de communiquer sans fil entre eux, ont une valeur immense et offrent
une multitude de possibilités illimitées. Dans cette thèse, notre principal objectif portera sur le
domaine de la surveillance.
Notre objectif est de construire une topologie à deux niveaux où les capteurs sont déployés sur
la frontière du site sensible afin de couvrir chaque point que nous visons, tout en minimisant le
nombre de nœuds relais déployés et en assurant les communications entre tous les capteurs et
le nœud central, en plus de cela, nous nous efforçons de minimiser le nombre de sauts dans le
réseau.
Le problème d’optimisation combinatoire multi-objectif décrit ci-dessus a été résolu à l’aide
de l’algorithme métaheuristique de recherche de voisinage variable et de l’approche de somme
pondérée. Les résultats obtenus sont très encourageants, car nous pouvons résoudre des instances
relativement importantes du problème par rapport à la méthode exacte. D’autre part, les
résultats en termes du nombre optimal de nœuds relais à déployer et du nombre moyen de sauts
sont proches de l’optimal.

Mots clés: RCSF, Méta-heuristique, Déploiement contraint de nœuds relais, nœud, Opti-
misation Combinatoire, RVV, Optimisation Multi-Objectif, Nombre de sauts

44

 45

 :ملخص

تكنولوجيا الشبكات اللاسلكية للمستشعرات قد ظهرت كمجال مثير للإعجاب ونمو سريع في البحث، وقد

من الشبكات هذه تتكون العلمية. التخصصات من واسعة مجموعة في الباحثين من العديد انتباه لفتت

التواصل اللاسلكي بينها. مجموعة من الأجهزة الصغيرة والمستقلة للمستشعرات والمؤرضات قادرة على

وتحمل هذه الشبكات قيمة هائلة وتقدم مجموعة من الإمكانيات اللامحدودة. في هذه الرسالة، سيتم التركيز

 .بشكل أساسي على مجال المراقبة

الحساس الموقع المستشعر على حدود أجهزة نشر يتم مكونة من طبقتين حيث توبولوجيا بناء هدفنا هو

نهدف إلى تقليل عدد الأجهزة المؤرضة المنتشرة مع ضمان التواصل بين جميع أجهزة لتغطية كل نقطة،

 .المستشعر وجهاز التصريف، بالإضافة إلى أننا نسعى لتقليل عدد القفزات في الشبكة

ونهج المحلية المتغيرة البحث خوارزمية باستخدام المركب للتحسين الأهداف المتعددة المشكلة حل تم

الزائ مقارنة الجمع نسبيًا كبير حجم ذات مشكلة حل يمكننا حيث جدًا مشجعة عليها المحصل النتائج د.

وعدد المنبثقة المؤرضة للأجهزة المثلى العدد حيث من النتائج فإن أخرى، ناحية من الدقيقة. بالطرق

 .القفزات المتوسطة تكاد تكون مثلى

المثلى الحلول العقدة، نشر عقدة الترحيل المقيدة، الأدلة العليا، للشبكات،الشبكات اللاسلكية : الكلمات الدالة

 عدد القفزات الامثلة متعددة الاهداف، بحث متغير الحي، المعدودة، للمسائل

BIBLIOGRAPHY

[1] Shadia Ajam. What is the p vs. np problem? why is it important?

https://science.nd.edu/news-and-media/news/

what-is-the-p-vs-np-problem-and-why-is-it-important/, 2013. Accessed:

2023–06-11.

[2] Baeldung. P, np, np-complete and np-hard problems in computer science.

https://www.baeldung.com/cs/p-np-np-complete-np-hard, 2022. Accessed:

2023–06-11.

[3] Zhaojun Bai. Ecs122a lecture notes on algorithm design and analysis.

https://www.cs.ucdavis.edu/~bai/ECS122A/knapsack01.pdf, 2019.

Accessed: 2023–06-12.

[4] A Balamurugan and T Purusothaman. Ipsd: New coverage preserving and

connectivity maintenance scheme for improving lifetime of wireless sensor

networks. WSEAS Transactions on Communications, 11(1):26–36, 2012.

46

https://science.nd.edu/news-and-media/news/what-is-the-p-vs-np-problem-and-why-is-it-important/
https://science.nd.edu/news-and-media/news/what-is-the-p-vs-np-problem-and-why-is-it-important/
https://www.baeldung.com/cs/p-np-np-complete-np-hard
https://www.cs.ucdavis.edu/~bai/ECS122A/knapsack01.pdf

Bibliography Chapter 3

[5] Abdulaziz Barnawi and Ahmed Bawazir. Multi-objective deployment of wireless

sensor networks in 3-d environments using metaheuristics. 2023.

[6] Ali Benzerbadj, Bouabdellah Kechar, Ahcène Bounceur, and Mohammad

Hammoudeh. Surveillance of sensitive fenced areas using duty-cycled wireless

sensor networks with asymmetrical links. Journal of Network and Computer

Applications, 112:41–52, 2018.

[7] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.

Introduction to algorithms. MIT press, 2022.

[8] Huseyin Cotuk, Bulent Tavli, Kemal Bicakci, and Mehmet Burak Akgun. The

impact of bandwidth constraints on the energy consumption of wireless sensor

networks. In 2014 IEEE Wireless Communications and Networking Conference

(WCNC), pages 2787–2792. IEEE, 2014.

[9] Subham Datta. Branch and bound algorithm.

https://www.baeldung.com/cs/branch-and-bound, 2022. Accessed:

2023–06-12.

[10] Dina S Deif and Yasser Gadallah. Classification of wireless sensor networks

deployment techniques. IEEE Communications Surveys & Tutorials,

16(2):834–855, 2013.

[11] Mihai Gavrilas. Heuristic and metaheuristic optimization techniques with

application to power systems. In Proceedings of the 12th WSEAS international

conference on Mathematical methods and computational techniques in electrical

engineering, page 9, 2010.

[12] Vincenzo Guidi. Less is more approach (lima) in optimization.

https://slideplayer.com/slide/17584318/, 2020. Accessed: 2023–06-11.

47

https://www.baeldung.com/cs/branch-and-bound
https://slideplayer.com/slide/17584318/

Bibliography Chapter 3

[13] Holger H Hoos and Thomas Stützle. Stochastic local search: Foundations and

applications. Elsevier, 2004.

[14] Fei Hu and Xiaojun Cao. Wireless sensor networks: principles and practice.

CRC press, 2010.

[15] Fotoglou Ioakeim. A reduced variable neighborhood search approach for the

traveling thief problem. https://dspace.lib.uom.gr/bitstream/2159/

24610/3/FotoglouIoakeimMsc2019.pdf, 2019. Accessed: 2023–06-11.

[16] Bernhard H Korte, Jens Vygen, B Korte, and J Vygen. Combinatorial

optimization, volume 1. Springer, 2011.

[17] Joseph YT Leung. Handbook of scheduling: algorithms, models, and

performance analysis. CRC press, 2004.

[18] Sean Luke. Essentials of metaheuristics. 2009.

[19] Not mentioned. A* algorithm | a* algorithm example in ai. https:

//www.gatevidyalay.com/a-algorithm-a-algorithm-example-in-ai/.

Accessed: 2023–06-12.

[20] Not mentioned. Constraint programming.

https://www.aiforanyone.org/glossary/constraint-programming.

Accessed: 2023–06-12.

[21] Not mentioned. Global vs. local optimization using ga.

https://www.mathworks.com/help/gads/

example-global-vs-local-minima-with-ga.html. Accessed: 2023–06-11.

[22] Not mentioned. Heuristic techniques.

https://www.javatpoint.com/heuristic-techniques. Accessed: 2023–06-12.

48

https://dspace.lib.uom.gr/bitstream/2159/24610/3/FotoglouIoakeimMsc2019.pdf
https://dspace.lib.uom.gr/bitstream/2159/24610/3/FotoglouIoakeimMsc2019.pdf
https://www.gatevidyalay.com/a-algorithm-a-algorithm-example-in-ai/
https://www.gatevidyalay.com/a-algorithm-a-algorithm-example-in-ai/
https://www.aiforanyone.org/glossary/constraint-programming
https://www.mathworks.com/help/gads/example-global-vs-local-minima-with-ga.html
https://www.mathworks.com/help/gads/example-global-vs-local-minima-with-ga.html
https://www.javatpoint.com/heuristic-techniques

Bibliography Chapter 3

[23] Not mentioned. Informed search algorithms.

https://www.javatpoint.com/ai-informed-search-algorithms. Accessed:

2023–06-12.

[24] Not mentioned. Tutorial: Linear programming, (cplex part 1).

https://ibmdecisionoptimization.github.io/tutorials/html/Linear_

Programming.html. Accessed: 2023–06-12.

[25] Not mentioned. What is combinatorial optimization?

https://www.engati.com/glossary/combinatorial-optimization.

Accessed: 2023–06-11.

[26] Not mentioned. Linear programming.

https://byjus.com/maths/linear-programming/#:~:

text=Linear%20programming%20(LP)%20or%20Linear,calculation%20of%

20profit%20and%20loss., 2021. Accessed: 2023–06-12.

[27] S Mini, Siba K Udgata, and Samrat L Sabat. Sensor deployment and scheduling

for target coverage problem in wireless sensor networks. IEEE sensors journal,

14(3):636–644, 2013.

[28] Shaik Naseera. P, np, np-hard and np-complete problems.

https://jntua.ac.in/gate-online-classes/registration/downloads/

material/a159262902029.pdf. Accessed: 2023–06-11.

[29] Sukanta Nayak. Fundamentals of optimization techniques with algorithms.

Academic Press, 2020.

[30] Ravikiran A S. A* algorithm concepts and implementation. https:

//www.simplilearn.com/tutorials/artificial-intelligence-tutorial/

a-star-algorithm#what_is_an_a_algorithm, 2023. Accessed: 2023–06-12.

49

https://www.javatpoint.com/ai-informed-search-algorithms
https://ibmdecisionoptimization.github.io/tutorials/html/Linear_Programming.html
https://ibmdecisionoptimization.github.io/tutorials/html/Linear_Programming.html
https://www.engati.com/glossary/combinatorial-optimization
https://byjus.com/maths/linear-programming/#:~:text=Linear%20programming%20(LP)%20or%20Linear,calculation%20of%20profit%20and%20loss.
https://byjus.com/maths/linear-programming/#:~:text=Linear%20programming%20(LP)%20or%20Linear,calculation%20of%20profit%20and%20loss.
https://byjus.com/maths/linear-programming/#:~:text=Linear%20programming%20(LP)%20or%20Linear,calculation%20of%20profit%20and%20loss.
https://jntua.ac.in/gate-online-classes/registration/downloads/material/a159262902029.pdf
https://jntua.ac.in/gate-online-classes/registration/downloads/material/a159262902029.pdf
https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/a-star-algorithm#what_is_an_a_algorithm
https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/a-star-algorithm#what_is_an_a_algorithm
https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/a-star-algorithm#what_is_an_a_algorithm

Bibliography Chapter 3

[31] Mustapha Reda Senouci, Mohamed El Yazid Boudaren, Mohamed Abdelkrim

Senouci, and Abdelhamid Mellouk. A smart methodology for deterministic

deployment of wireless sensor networks. In 2014 International Conference on

Smart Communications in Network Technologies (SaCoNeT), pages 1–6. IEEE,

2014.

[32] Chin-Shiuh Shieh, Trong-The Nguyen, Hung-Yu Wang, and Thi-Kien Dao.

Enhanced diversity herds grey wolf optimizer for optimal area coverage in

wireless sensor networks. In Genetic and Evolutionary Computing: Proceedings

of the Tenth International Conference on Genetic and Evolutionary Computing,

November 7-9, 2016 Fuzhou City, Fujian Province, China 10, pages 174–182.

Springer, 2017.

[33] Omkar Singh, Vinay Rishiwal, Rashmi Chaudhry, and Mano Yadav.

Multi-objective optimization in wsn: Opportunities and challenges. Wireless

Personal Communications, 121:127–152, 2021.

[34] Rajeev Singh and Matendra Singh Manu. An energy efficient grid based static

node deployment strategy for wireless sensor networks. International Journal of

Electronics and Information Engineering, 7(1):32–40, 2017.

[35] factworx4i2 sumitgumber28, ruhelaa48. Job assignment problem using branch

and bound. https://www.geeksforgeeks.org/

job-assignment-problem-using-branch-and-bound/, 2023. Accessed:

2023–06-12.

[36] Hesamoddin Tahami and Hengameh Fakhravar. A literature review on

combining heuristics and exact algorithms in combinatorial optimization.

European Journal of Information Technologies and Computer Science,

2(2):6–12, 2022.

50

https://www.geeksforgeeks.org/job-assignment-problem-using-branch-and-bound/
https://www.geeksforgeeks.org/job-assignment-problem-using-branch-and-bound/

Bibliography Chapter 3

[37] El-Ghazali Talbi. Metaheuristics: from design to implementation. John Wiley &

Sons, 2009.

[38] Vijay V Vazirani. Approximation algorithms, volume 1. Springer, 2001.

[39] Frank Vega. P versus np. https://hal.science/hal-01343812/document,

2018. Accessed: 2023–06-11.

[40] Xin-She Yang. Nature-inspired optimization algorithms: Challenges and open

problems. Journal of Computational Science, 46:101104, 2020.

[41] Selim Yilmaz and Sevil Sen. Metaheuristic approaches for solving multiobjective

optimization problems. In Comprehensive Metaheuristics, pages 21–48. Elsevier,

2023.

51

https://hal.science/hal-01343812/document

	General Introduction
	Deployment of Wireless Sensor Networks for Surveillance Applications
	Introduction
	WSNs: Constraints and Challenges
	Constraints
	Challenges

	WSNs deployment approaches
	Deployment stategies to meet coverage and connectivity in WSNs

	Surveillance applications
	Conclusion

	Meta-Heuristic based Multi-Objective Optimization For WSN Deployment
	Introduction
	Combinatorial Optimisation
	Problems of Combinatorial Optimisation
	Combinatorial problems

	Techniques to resolve Combinatorial Optimisation Problems
	Exact Methods
	Approximate Methods

	Conclusion

	Implementation and Performance Results
	Introduction
	Implementation details
	Hardware
	Software
	Algorithm employed

	Experimental parameters
	The surveyed fenced area scenario
	Experimental setup parameters
	Performance measures

	Performance Results
	Conclusion

	General Conclusion
	Abstract

	Bibliography

