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1. Introduction

It is well known that the fractional integro-differentiation operation can be considered as an exten-
sion of the differentiation operations. It is well known that the idea of fractional differentiation as an
extension of the concept of derivatives to the non-integer value arose almost together with the concept
of differentiation. The first mention of this idea appears in the correspondence of G. W. Leibniz and the
Marquis de l’Hospital in 1695; see [1]. It was then developed by L. Euler, where the expression gives
meaning even for non-integer values. The explicit advanced calculation was given in many references.
If one replaces the classical Laplacian operator by fractional Laplacian, it will be motivated by the
need to represent anomalous waves. The main mathematical models are the fractional Laplacians that
have special symmetry and in-variance properties.
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The basic evolution equation is

utt + (−∆)su = 0, s ∈ (0, 1).

In principl, the fractional wave is linear, in which s is some interpolation power of the Laplacian
and one can conduct harmonic analysis, then one can generate the semi-groups. The researchers who
performed the analysis were not inclined to analysis; the evolution associated with the fractional op-
erator was carried out in stochastic processes because it was discovered that the typical approach to
Brownian motion, this type of equations, was not a relevant model for many processes where there is a
lack of convergence. Intense work in stochastic processes for several decades, but not in PDE analysis
until tens years ago, initiated around pr. Caffarelli but only in the linear case in which we can return to
the nonlinear case, while forgetting the probabilities.

In recent years, fractional Laplacian operators and related equations have an increasingly wide
utilization in many important fields. In connection with the intensive development of industry, the
electric power industry, the theory of nonlinear oscillations, automatic control, and optimal processes,
the theory of damped partial differential equations is being developed, and its methods are actively used
to solve problems in various fields of natural science and technology, especially when it comes with the
fractional Laplacian. For more recent results involving the fractional Laplacian, for example [2–8] and
the references therein. Recently, the fractional hyperbolic problems with continuous non-linearities
have been studied by many researchers. For example, the authors in [5] studied the initial-boundary
value problem of degenerate Kirchhoff-type for y ∈ Γ1, t ∈ R+

∂2
t w + [w]2(θ−1)

r (−∆)rw = |w|p−1 w, (1.1)

where Γ1 ⊂ R
n, 1 ≤ n is a bounded domain with Lipshcitz boundary ∂Γ1, [w] is the Gagliardo semi-

norm of w, r ∈ (0, 1), 1 ≤ θ < 2⋆r
2 , 2

⋆
r =

2n
(n−2r) , p ∈ (2θ − 1, 2⋆r − 1] and [w]r is the Gagliardo semi-norm

of w defined by

[w]r =

√∫
Γ

∫
Γ

w(y) − w(z)|2

|y − z|n+2r dydz.

By using the Galerkin method, the global existence/nonexistence is obtained for solutions of (1.1)
under certain conditions. Furthermore, in the work [9], it is proposed the following damped equation
for y ∈ Γ, t ∈ R+

∂2
t w + [w]2(θ−1)

r (−∆y)rw + |∂tw|α−1∂tw + w = |w|p−2 w, (1.2)

where 2 < α < 2θ < p < 2⋆ < r. Under some natural assumptions, the authors obtained the global
existence, vacuum isolating, asymptotic behavior, and blow-up of solutions for (1.2) by combining the
Galerkin method with potential wells theory (see [10–15]). In [9], Lin et al. studied the initial-boundary
value problem of the Kirchhoff wave equation for y ∈ Γ, t ∈ R+

∂2
t w + [w]2(θ−1)

r (−∆y)rw = |w|p−2w. (1.3)

Regarding the Galerkin method’s explanation with related logarithmic nonlinearities, we can review
[16–19].
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In the present paper, we consider IBVP involving the fractional Laplacian non-linearity. To begin
with, let w = w(y, t), Γ1 ⊂ R

n, n ≥ 1 with Lipschitz boundary ∂Γ1 and Γ2 = R
n \ Γ1, t > 0


∂2

t w + (−∆y)rw + (−∆y)r∂tw = w |w|p−2 log(|w|) y ∈ Γ1

w = 0, y ∈ Γ2

w(y, t = 0) = w0(y), ∂tw(y, t = 0) = w1(y) y ∈ Γ1,

(1.4)

where r ∈ (0, 1). The parameter p satisfies

2 < p <
2n

n − 2r
= 2⋆r , n > 2r. (1.5)

The rest of the paper is organized as follows. In Sections 2 and 3, we introduce our problem and
recall necessary definitions and properties of the fractional Sobolev spaces. In Section 4, we study the
global existence of solutions for our main problem (1.4).

2. Auxiliary results and function spaces

In this section, we first recall some necessary definitions and properties of the fractional Sobolev
spaces, see [20].

The fractional Laplacian of order r, (−∆y)r of the function w is defined by

(−∆y)rw(y) = C
∫
Rn

w(y) − w(z)
|y − z|n+2r dz, ∀y ∈ Rn. (2.1)

We define the fractional-order Sobolev space by

Hr(Γ1) =
{
w ∈ L2(Γ1) :

∫
Γ1

∫
Γ1

|w(y) − w(z)|2

|y − z|n+2r dydz < ∞
}
, (2.2)

with the norm

∥w∥Hr(Γ1) =

√∫
Γ1

|w|2dy +
∫
Γ1

∫
Γ1

|w(y) − w(z)|2

|y − z|n+2r dydz. (2.3)

Set

Hr
0(Γ1) = {w ∈ Hr(Γ1) : w = 0 a.e. in Γ2}, (2.4)

then Hr
0(Γ1) is a closed linear subspace of Hr(Γ1), where

∥w∥Hr
0(Γ1) =

√∫
Γ1

∫
Γ1

w(y) − w(z)|2

|y − z|n+2r dydz. (2.5)

The space Hr
0(Γ1) is a Hilbert space with

⟨w, v⟩Hr
0(Γ1) =

∫
Γ1

∫
Γ1

(w(y) − w(z))(v(y) − v(z))
|y − z|n+2r dydz. (2.6)

Let Γ1 be a bounded domain, then
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1) The embedding Hr
0(Γ1) ↪→ Lp(Γ1) is compact ∀1 ≤ p < 2⋆r ;

2) The embedding Hr
0(Γ1) ↪→ L2⋆r (Γ1) is continuous.

For any 1 ≤ s ≤ 2⋆r , ∃C0 = C0(n, s, r > 0) such that ∀v ∈ Hr
0(Γ1)

∥w∥Ls(Γ1) ≤ C0

∫
Γ1

∫
Γ1

v(y) − v(z)|2

|y − z|n+2r dydz. (2.7)

For any s ∈ [1, 2∗r] and any bounded sequence {u j}
∞
j=1 in Hr

0(Γ1) there exists v in Ls(Rn), with v = 0
a.e. in Rn \ Γ1, such that up to a sub-sequence, still written as {v j}

∞
j=1,

v j → v strongly in Ls(Γ1) as j→ ∞. (2.8)

We have the following property for any h positive number,

| log(z)| ≤
1
h

zh,∀z ∈ [1,+∞). (2.9)

Let θ ∈ (0, 1), and pθ ∈]p0, p1[⊂ [1,+∞[ with 1
pθ
= 1−θ

p0
+ θ

p1
, we have the following inequality,

∥w∥pθ ≤ ∥w∥
1−θ
p0
∥w∥θp1

, ∀w ∈ Lp0(Γ1) ∩ Lp1(Γ1).

3. Important theories and properties

We denote by Z = Hr
0(Γ1) \ {0}. The associate energy E of (1.4) is defined by

E(t) =
1
2
∥∂tw∥22 +K(w), (3.1)

with the functional K ∈ (Z,R) associated with problem (1.4) is given by

K(w) =
1
2
∥w∥2Z +

1
p2 ∥w∥

p
p −

1
p

∫
Γ1

|w|p log(|w|)dy, (3.2)

the Nehari functional J ∈ (Z,R), defined by,

J(w) =< K ′(w),w >= ∥w∥2Z −
∫
Γ1

|w|p log(|w|)dy, (3.3)

where < ., . > denotes the dual pairing between Hr
0(Γ1) and

(
Hr

0(Γ1)
)′

.
We define the following two groups:

W = {w ∈ Z : J(w) > 0,K(w) < d}, (3.4)

and

V = {w ∈ Z : J(w) < 0,K(w) < d}, (3.5)

and
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N = {w ∈ Z : J(w) = 0}. (3.6)

Now, define d as

d = inf
w∈Z
{sup
µ≥0
K(µw)}, (3.7)

which characterized as

d = inf
w∈N
K(w). (3.8)

For any α satisfying p < p + α ≤ 2⋆r , we put

r(α) =
(
α

kp+α

) 1
p+α−2
,

where k is the optimal embedding constant of

Hr
0(Γ1) ↪→ Lp+α(Γ1).

i.e.,

k = inf
w∈Hr

0(Γ1)\{0}

∥w∥Hr
0(Γ1)

∥w∥p+α
.

Lemma 3.1. Let w ∈ Hr
0(Γ1) \ {0} and p < p + α ≤ 2⋆r , r ∈ (0, 1). We have

1) If 0 < ∥w∥Hr
0(Γ1) ≤ r(α), then J(w) > 0.

2) If J(w) ≤ 0, then ∥w∥Hr
0(Γ1) > r(α), α > 0.

Proof. Let w ∈ Z, according to (2.9), we have

log (|w(y)|) <
|w(y)|α

α
, ∀y ∈ Γ1.

From the definition of J , we obtain

J(w) = ∥w∥2Hr
0(Γ1) −

∫
Γ1

|w|p log |w|dy

> ∥w∥2Hr
0(Γ1) −

∥w∥p+αp+α

α
,

by the definition of k, we know
∥w∥p+αp+α ≤ kp+α∥w∥p+αHr

0(Γ1),

then

J(w) > ∥w∥2Hr
0(Γ1) −

kp+α

α
∥w∥p+αHr

0(Γ1)

= ∥w∥2Hr
0(Γ1)

(
1 −

kp+α

α
∥w∥p+α−2

Hr
0(Γ1)

)
.
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1) If 0 < ∥w∥Hr
0(Γ1) ≤ r(α), then J(w) > 0;

2) If J(w) ≤ 0, implies that ∥w∥Hr
0(Γ1) > r(α).

We put

R(α) =
(
α

K p+α

) 1
p+α−2
|Γ1|

α
p(p+α−2) ,

and

K = inf
w∈Z

∥w∥Hr
0(Γ1)

∥w∥p
,

and 
r⋆ = sup

α∈(0,2⋆−p]
R(α),

r⋆ = sup
α∈(0,2⋆−p]

r(α).

Lemma 3.2. Let α ∈ (0, 2⋆r − p]. We have

0 < r⋆ ≤ r⋆ < ∞.

Proof. • Since r and R are two continuous functions on a compact [0, 2⋆r − p], the r⋆ and r⋆ exists.
• Let r(α) ≤ R(α),∀α ∈ (0, 2⋆r − p] and let w ∈ Hr

0(Γ1), then w ∈ Lp(Γ1) ∩ Lp+α(Γ1), by Holder’s
inequality we have

∫
Γ1

|w|pdy ≤


∫
Γ1

dy


α

p+α

∫
Γ1

|w|p+αdy


p

P+α

= (|Γ1|)
α

p+α


∫
Γ1

|w|p+αdy


p

P+α

,

then
∥w∥p ≤ (|Γ1|)

α
p(p+α) ∥w∥p+α,

and

k = inf
w∈Z

∥w∥Hr
0(Γ1)

∥w∥p+α

≥ (|Γ1|)
−α

p(p+α) inf
w∈Z

∥w∥Hr
0(Γ1)

∥w∥p
= (|Γ1|)

−α
p(p+α) K,

we obtain

Electronic Research Archive Volume 32, Issue 9, 5268–5286.



5274

r(α) =
(
α

kp+α

) 1
p+α−2

≤

(
α

K p+α |Γ1|
α
p

) 1
p+α−2

≤

(
α

K p+α

) 1
p+α−2
|Γ1|

α
p(p+α−2)

= R(α),

so
r⋆ = sup

α∈(0,2⋆r −p]
r(α) ≤ sup

α∈(0,2⋆r −p]
R(α) = r⋆ < ∞.

Corollary 3.3. Let w ∈ Hr
0(Γ1) \ {0} and p < p + α ≤ 2⋆s . We have

1) If 0 < ∥w∥Hr
0(Γ1) ≤ r⋆, then J(w) > 0.

2) If J(w) ≤ 0, then ∥w∥Hr
0(Γ1) > r⋆.

Lemma 3.4. Let α ∈ (0, 2⋆r − p], we have

d ≥
r2
⋆(p − 2)

2p
.

Proof. Let w ∈ N , we have w ∈ Hr
0(Γ1)\{0} andJ(w) = 0, thus by Corollary 3.3, we obtain ∥w∥Hr

0(Γ1) ≥

r⋆, then

K(w) =
1
p
J(w) +

p − 2
2p
∥w∥2Hr

0(Γ1) +
1
p2 ∥w∥

p
p

≥
p − 2
2p

r2
⋆.

Let w ∈ Hr
0(Γ1), if J(w) < 0, then there exists a µ⋆ ∈ (0, 1) such that

J(µ⋆w) = 0.

Let w ∈ Hr
0(Γ1), if J(w) < 0, then

J(w) < p(K(w) − d).

Lemma 3.5. We have

1) d = inf
w∈Z

sup
µ>0
K(µw) has a positive lower bound, namely

d ≥
Rp

p2 .
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2) There exists function w ∈ N , such that K(w) = d.

Proof. 1) Let w ∈ Hr
0(Γ1), we have

sup
µ>0
K(µw) = K(µ∗w) =

1
p2 ∥µ

⋆w∥pp, (3.9)

by µ⋆w ∈ N , thus

K(µ⋆w) ≥ d = inf
w∈N
K(w). (3.10)

Combining (3.9) and (3.10), we obtain

d = inf
w∈Z

sup
µ>0
K(µw) ≥ d.

On the other hand, if w ∈ N , we obtain the only critical point in (0,+∞) of the mapping K is
µ⋆ = 1. Thus,

sup
µ>0
K(µw) = K(w),

for w ∈ N . Hence

inf
w∈Hr

0(Γ1)
sup
µ>0
K(µw) ≤ inf

w∈N
sup
µ>0
K(µw) = inf

w∈N
K(w) = d,

we have J(µ⋆w) = 0. This implies
∥µ⋆w∥p ≥ R,

yields

sup
µ>0
K(µw) ≥

Rp

p2 .

2) Let {wk}
∞
k=1 ⊂ N be minimizing sequence for K such that

lim
k→+∞

K(wk) = d.

On the other hand, we have {wk}
∞
k=1 is bounded in Hr

0(Γ1). Since Hr
0(Γ1) ↪→ L2(Γ1) is compact,

there exists a function w and a sub-sequence of {wk}
∞
k=1, still denoted by {wk}

∞
k=1, such that

wk ⇀ w, in Hr
0(Γ1),

wk ⇀ w, in L2(Γ1),
wk ⇀ w, in Γ1,

we claim that
lim

k→+∞

∫
Γ1

|wk| log(|wk|)dy =
∫
Γ1

|w| log(|w|)dy,

this implies
lim

k→+∞
|wk|

p log(|wk|) = |w|p log(|w|), a.e , y ∈ Γ1,
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and ∫
Γ1

∣∣∣|w|p−2w log |w|
∣∣∣ p

p−1 dy =

∫
{y∈Γ1;|w|>1}

||w|p−2w log |w||
p

p−1 dy

+

∫
{y∈Γ1;|w|≤1}

||w|p−2w log |w||
p

p−1 dy,

we can obtain ∫
{y∈Γ1;|w|≤1}

||w|p−2w log |w||
p

p−1 dy ≤
(

1
e(p − 1)

) p
p−1

|Γ1|, ∀0 ≤ t < +∞.

We can choose now a constant h > 0 such that

p(p + h − 1)
p − 1

∈ [1, 2⋆r ].

Then we can infer that there must be a constant C⋆ > 0 such that

∥w∥ p(p+h−1)
p−1
≤ C⋆∥w∥Hr

0(Γ1),

by log(z) ≤ 1
hzh(h, z > 0), then∫

{y∈Γ1;|w|>1}

||w|p−2wn log |w||
p

p−1 dy

≤ h
p

p−1

∫
{y∈Γ1;|w|>1}

|w|
p(p+h−1)

p−1 dy

≤ h
p

p−1 ∥w∥
p(p+h−1)

p−1
p(p+h−1)

p−1

≤ C
p(p+h−1)

p−1
⋆ h

p
p−1 ∥w∥

p(p+h−1)
p−1

Hr
0(Γ1)

≤ C
p(p+h−1)

p−1
⋆ h

p
p−1

(
2pd
p − 2

) p(p+h−1)
2(p−1)

.

Then, for any t ∈ [0,+∞), we have∫
Γ1

∣∣∣|w|p−2w log |w|
∣∣∣ p

p−1 dy

≤ C
q(p+h−1)

p−1
⋆ h

p
p−1

(
2pd
p − 2

) p(p+h−1)
2(p−1)

+

(
1

e(p − 1)

) p
p−1

|Γ1|.

We conclude that

lim
k→+∞

|wk|
p log(|wk|) = |w|p log(|w|), weakly in L

p
p−1 (Γ1).
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On the other hand, we have∣∣∣∣∣∣
∫
Γ1

|wk|
p log(|wk|)dy −

∫
Γ1

|w|p log(|w|)dy

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
Γ1

(wk − w)|wk|
p−2wk log(|wk|)dy

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
Γ1

w|wk|
p−2wk log(|wk|)dy −

∫
Γ1

|w|p−2w log(|w|)dy

∣∣∣∣∣∣
≤ C∥wk − w∥p +

∣∣∣∣∣∣
∫
Γ1

w
[
|wk|

p−2wk log(|wk|) − |w|p−2w log(|w|)
]

dy

∣∣∣∣∣∣ .
We deduce

K(w) =
1
2
∥w∥2Hr

0(Γ1) +
1
p2 ∥w∥

p
p −

1
p

∫
Γ1

|w|p log(|w|)dy

≤ inf
k→+∞

{
1
2
∥wk∥

2
Hr

0(Γ1) +
1
p2 ∥wk∥

p
p −

1
p

∫
Γ1

|wk|
p log(|wk|)dy

}
≤ inf

k→+∞
{K(wk)} = d.

By wk ∈ N we have wk ∈ Hr
0(Γ1) and J(wk) = 0, then we obtain

∥wk∥p ≥ R.

Hence

J(w) = ∥w∥2Hr
0(Γ1) −

∫
Γ1

|w|p log(|w|)dy

≤ inf
k→+∞

{
∥wk∥

2
Hr

0(Γ1) −

∫
Γ1

|wk|
p log(|wk|)dy

}
≤ inf

k→+∞
{J(wk)} = 0.

It remains to show that J(w) = 0. Arguing by contradiction, if this is not true then we have
J(w) < 0, there exists a positive constant µ⋆ such that µ⋆ < 1 and satisfying J(µ⋆w) = 0.
Therefore, by definition of d, we obtain

0 < d ≤ K(µ⋆w) =
1
p2 ∥µ

⋆w∥pp

≤
(µ⋆)p

p2 lim
k→+∞

∥wk∥
p
p

= (µ⋆)p lim
k→+∞

K(wk) = (µ⋆)pd < d,

but this is a contradiction.
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4. Global existence of solutions

Here, we state and prove the result regarding the global existence of solutions.

Definition 4.1. A function
w ∈ L∞(0,∞,Hr

0(Γ1)),

with
wt ∈ L∞(0,∞, Lp(Γ1)),

is said to be a global (weak) solution of (1.4), if

w0 ∈ L∞(0,∞,Hr
0(Γ1)),

w1 ∈ L∞(0,∞, L2(Γ1)),

and
∀ϕ ∈ L∞(0,∞,Hr

0(Γ1)),

t ∈ R⋆+ ∫
Γ1

(wt, ϕ)dy +
∫ t

0
(w, ϕ)Hr

0(Γ1)dτ + +
∫ t

0
(wt, ϕ)Hr

0(Γ1)dτ

=

∫
Γ1

(w(y, t = 0), ϕ)dy +
∫ t

0

(
|w(y, τ)|p−2w(y, τ) log(|w(y, τ)|), ϕ(y, τ)

)
dτ.

If a (weak) global solution w ∈ C(0,∞; Hr
0(Γ1)), it is said that w is a strong global solution of (1.4).

Theorem 4.2. Let w0 ∈ Hr
0(Γ1) and w1 ∈ L2(Γ1), suppose that E(t = 0) < d, and J(w0) > 0.

Then problem (1.4) admits a global solution w ∈ L∞(0,∞,Hr
0(Γ1)), with wt ∈ L∞(0,∞, L2(Γ1)) and

w ∈ W,∀t ∈ R⋆+.

Proof. We will use the Galerkin method. For this end, we divide the proof into next steps

Step 1: By [21] there exists a sequence (u j) j ⊂ C∞0 (Γ1) of eigenfunctions of the fractional Laplace operator
(−∆y)r, which is an orthonormal basis of L2(Γ1) and an orthogonal basis of Hr

0(Γ1).
Let {Vm}m∈N be the Galerkin space of the separable Banach space Hr

0(Γ1), i.e.,

Vn = S pan {u1, u2, · · · , un} and
⋃
n∈N

Vn = Hr
0(Γ1),

with
{
u j

}n

j=1
is an orthonormal basis in L2(Γ1).

Let w0 ∈ Hr
0(Γ1), then we can find w0n ∈ Vn. We shall find the approximate solutions of the

following equality:

wn =

n∑
j=1

gn
j(t)u j(x), j = 1, 2, 3, . . .

satisfying
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

(∂2
t w(., t), u j) + (w(., t), u j)Hr

0(Γ1) + (∂tw(., t), u j)Hr
0(Γ1)

= (|w(., t)|p−2w(., t) log(|w(., t)|), u j), j = ¯1, n

wn(., t = 0) =
n∑

j=1
A ju j → w0, n→ ∞ in Wr,p

0 (Γ1),

∂twn(., t = 0) =
m∑

j=1
B ju j → w1, n→ ∞ in L2(Γ1).

Substituting wn into (1.4), we obtain

gn′′
j + µ jgn

j + µ jgn′
j

=
m∑

l=1

(
|gl

j|
p−2gl

j log(|gl
j|)

∫
Γ1

ul|ul|
p−2u jdy + |gl

j|
p−2gl

j

∫
Γ1

ul|ul|
p−2 log(|ul|)u jdy

)
gn

j(t = 0) = a j, j = 1, . . . , n
gn′

j (t = 0) = b j, j = 1, . . . , n.

(4.1)

Owing to well-known standard ODE theory, we can see that (4.1) drives to a system of ODEs in
t that admits a local solution 0 ≤ wn(t), 0 ≤ t ≤ Tn.

Step 2: By multiplication of problem (1.4) by gn′
j , summing for j, we obtain∫

Γ1

∂2
t wn(y, τ)∂twn(y, τ)dy

+

∫
Γ1

∫
Γ1

|wn − wn(z, t)|p−2(wn − wn(z, t))(∂twn − ∂twn(z, t))
|y − z|n+rp dydz

+

∫
Γ1

wn(y, τ)|wn(y, τ)|p−2∂twn(y, τ)dy

=

∫
Γ1

wn(y, τ)|wn(y, τ)|p−2 log (|wn(y, τ)|) ∂twn(y, τ)dy,

integrating the above equation with respect to τ, we obtain ∀t ∈ R⋆+

1
2

∫ t

0

d
dt


∫
Γ1

|∂twm(y, τ)|2dy

 dτ +
1
2

∫ t

0

d
dt

(∫
Γ1

∫
Γ1

(wn(y, τ) − wn(z, τ))2

|y − z|n+2r dydz
)

dτ

+

∫ t

0
||∂twn(z, τ)||2

Wr,2
0 (Γ1)

dτ =
1
p

∫ t

0

d
dt

∫
Γ1

wn(y, τ)|wn(y, τ)|p−2 log (|wn(y, τ)|) ∂twn(y, τ)dydτ,

∀t ∈ R⋆+, we obtain

1
2
||∂twn(., t)||22 −

1
2
||∂twn(., t = 0)||22 +

1
2
||wn(., t)||2Hr

0(Γ1) −
1
2
||wn(., t = 0)||2Hr

0(Γ1)

+

∫ t

0
||∂twn(z, τ)||2Hr

0(Γ1)dτ

=
1
p

∫
Γ1

|wn(y, τ)|p log (|wn(y, τ)|) dy

−
1
p

∫
Γ1

|wn(y, t = 0)|p log (|wn(y, t = 0)|) dy +
1
p2 ∥wn(., t = 0)∥pp −

1
p2 ∥wn(., t)∥pp,
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so

En(t) ≤ En(t = 0), t ∈ [0,Tn], (4.2)

where
En(t) =

1
2
∥∂twn∥

2
2 +K(wn).

For n large enough, we can obtain En(t = 0) < d and then E(t = 0) < d.
Then by (4.2), we have

En(t) =
1
2
∥∂twn∥

2
2 +K(wn) < d. (4.3)

According to w0 ∈ W, we can find that ∂twm ∈ W. Next, for t ∈ [0,Tn], we will prove that
wn ∈ W. Indeed, if not the case, there exist t2 ∈ (0,Tn] such that wn(t2) = 0 and J(wn(t2)) = 0,
then w(t2) ∈ N . Then K(wn(t2)) ≥ d = inf

w∈N
K(w), which contradicts (4.3). Then, for sufficiently

large n and ∀t ∈ [0,Tn], we have wn ∈ W.
By (4.3), then wn ∈ W and

K(wn) =
(p − 2)

2p
∥wn∥

p
Hr

0(Γ1) +
1
p2 ∥wn∥

p
p +

1
p
J(wn).

Then for t ∈ [0,Tn] and n large enough, we have

1
2
∥wnt∥

2
2 +

(p − 2)
2p

∥wn∥
p
Hr

0(Γ1) +
1
p2 ∥wn∥

p
p < d,

which gives, ∀0 ≤ t ≤ Tn 
∥wnt∥

2
2 < 2d,

∥wn∥
p
Hr

0(Γ1) ≤
2pd
p−2 ,

∥wn∥
p
p < dp2.

(4.4)

So Tn = +∞. Then we know (4.4) and wn ∈ W,∀0 ≤ t < +∞.
Then ∫

Γ1

∣∣∣|wn|
p−2wn log |wn|

∣∣∣ p
p−1 dy

=

∫
{y∈Γ1;|wn |>1}

||wn|
p−2wn log |wn||

p
p−1 dy

+

∫
{y∈Γ1;|wn |≤1}

||wn|
p−2wn log |wn||

p
p−1 dy,

we can get ∫
{y∈Γ1;|wn |≤1}

||wn|
p−2wn log |wn||

p
p−1 dy ≤

(
1

e(p − 1)

) p
p−1

|Γ1|, ∀0 ≤ t < +∞.
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We can choose now a constant h > 0 such that

p(p + h − 1)
p − 1

∈ [1, 2⋆r ].

Then we can infer that there must be a constant C⋆ > 0 such that

∥w∥ p(p+h−1)
p−1
≤ C⋆∥w∥Hr

0(Γ1),

by log(z) ≤ 1
hzh, (h, z > 0), then∫

{y∈Γ1;|wn |>1}

||wn|
p−2wn log |wn||

p
p−1 dy

≤ h
p

p−1

∫
{y∈Γ1;|wn |>1}

|wn|
p(p+h−1)

p−1 dy

≤ h
p

p−1 ∥wn∥
p(p+h−1)

p−1
p(p+h−1)

p−1

≤ C
p(p+h−1)

p−1
⋆ h

p
p−1 ∥w∥

p(p+h−1)
p−1

Hr
0(Γ1)

≤ C
p(p+h−1)

p−1
⋆ h

p
p−1

(
2pd
p − 2

) p(p+h−1)
2(p−1)

.

Then, for sufficiently large n and for any 0 ≤ t < +∞, we have∫
Γ1

∣∣∣|wn|
p−2wn log |wn|

∣∣∣ p
p−1 dy

≤ C
q(p+h−1)

p−1
⋆ h

p
p−1

(
2pd
p − 2

) p(p+h−1)
2(p−1)

+

(
1

e(p − 1)

) p
p−1

|Γ1|.

Step 3: We see that there must be a function w = w ∈ L∞(0,∞,Hr
0(Γ1)) with ∂tw ∈ L∞(0,∞, L2(Γ1)),

ξ ∈ L2(0,∞, L
q

q−1 (Γ1)) and a subsequence of {wi}
n
i=1, as n→ ∞, such that,

wn ⇀
⋆ w in L∞(0,∞,Hr

0(Γ1)) and wn ⇀ w in L2(0,∞,Hr
0(Γ1))

and wn → w in Γ × R⋆+
∂twn ⇀

⋆ ∂tw in L∞(0,∞, L2(Γ1)) and ∂twn ⇀ ∂tw in L2(0,∞, L2(Γ1))
and ∂twn → ∂tw in Γ × R⋆+
|wn|

q−2wn log(|wn|)→ ξ in L∞(0,∞, L
q

q−1 (Γ1))

and |wn|
q−2wn log(|wn|)→ ξ in L2(0,∞, L

q
q−1 (Γ1)).

As in [9], the injection

{w : w ∈ L2(0,∞,Hr
0(Γ1)), ∂tw ∈ L2(0,∞, L2(Γ1))} ↪→ L2(0,∞, Lp(Γ1)),

Electronic Research Archive Volume 32, Issue 9, 5268–5286.



5282

is compact. We know
wn → w, strongly in L2(0,∞, Lp(Γ1)).

Then it follows from the convergence of wn and wnt that

1
2
∥wt∥

2
2 +

1
2
∥w∥2Hr

0(Γ1) +
1
p2 ∥w∥

p
p

≤ inf
n→+∞

{
1
2
∥∂twn∥

2
2 +

1
2
∥wn∥

2
Hr

0(Γ1) +
1
p
∥wn∥

p
p +

1
p2 ∥wn∥

p
p

}
≤ inf

n→+∞

{
1
2
∥∂twn∥

2
2 +K(wn) +

1
p

∫
Γ1

|wn|
p log(|wn|)dy

}
≤ inf

n→+∞

{
En(t) +

1
p

∫
Γ1

|wn|
p log(|wn|)dy

}
≤ inf

n→+∞

{
En(t = 0) +

1
p

∫
Γ1

|wn|
p log(|wn|)dy

}
≤ E(t = 0) +

1
p

∫
Γ1

|w|p log(|w|)dy,

then

E(t) =
1
2
∥wt∥

2
2 +K(w)

=
1
2
∥wt∥

2
2 +

1
2
∥w∥2Hr

0(Γ1) +
1
p
∥w∥pp +

1
p2 ∥w∥

p
p −

1
p

∫
Γ1

|w|p log(|w|)dy

≤ E(t = 0).

Therefore, by E(t) ≤ E(t = 0) for a.e. 0 ≤ t < +∞ and w0 ∈ W, it is easy to prove w ∈ W for
0 ≤ t < +∞.

Lemma 4.3. Let w be a weak solution of (1.4), where T is the maximum existence time. Thus

1) If E(t = 0) < d, w0 ∈ W , then w ∈ W, for 0 ≤ t < T;
2) If E(t = 0) ≥ d, (w0,w1) ≥ 0, then w ∈ V, and for 0 ≤ t < T, supply that w0 ∈ V.

Proof. Let T be the maximal existence time of the weak solution of w. We have

1
2
∥∂tw∥22 +K(w) ≤

1
2
∥w1∥

2
2 +K(w0) < d, ∀0 ≤ t < T. (4.5)

1) Case of E(t = 0) < d. By contradiction, if not the case, then for 0 < t0 < T we have
J(w) < 0,∀0 ≤ t < t0 and J(t0) = 0.
By claim 2) of Corollary 3.3, we have ∥w∥Hr

0(Γ1) ≥ r⋆ > 0, for 0 ≤ t < t0, then w(t0) , 0. Thus
w(t0) ∈ N and K(w(t0)) ≥ 0, which contradicts K(w(t0)) ≤ E(t0) < E(t = 0) < d.
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2) Case of E(t = 0) ≥ d and (w0,w1) ≥ 0. By contradiction, if not the case, then there exists surely a
0 < t0 < T such that J(w) < 0, for 0 ≤ t < t1 and J(t1) = 0.
By Corollary 3.3, the claim 2), we have ∥w∥Hr

0(Γ1) ≥ r⋆ > 0, for 0 ≤ t < t0, then w(t1) , 0. Thus
w(t0) ∈ N and K(w(t0)) ≥ 0. By definition of E(t), we have

E(t1) =
1
2
∥w(t1)∥22 +K(w(t1)) ≤ E(t = 0) < d,

then K(w(t1)) ≤ d and ∥w(t1)∥22 = 0. We first introduce an auxiliary function

M(t) = ∥w∥2,

and
M′(t) = (∂tw,w) + (w, ∂tw) = 2(∂tw,w),

and

M′′(t) = 2(∂tw,w) + 2∥∂tw∥2, (4.6)

by (4.6), we have,

M′′(t) ≥ 2∥∂tw∥2 − 2J(w). (4.7)

Hence, we obtain
M′(0) = 2(∂1w,w0) ≥ 0,

then M′(t) is strictly increasing for ≤ t < t1. As M′(0) ≥ 0, we have M′(t) = 2(∂tw,w) ≥
M′(0) > 0, which conflicts with ∥w(t1)∥22 = 0.

Lemma 4.4. Let (w0,w1) ∈ Hr
0(Γ1) × L2(Γ1), suppose that 0 < E(t = 0) < d. Then

1) If w0 ∈ W , then w ∈ W, for 0 ≤ t < T,
2) If w0 ∈ V, then w ∈ V, for 0 ≤ t < T.

Proof. Let T be the maximal existence time of the weak solution of w. We have

1
2
∥∂tw∥22 +K(w) ≤

1
2
∥w1∥

2
2 +K(w0) < d, ∀t ∈ [0,T ). (4.8)

1) We claim that w ∈ W,∀0 ≤ t < T . By contradiction, if not, then there must exist a t0 ∈ (0,T )
such that w(t0) ∈ ∂W, and then we have J(w) = 0. K(w0) ≥ d contradicts the assumption (4.8).

5. Conclusions and challenges

The present article is concerned with the wave equation involving the fractional Laplacian with
logarithmic nonlinearity. With the aid of techniques from variational methods, we proved the global
existence of weak solutions by the Galerkin approximation argument.
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5.1. Different formulas for fractional Laplacian operator

It is more difficult situation in the case where the fractional Laplacian is nonlinear. We assume that
the space variable y ∈ Rn and the fractional exponent are 0 < s < 1. The next version is equivalent.

1) The first pseudo-differential operator given by the Fourier transform

ˆ(−∆y)su(ξ) = |ξ|2sû(ξ).

2) Singular integral operator

(−∆y)su(ξ) = Cn,s

∫
Rn

u(ξ) − u(y)
|ξ − y|n+2s dy,

with this definition, it is the inverse of the Riesz integral operator (−∆y)su. This one has a kernel
C1|ξ − y|n+2s, which is not integrable.

3) The β-harmonic extension: find the solution of the (n + 1) problem

∇y(y1−β∇yv) = 0, y ∈ Rn, y ∈ R+; v(y, t = 0) = u(y).

If we put β = 2s, we obtain

(−∆y)su(x) = −Cβ lim
t→0

y1−β∂v
∂y
,

when s = 1/2, i.e., (β = 1), the extended function v is harmonic and the operator is the Dirichlet-
Neumann map on the space Rn.

These three alternatives can be studied in probability and PDEs.
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