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WELL-POSEDNESS AND GENERAL ENERGY DECAY OF SOLUTION
FOR TRANSMISSION PROBLEM WITH WEAKLY NONLINEAR DISSIPATIVE

NOUREDDINE BAHRI, MAMA ABDELLI, ABDERRAHMANE BENIANI AND KHALED ZENNIR

In this paper, we consider a transmission problem in a bounded domain with a nonlinear dissipation in
the first equation. Under suitable assumptions on the weight of the damping, we show the existence and
uniqueness of solution by the Faedo—Galerkin method. Also we prove general stability estimates using
some properties of convex functions and Lyaponov functional.

1. Introduction

In this paper, we consider a nonlinear transmission problem

(1) {ut,(x, ) —auec(x,t) +Fpou;(x, 1) =0 (x,1) € 2 xRT,

Utt(X,t)_mbx(x’t)ZO (xvt)e[Ll9L2]XR+v
where 0 < L) < Ly < L3 <00, Q2=1]0, L[U]L,, L3[ and a, b, u are positive constants. This system
is supplemented with the following boundary and transmission conditions

u@,1)=u(L3,t)=0
(1.2) u(Li, 1) =v(L;, 1), i=1,2
aux(Li, 1) =bve(L;i, 1), =12,

and initial conditions

u(x,0) =uo(x), u/(x,0)=ui(x), xeQ

v(x,0) =vo(x), v(x,0)=wvi(x), xe€]Ly, La.
When g(u,(x,1t)) = u,(x,t) system (1.1)—(1.3) has been investigated in [3], for 2 = [0, L;]. The
authors showed the well-posedness and exponential stability of the total energy. Ma and Oquendo in
[12] considered transmission problem involving two Euler—Bernoulli equations modeling the vibrations
of a composite beam. By using just one boundary damping term in the boundary, they showed the
global existence and decay property of solution. Marzocchi et al. in [13] investigated a 1-D semilinear
transmission problem in classical thermoelasticity and showed that a combination of the first, second and
third energies of the solution decays exponentially to zero, no matter how small the damping subdomain is.

A similar result has sheen shown in [15], where a transmission problem in thermoelasticity of type III has
been investigated. See also Marzocchi et al. [14] for a multidimensional linear thermoelastic transmission

(1.3)
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problem. To obtain global solution of problem (1.1)—(1.3), we use the Galerkin approximation scheme
(see Lions [10]) together with the energy estimate method. To prove decay estimates, we use a perturbed
energy method and some properties of convex functions. These arguments of convexity were introduced
and developed by Cavalcanti et al. [6], Lasiecka and Doundykov [9], Lasiecka and Tataru [8] and used
by Liu and Zuazua [11] and Alabau-Boussouira [1] and Zennir et al. [4], [5], [16]. Our purpose in
this paper is organized as follows. In Section 2, we give some preliminaries. While Sections 3 and 4
are devoted to the global existence, uniqueness and general decay of solutions, respectively. Then main
results are in Theorems 3.1 and 4.1.

2. Preliminaries

First we recall and make use the following assumptions on the function . We assume that the function
w € C! (R, R) is a nondecreasing function such that there exist a positive constants &, ¢y, ¢, > 0 and a
convex increasing function G : R — R* of class C'(RT) N C?(]0, +o0[) satisfying

G(0) =0 and G is linear on [0, €] or
G'(0) =0 and G” > 0 on ]0, ] such that
(2.4) lo ()] = cals| if|s| > e
P+ @i(s) <G ' s (s) ifls|<e

@' (s)| <.
‘We first state some lemmas which will be needed later.

Lemma 1 (Sobolev—Poincaré’s inequality). Let g be a number such that 2 < g < +oo (n = 1,2) or
2<q <2n/(n—2) (n=>3). Then there exists a constant C; = C((0, 1), q) such that

lully < CslIVullz,  for all u € Hy ().
Remark. Let us denote by ¢* the conjugate function of the differentiable convex function ¢, i. e.,

¢*(s) = sup (st — ¢ (1)).

teRy

Then ¢* is the Legendre transform of ¢, which is given by (see Arnold [2, pages 61-62])
$*(5) =5@) ') =D (@) (). ifs€]0,¢ (],
and ¢* satisfies the generalized Young inequality

2.5) ST <¢*(S)+¢(T), ifSe]0,¢'(r)], T e]0,r].

3. Well-posedness of problem

In this section, we prove the existence and uniqueness of a global solution of system (1.1)—(1.3) by using
the Faedo—Galerkin method.
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Theorem 3.1. Suppose that {u°, v°} € H*(Q) x H*(L1, Lo) NH () x Hy (L1, L), {u', v'} € Hy (Q) x
HO1 (L1, Ly) and assumption (2.4) holds. Then (1.1)—(1.3) admits a unique global solution
{u, v} € L0, T, H*(2) x H*(L1, L) N Hy () x Hy (L1, L)),
{ur, v} € L0, T, Hy () x Hy (L1, L)),
{sr, v} € L0, T, L*(Q) x L*(Ly, Lo)).
Proof of Theorem 3.1. We follow a number of steps to complete the proof.

Step 1. Approximate solutions. Let {¢', '}, i=1,2,...be abasis of H>(Q) x H*(L1, L) H} () x
HO1 (L1, Ly). Let us consider the Galerkin approximation

W™ @), 0"y =Y K" n{e’, ¥,
i=1

m

where 4™ and v satisfy

(3.6) W™, @) +a@™, o)+ u(@ @™, o) + ", ¥ +b™, ¥i) =0,

where i =1, 2, ..., with initial data

a7 U™ (0), v™(0)} = {ul, v} — {u®, 0%} in H*(Q) x H*(L1, Ly) N Hy () x H) (L1, Ly),
{U™(0), v"(0)} = {u", v} — {u', v'} in H} () x H) (L1, Ly).

Standard results about ordinary differential equations guarantee that there exists only one solution of this
system on some interval [0, 7;,[. The priori estimate that follow imply that in fact 7;,, = +o0.

Step 2. A priori estimates.

The first estimate. Multiplying (3.6) by hi™ and summing over i, we get

L,
(3.8) ——{f|ut| dx+a/|u | dx+/ 0| dx—l—b/ |vxm|2dx}+M/u,w(u Ydx =0
L, Ly Q

Integrating in [0, ¢], ¢t < t,, and using (3.7), we have

Ly
(3.9) f|u;"|2dx+a/|u?|2dx+/ |v;"|2dx+b/ v | dx+2/ f " (s)e (U™ (s)) dx ds
Q Q Ly

L,
/|M1| dx—i—a/luol dx-i—/ [V dx—i—b/ |v(’)"|2dx
Ly

< (.

For some C; independent of m.
Thus we deduce that

{u™,v™}  is bounded in L>(0, T, Hy () x Hy (L1, L»))
(3.10) {(u™, v™} s bounded in L>®(0, T, L*(Q) x L*(Ly, L»)
u™ e (u™) is bounded in L' (Q2 x (0, T)).
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The second estimate. First, we estimate u}; (0) and vy} (0) taking r = 0 in (3.6), we obtain

@ (0), 9") —a@.(0), ¢") + (@ )" (0)), ¢') = 0,
and

(W7 (0), ¥ — b5, (0), ¥') =0,

multiplying by 4/ and summing over i from 1 to m,

(uy; (0), uj; (0)) — a(u'y, (0), uy; (0)) + (@ (uy' (0)), uz; (0)) =0,
and
(v}7(0), v (0)) — bV}, (0), v/ (0)) = 0.

Using Holder’s inequality and (3.7), yield

1/2 Ly 1/2
(3.11) (fw 0] dx) +</ |v;’;<0)|2dx)
Ly
1/2 1/2 L 1/2
ga(/|u;;(0)|2dx> +u(/ wz(u’l”)dx> +b(/ |vj;;(0)|2dx)
Q Q L

<y,
where Cj is a positive constant independent of m.
The third estimate. Now, differentiating (3.6) with respect to ¢
Ui, @) —alufye, @) + i’ @), ¢") + @ ') — b, ') =0.

Multiplying by A" and summing over i from 1 to m implies

(3.12) ——|:/|ut,| dx+a/|ux,| dx+/ A dx—l—bf | dx:|+M/(u Yo' ") dx =0.
Ly Ly

Integrating (3.12) over (0, ¢), using (3.7) and (3.11), we get

/Iu,,(t)l dx—i—a/lux,(t)l dx—i-/ [v;} (t)|* dx

—I—b/ v (1) dx+2,u/ /(u (s))zzv (u;'(s)) dx dt
Ly

Ly Ly
/Iutt(O)l dx—i—a/lu 0)] dx+/ O] dx+b/ Iv;"t(O)lzdx
L

1 Ly
<G,

where C3 is a positive constant independent of m.
Therefore, we conclude that

{u, v"} is bounded in L>°(0, T, Hy () x Hy (L1, L2))

(3.13) 5 5
{ufy, v} is bounded in L*°(0, T, L=(2) x L“(L, L»)),
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By (3.13) we deduce that

{u, v!"} is bounded in L*(0, T, Hy () x Hy (L1, Ly)).
Applying Rellich compactness theorem given in [10], we deduce that
(3.14) {(u, v™} is bounded in L*(0, T, L*(2) x L*(Ly, Ly)).

The fourth estimate. Replacing ¢’ and ¥' by —u. and —v™, in (3.6), multiplying the result by A",
summing over i from 1 to m, implies
(3.15)

1d Ly L
-—U |u7;|2dx+a/|u;"x|2dx+f |v;';|2dx+b/ |v;"x|2dx:|+,u/(u;’;)2w'(u;")dx=0.
2dt Q Q L Ly Q

Integrating (3.15) over (0, t) and using (3.7), we have

L,
(3.16) /|u;';(r)|2dx+a/|u;1x(t)|2dx+f lv™ (1) dx
Q Q L

Ly t
+b / o™ (1)* dx + p f / W@ ()@’ (" (s)) dx ds
L, 0 JQ

Ly

Ly
:/|u';;(0)|2dx+af|u;?x(0)|2dx+/ |v;’;(0)|2dx+b/ [v™ (0)|* dx
Q Q

Ly Ly
< Cy,

where C4 is a positive constant independent of m.
We conclude that
(™, v™} isbounded in L>(0, T, H*(Q2) x H*(L1, L))

G.17) m .m . . oo 1 1
{ul", v; is bounded in L™ (0, T, Hy(2) x Hy (L1, L)),

Step 3. Passing to the limit. Applying Dunford—Petti’s theorem, we conclude from (3.10), (3.13) and
(3.17), after replacing the sequences {u", v} by subsequence if necessary, that

(B.18)  {u" V" =" {u, v}, in L0, T; H*(Q) x H*(L1, L) N Hy (R) x Hy (L1, L))
(B19) ) v =" g, i), in L0, T; Hy (Q) x Hy (L1, L))

(320)  {um, oMy —F W oM, in L0, T LA(Q) x LA(Ly, Ly))

(3.21) @ (u]') =" x, in L*(Q),

where Q = (0, T) x Q.
It follows from (3.18) and (3.20), that for each fixed w; € L%([0, T] x L*(2))

T T
/ /(uf’,’(x,t)—au?x(x,t))wl dxdt—>/ /(un(x,t)—auxx(x,t))wldxdt,
0o Ja 0 Ja
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and wyo € L*([0, T1 x L*(Ly, L»))

T Ly
/ (vy; (x, 1) — bV (x, t))wzdxdt—>/ / (Vi (x, 1) — Do, (x, t)wardx dt.
0

Ly

By (3.14), (3.19) and the injection of HO1 in L? is compact, we have

(3.22) W™ — u,, in L*(Q).
Therefore
(3.23) u;' = u;, almost everywhere in Q.

It remains to show that
/ o (u)vdx dt — / w (u)vdx dt,
0 o

in the following lemma.

Lemma 2. Foreach T > 0, w (u;) € L' (Q), lo (u)llLioy < k, where k is a constant independent of t
and w (u}") - @ (u,;) in L'(Q).

Proof. We claim that
@ (ur) € L'(Q).

Indeed, since @ is continuous, we deduce from (3.23) that

(3.24) o u;") = @ (uy) almost everywhere in Q,
' ul'ow (ul") - u, (u,) almost everywhere in Q.

Hence, by (3.10) and Fatou’s lemma, we have
(3.25) f u;(x, Do (u,(x,1))dxdt <Ky, forT >0.
o

Now, we can estimate fQ|w(u,(x, t)|dxdt.
By the Cauchy—Schwarz inequality, we have

T T 1/2
/ /lw(u,(x,t))ldxdt§c|Q|1/2(/ f|w(ut(x,t))|2dxdt) .
0 Q 0 Q

Using (2.4) and (3.25), we obtain, for T > 0,

T T T
/ flw(ut(x,t))lzdxdtff / u,w(ut)dxdt—i—/ / G~ i (uy)) dx dt
0 JQ lur|>¢ [us|<e
<c / /u,w(ut)dxdt—i—cG (2/ u,w(u,)dxdt)
/ /u,w(u,)dxdt+c G*(l)-i—c"/ /u,w(u,)dxdt

<cK;+JG*(1),



TRANSMISSION PROBLEMS WITH NONLINEAR DISSIPATIVE 161

Then ;
/ /IW(uz(x,t))lddeK, for T > 0.
0 JQ

Let E C Q x [0, T] and set

:{(x,t)EE | (u E,=E\E,

F(x )l = F}

where |E| is the measure of E. If
M(r) =inf{|s| : s € R and |@ (s)| > r},

we have

1 _1
|l (u*)|dxdt <c |E|+<M(—)) |ul"@ (uy')| dx dt.
/;7,' ! kY |E| E;
By applying (3.10) we deduce that

supf wu")dxdt — 0, when |E|— 0.
m JE

From Vitali’s convergence theorem we deduce that
@ U") — @) in L'(Q).
This completes the proof of Lemma 2. (I

Then (3.21) implies that
@ W") ~* @), inL*(Q).

We deduce, for all w; € L*([0, T] x L?(R2), that

/ /w(u )wldxdt—>/ /w(ut)wldxdt

Finally we have shown that, for all w; € L2([0, T] x L*(R)),

T
f /(u,,(x,t)—auxx(x,t)—,uw(u,))wl dxdt =0.
0 Jo

Uniqueness. Let u;, up be two solutions of (1.1); and vy, vy be two solutions of (1.1), with the same
initial data. It is straightforward to see that z = u; — u; and w = v; — v; satisfies

Ly Ly t
/z,z(x,t)a’x—i-a/ zﬁ(x,t)a’x%—f w,z(x,t)a’x—i-b/ w%dx—l—u/ /zt(s)w(z,(s))dxds=0.
Q Q L 0 Ja

1 L

Using the monotonicity of @ hence we conclude that

Ly Ly
/Z,z(x,t)dx+af zi(x,t)dx—l—f w,z(x,t)dx+bf widx <0,
Q Q L L

1

which implies z = 0 and w = 0. This finishes the proof of Theorem 3.1. ]
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4. Asymptotic behavior

In this section, we state and prove our stability result for the energy of solution for system (1.1)—(1.3),
using the multiplied techniques.
The energies of first and second order associated with system (1.1)—(1.3) are defined as follows

(4.26) El(t)=%/ uf(x,t)dx+%/ ul(x,t)dx,
Q Q
Ly Ly

4.27) Ez(t):%/ uf(x,z)dx+§/ vi(x, 1) dx.
L Ly

The total energy is defined as

(4.28) E(t) = E(t) + E2 ().

Our decay result reads as follows.

Theorem 4.1. Let (u, v) be the solution of (1.1)—(1.3). Assume that (2.4) holds and
(4.29) f—l < %

Then there exist positive constants ki, ko, k3 and &y such that the solution of the problem (1.1)—(1.3)
satisfies

4.30) EQ@) < k3G1_1(k1t +ky), VteR,,
where
! 1
4.31) Gi(t) = / ———ds, Ga(t) =tG (egt).
t SGZ(EOS)

Here G is strictly decreasing and convex on 10, 1], with lim,_.¢ G{(¢) = +o0.
For the proof of Theorem 4.1 we use the following lemmas.

Lemma 3. The total energy E(t) satisfies

(4.32) E'(t) = —,uf u; (x, o (u; (x, 1)) dx <O0.
Q

Proof. Multiplying equation (1.1); by u; and integrating in €2, we have

/ut(x,t)u”(x,t)dx—a/ut(x,t)uxx(x,t)dx:—ufu,(x,t)w(u,(x,t))dx,
Q Q Q

which integrated by parts leads to

1d

1la 2 2
4.33) T /Q[ut(x,t)+aux(x,t)]dx

= —M/ u;(x, o (u;(x, 1)) dx —a(ux(Ly, Hu (L1, t) —u (0, H)u, (0, 1))
Q
—a(ux(L3, )u; (L3, t) —uy(La, )u, (Lo, 1)).
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Multiplying equation (1.1); by v; and performing an integration in (L, L), we get
Ly Ly
f ve(x, v (x, t)dx — b/ Ve(x, v (x, 1) dx =0.
L Ly
After integrating by parts we arrive at
Ly

(4.34) %% [v2(x, 1) +bv2(x, 1)]dx = —b(v,(La, )vy(La, t) — v, (L1, vy (Ly, 1)).
Ly

By Section 3 and (4.34), using the transmission conditions (1.2) we conclude

iE(t) = —u/ u;(x, Hew (u,(x, 1)) dx.
dt Q

This completes the proof. O

Lemma 4. Let (u, v) be the solution of (1.1)—(1.3). Then, the functional

L,

(4.35) J(t):/ u(x,t)u,(x,t)dx—i—/ v(x, Hv(x, t)dx,
Q

Ly
satisfies, for any 6 > 0, the estimate
L>

(4.36) iJ(z)g/ uf(x,z)dx+/
dt Q

vX(x,1)dx —(a —acs)/ u?(x,t)dx
L Q

Ly
+b/ vi(x,t)dx—i—C((S)/Lz/ wz(ut(x,t)) dx.
L Q

1
Proof. Taking the derivative of J(¢) with respect to ¢ and using (1.1), we find
Ly

d
—J(t):/ u?(x,t)dx+/ v,z(x,t)dx—a/ u)%(x,t)dx
dt Q L,

Q

Ly
_b/ vf(x,t)dx—,u/ ulx, o (u,(x, 1)) dx+[auux]3g+[bvvx]if.
Ly Q

Using the boundary conditions (1.2), we have
lauuxlag + [bov,]s> = alu(Ly, Dux (L1, 1) — (0, N, (0, 1))
+a{u(Ls, yuy(L3, 1) —u(La, Huy (Lo, 1)}

+b{U(L2, t)vx(LZs t) - U(Lla t)vx(Lls t)}
=0.

Applying Young and Poincaré’s inequalities, we have

u/ u(x,t)w(ut(x,t))dxfécs/ uﬁ(x,t)dx+C(5)M2/ @ (u;(x, 1)) dx,
Q Q Q
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where § is a positive constant. We arrive at

L,

d
—J(t)f/ uf(x,r)dx+/ vf(x,t)dx—(a—acs)/ u(x, 1) dx
dr Q L Q

Ly
—b/ vﬁ(x,r)dx+C(5)M2/ @2 (u; (x, 1)) dx
L Q

1

Ly
5/ uf(x,z)dx+f vf(x,z)dx—(a—scs)f u?(x,t)dx
Q Ly Q

L,
+b/ vi(x,t)dx-i—C((S),uz/ @2 (u,(x, 1)) dx.
L Q

1

This completes the proof. O
Now, inspired by [13], we introduce the functional

x—Li/2 x [0, L],
(4.37) g(x)=q9x—(Ly+L3)/2 x €[L,, L3],
(Ly—L3—Ly)/Q2(Ly—L)x—=L)+L1/2 xel[Ly, L]

Lemma 5. Let u be the solution of (1.1),. Then, the functional
Ji(t) = — fg q(X)ux(x, Du,(x, 1) dx,
satisfies the estimate
(4.38) %Jl <3 /Quf(x, Hdx+(%+6) /Q ut(x, 1) dx + C(8))p? fQ @2 (uy (x, 1)) dx

— 4[(L3 — Lo)ui(La, ) + Ly (Ly, ).

Proof. Taking the derivative of J;(x) with respect to ¢ and using (1.1);, we obtain

dJ(t)
dr”!

— fQ Gty (x, D (x, 1) dx —a /Q GO (x, Dty (x, 1) dx + /Q g0 (e, D (g x, 1) dx.
Integrating by parts, we have
(4.39) — /Q q (g (x, Dug(x, 1) dx = =5 [qg()u7(x, Dag + 5 /Q qx ()} (x, 1) dx.
On the other hand, then
(4.40) —a fQ G0 (6, Dt (3, 1) dx = —1g (002 (x, Dlga + & /Q 402 (x, 1) dx.

By using the boundary conditions (1.2) we have

(4.41) Hqou(x, Olse = SL1ui (L1, 1) + 2(Ls — Ly)ui (Lo, t) > 0.
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Also, we have

L L,—L
(4.42) —%[q(x)uﬁ(x,t)]asz=—a4—1[u§(L1,t)—ui(0, - 22—t 24 3)[ui(L3,t)—u§(L2»f)]
L Ly;—L
=_%u§(L1,t)—¥M§(L2J)-

Using Young’s inequality, we obtain

(4.43) u/ q(x)ux(x,t)w(u,(x,t))dx581f uﬁ(x,z)dx+C(81)M2/ o (u;(x, 1)) dx.
Q Q Q

Thus (4.38) follows from (4.39)—(4.43). This completes the proof. U

Lemma 6. Let v be the solution of (1.1),. Then the functional

Ly
Jz(t)z—/ q(x)ve(x, v (x, 1) dx,
L

1

satisfies, the estimate

(4.44)
L,—L3;— L

d fa fa b
— L) <g—2 2(x,1)d b3 (x,t)d “[(L3—L2)v*(L,, t)+L1v>(Ly, 1)].
(=4 2o— L) (/u vy (x, 1) x+/L1 v (x, 1) X)+4[( 3= Lo)vy (Lo, )+Lyvi(Ly, 1)]

Proof. By the same method, taking the derivative of J, with respect to ¢ and using (1.1),, we obtain

Ly Ly
(4.45) %Jz(t)z—/ q(X)vxz(x,t)vt(x,t)dx—f g (xX)v(x, vy (x, 1) dx
Ly

L
Ly

Ly
—/ q(x)vxt(x,t)vt(x,t)dx—b/ g(xX)ve(x, v (x, 1) dx.
L

1 L

Integrating by parts, we have

L,
(4.46) —/ qxX) vy (x, v (x, 1) dx
L

1

Ly
= —Lgoer, 1 + 4 /L g (VR (x. 1) dx
1

L,—Ls

2 Ly ,
= 4 U[(Lth)"i_Tvt(Llst)‘{‘

Ly—L;—L, (&
4(L—Ly) Ji,

v,z(x, t)dx,

and

Ly

4.47) —b/ g () vy (x, vy (x, 1) dx
L

Ly
:_g[q(x)vﬁ(x,t)]ﬁjJrgfL g ()2 (x, 1) dx
1
Lo—Ly;—L; [F

2
_ v%(x, t)dx.
4L, —Ly) Ji,

= —by(La— L3)vy(La, 1) +byLivi(L1, 1) +b
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Estimate (4.44) follows by substituting (4.46) and (4.47) into (4.45). This completes the proof. [l

We are now in position to define a Lyapunov functional £ and show that it is equivalent to the energy
total functional E

Lemma 7. For N sufficiently large, the functional defined by

(4.48) L):=NEW®)+yJ@)+yi() + 12 2(),

where N, y, y1 and y; are positive real numbers to be chosen appropriately later, satisfies
(4.49) PLE(t) = L(1) < BE(1),

for two positive constants B and B;.

Proof. Let L(t) =y J () + 1 J1(t) + Y2 J2(2)
L,

|L(t)|§y/|u(x,t)u,(x,t)|dx+y/ Iv(x,t)vt(x,t)lderm/IQ(X)ux(x,t)uz(x,t)ldx
Q L Q

1
L,
T / 19 (0)ve (x, Yur(x, 1)) dix.

Ly

Exploiting Young and Poincaré’s inequalities and (4.28), we obtain

L> L,
(4.50) |L(t)| < %/ u?(x, 1) dx + %/ up(x,t)dx +$ / viCx, ) dx + 3 / v (x, 1) dx
Q Q Ly Ly
Ly Ly
+ %f u(x, 1) + 5 / u?(x, 1) dx + %f vix, 1)+ %/ vi(x, 1) dx
Q Q Ly L
<cE().
Consequently, |L(t) — NE(t)| < cE(t), which yields
(N—=0)E(t) < L(t) = (N +)E().

Choosing N large enough, we obtain estimate (4.49). This completes the proof. U

Lemma 8. Let (u, v) be a solution of (1.1)—(1.3). Then L(t) satisfies the following estimate, along the
solution and for some positive constants m, ¢ > 0

4.51) %L(t) < —mE(t)—f—c/[utz(x,t)—l-wz(u,(x,t))]dx.
Q

Proof. Taking the derivative of (4.48) with respect to t and making use of (4.32), (4.36), (4.38) and (4.44),
we obtain
(4.52)

d
Eﬁ(r)s(w%) /Q uf(x,t)dX{V(a—Ms)—m (%m)} /Q W2 (x.1)dx

Ly—L3;—L, }/Lz 5 Ly—L3;—L, L
Nyt vy (x,0)dx+by y2—————F—+Y v:(x,t)dx
i 4(Lr—Ly) L 4(Lr—Ly) Lo

b
—%{m—n;}[<L3—L2>v§<Lz,t)+L1vi(Ll,z)]+u2{yC(a)+ylc(al)} / @ (u, (x,1))dx.
Q
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At this point, we choose our constants in (4.52), carefully, so that all the coefficients in (4.52) will be
negative. Indeed, under the assumption (4.29), we can always find y, y; and y; such that

V2 ALr—Ly) Y , Vi Vza, Y

2 b
we may 6 and §; small enough such that

y8Cs+ 1181 < a<y — %)

Then 4
L0 = =mE® e [ 00+ o )l
Q

This completes the proof. O
We are now ready to prove Theorem 4.1
Proof of Theorem 4.1. As in Komornik [7], we consider the following partition of €2,
Q={xeQ:|u|>¢e}, Q={xe:|ul=<e}

Case 1. If G is linear on [0, €], then we deduce that

L'(t) < —mE(t) +cf u;(x, e (u;(x, 1)) dx < —mE(t) —cE'(t).
Q

Consequently, we arrive at
(L) +CcE®) < —mE(1).

Recalling that
L()+cE(@) ~E@),

we obtain
E(t)<ce “'.

Case 2. If G is nonlinear on [0, ¢]. In this case, we define

I(z‘):L u;(x, o (u,(x, 1)) dx,
121] Jg,

and exploit Jensen’s inequality and the concavity of G~! to obtain

(4.53) G ') > c/ G ', (uy)) dx,
Q)
by using (4.53) and (2.4), we obtain
(4.54) [?(x, 1) + @ (u; (x, 1)]dx < / G (uy)) dx <G (1)),
Q] Q1

using (4.51) and (4.54), we have
(4.55) L (t) < —mE(t) +cG (1 (1)).
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We define Fy by

Fo(t) = <E((0))>E(t)+coE(t)

Then, we see easily that, for a;, a; > 0
(4.56) a1 Fo(t) < E(1) < axFo(2).

By recalling that £’ <0, G’ > 0, G” > 0 on (0, ¢] and making use of (4.28) and (4.55), we obtain

4.57) Fio = ED6r(EON poy 4 6( EDN o)y 1 o )
0 E©)  \E®©) E0)

< mE(t)G( ())—FCG’(&)G1(I(t))+c0E’(t)
E(0) E(0) ‘

Let G* be the convex conjugate of G in the sense of Young
G*(s) =s(G) ' (s) = GG (9],
and G satisfies the generalized Young’s inequality
AB < G*(A)+G(B),

with A = G'(E(t)/E(0)) and B = G~ (I ()

(1) A E() ,
(4.58) Fy(t) < —mE@)G’ (E(O)) +cG* (G (m)) +cl(t)+coE'(t)
E(t) E(t) EQ@) / /
<-mE@®)G’ <E(O)> E(O) —G’ <m> —cE(t) 4+ coE'(1).
Choosing ¢y > ¢, we obtain
) E(t) ,(E() E(1)
(4.59) Fy(t) < —ka (E(O)) —kG <m>,

where G,(t) = tG/'(t). Since
GH(1) =G' (1) +1G" (1),

and G is convex on (0, £] we find that G/z(t) >0 and G;,(t) > 0on (0, 1]. By setting F (t) =a; Fo(t)/E(0)
(ay is given in (4.56)), we easily see, by (4.56), that

(4.60) F(t)~E®).

Using (4.59), we arrive at
F'(t) < —k1G2(F ().
By recalling (4.31), we deduce

1
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and

Fly< b
G (F)

which gives
[G1(F()] = F' )G () <ki.

A simple integration leads to
Gi(F(1)) kit + G1(F(0)).

Consequently,
(4.61) F(t) < Gy (kit + ko).
Using (4.60) and (4.61) we obtain (4.30). The proof is completed. ]
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