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Abstract
Water erosion is one of the main forms of land degradation in Algeria, with a serious repercussion on agricultural productiv-
ity. The purpose of this study is to estimate the soil loss of Wadi El-Ham watershed in the center of Algeria, this study aims 
also to evaluate the effectiveness and reliability of the use of the Revised Universal Soil Loss Equation (RUSLE) under a 
Geographic Information System in this field. The RUSLE model involves the main factors of erosion phenomena, namely, 
rain aggressiveness, soil erodibility, topographic factor, land cover index and the anti-erosive practices factor. Using this 
approach, the specific erosion in Wadi El-Ham watershed is estimated as 5.7 (t/ha/yr) in the entire watershed area. This result 
is compared to the measured suspended sediment at the Rocade-Sud gauging station situated outlet the watershed. These 
data consist of 1293 instantaneous measures of the water discharge and the suspended sediment concentration recorded dur-
ing 21 years. Through this comparison, the used approach of RUSLE under GIS estimates the soil loss in Wadi El-Ham in 
Hodna region of Algeria with an error of 7.5%. Consequently, the results obtained in cartographic format make it possible 
to target the areas requiring priority action for a larger scale analysis to find appropriate solutions to combat erosion and to 
protect the natural environment.

Keywords Soil erosion · RUSLE · GIS · Remote sensing · Algeria

Introduction

The water and soil are vital resources. In the arid region, 
they are experiencing a high degradation in quantity and 
quality by water erosion. The latter is a natural phenomenon 
that evolves with the anthropic evolution and the climate 

severity. Recent studies on the vulnerability to climate 
change in the Mediterranean region indicate a trend towards 
increased aridity which accelerating water erosion (Berkane 
and Yahiaou 2007; Souadi 2011). It is also worth mention-
ing that recent studies also alert for the negative impacts of 
certain land use changes on soil losses, water quality and 
soil fertility. Environmental land use conflicts, which occur 
when land use deviates from land capability (natural use), 
were found to amplify soil losses (Valle Junior et al. 2014; 
Pacheco et al. 2014), amplify nutrient exports with enhanced 
surface and groundwater quality degradation (Valle et al. 
2014; Pacheco and Sanches Fernandes 2016), and amplify 
soil fertility decline through enhanced organic matter loss 
(Valera et al. 2016, 2017).

Soil erosion by rainfall and runoff is a widespread phe-
nomenon in the many Mediterranean countries (Bou Kheir 
et  al. 2001); it is a very complex phenomenon because 
of its irregular, random nature and its spatiotemporal 
discontinuity.
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The topographic and climatic factors, associated with 
the accelerated and sometimes anarchic urbanization, 
make of Algeria a favorable environment for the phenom-
enon of erosion.

Algeria is, therefore, one of the most threatened coun-
tries in the world by erosion. The annual losses of water 
due to siltation in dams are estimated about 20 million  m3 
(Remini 2000). However, an average annual specific ero-
sion ranging between 2000 and 4000 (t/km/year) (Demmak 
1982), the intensity of water erosion varies from one area 
to another. The western region is the most affected, i.e., 
47% of the whole area, similarly, (27%) and (26%) for the 
central and the eastern regions, respectively (Ministry of 
the Environment and Spatial Planning 2000).

In the scientific literature, several approaches are pro-
posed to evaluate, quantify and predict erosion rates and 
sediment transport. These approaches are based on field 
observations, many modeling concepts, and sometimes 
both.

A lot of models are developed to study runoff, erosion 
process and sediment transport: (CREAMS) the Chemicals, 
Runoff, and Erosion from Agricultural Management Systems 
(Knisel 1980) and (SWRRB) Simulator for Water Resources 
in Rural Basin (Williams et al. 1985). Other types of mod-
els are interested not only in soil loss, but also the nutrient 
losses: (AnnANPSPL) Annualized Agricultural Non-Point 
Source Pollutant Loading, (ANSWERS) Areal Non-point 
Source Watershed Environment Response Simulation (Bea-
sley et al. 1980) and (LISEM) Limburg Soil Erosion Model 
(De roo et al. 1996).

Models such as the Universal Soil Loss Equation (USLE) 
(Wischmeier and Smith 1978), Griffith University Erosion 
System Template (GUEST) (Rose et al. 1983), the Water 
Erosion Prediction Project (WEPP) (Nearing et al. 1989), 
the European Soil Erosion Model (EUROSEM) (Mor-
gan et al. 1998), Soil and Water Assessment Tool (SWAT) 
(Arnold et al. 1998) and Agricultural Non-Point Source Pol-
lution Model (AGNPS)(Young et al. 1989) are based on the 
description of the physical erosion process through a math-
ematical concept.

The aim of this study is to estimate the soil degradation 
in the whole area of Wadi El-Ham watershed using RUSLE 
under a Geographic Information System (GIS), and also to 
determine and plan accurately the spatial distribution of the 
erosive potential of soil at Wadi El-Ham watershed.

The Revised Universal Soil Loss Equation (RUSLE) is 
one of the most widely used methods in the Mediterranean 
region (Toumi et al. 2013), Algeria (Tahiri et al. 2016), 
Morocco (Fernández and Vega 2016), Spain (Karamesouti 
et al. 2016), Greece (Mancino et al. 2016), Italy (Abdo and 
Salloum 2017), Syria (Demirci and Karaburun 2012) and 
Turkey. It presents an easier implementation, in addition to 
the availability of the required data.

The study area

The Hodna basin with a drainage area of 26000  km2 is the 
fifth large basin of Algeria. It is an interior endorheic basin, 
located at 150 km in the south of the Mediterranean coast.

The Hodna basin constitutes a transition zone between 
two large mountain chains, the Tellian Atlas chain, repre-
sented by the east–west Hodna Mountains. It reaches the 
summit of the Djebel Tachrit Guetiane in 1902 m and repre-
sents a declining altitude to the west to 1000 m; the Saharan 
Atlas chain constitutes the southern limit of the basin with 
altitudes do not exceed 1200 m (Table 1).

In this study, we are focusing on the Wadi El-Ham water-
shed, which is one sub-basin of the large basin of Hodna, 
it is located northwest the Hodna and occupies the whole 
area of this part. Geographically, Wadi El-Ham watershed 
is located between 35°15′ and 36°15′ north latitude and 
between 3° and 4°15′ east longitude. It drains an area of 
5594  km2 (with a perimeter of 492 km) to the gauging sta-
tion Rocade-Sud installed at the outlet of the basin (Fig. 1).

Materials and methods

RUSLE model description

Erosion prediction models are useful tools for analyzing soil 
erosion and establishing a plan for soil erosion mitigation. 
The USLE model (Wischmeier and Smith 1978), with its 
revised version of RUSLE (Renard et al. 1997), is the most 
used model around the world in this field.

Moreover, the need for a USLE update, as users requested 
more flexibility in modeling erosion with new conditions, 

Table 1  Morphometric characteristics of the Wadi El-Ham watershed

Parameters Unit Value

Aria A km² 5594.29
Perimeter P km 492.27
Index of compactness IC – 1.843
Maximum altitude Hmax m 1823
Minimum altitude Hmin m 441
Mean basin elevation Hmean m 747.82
Altitude to 95% m 650
Altitude to 50% m 861
Altitude to 5% m 1235
Length of the rectangle Lrec km 220.80
Width of the rectangle lrec km 25.34
Length of the main river l km 112
Drainage density Dd km/km2 1.341
Hydrographic density f km/km2 1.338

Author's personal copy
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which obviously did not work well within the standard 
USLE version (Wischmeier 1976).

This model carefully demonstrates the spatial heteroge-
neity of soil erosion, and because it is suitably developed 
under geographic information systems, it has been the most 
commonly used model for soil erosion prediction (Feng et al. 
2010; Tang et al. 2015).

The relation expresses the RUSLE equation:

where A is the specific soil loss (t/ha year), R represents 
the rainfall erosivity factor (MJ mm/ha/h/yr), K is the soil 
erodibility factor (Mg h/MJ/mm), LS is the non-dimensional 
topographic factor, C is the cover management factor and P 
is the soil conservation practices factor.

Factors of the models:

R factor

R is called factor of rain or index of rain “erosivity”, is one 
of the important factors influencing the rate of soil loss, The 
rainfall erosivity factor (R) can be defined as an aggregate 
measurement of the amounts and intensities of individual 
rain storms over the year and is related to total rainfall (Her-
massi et al. 2017).

(1)A = R × K × LS × C × P,

The factor of rainfall erosivity is calculated from several 
formulas, proposed by Wischmeier and Smith (1961) and 
can only be applied in areas equipped with autographic 
recorders, and then, by the method of Arnoldus (Cormary 
1964) based on the monthly precipitation or of the index 
of Fournier.

The lack of continuous pluviograph data relating to 
rainfall intensity motivated the application of the equation 
established by Wischmeier and Smith (1978) to derive the 
R factor. To calculate this factor, we used the data of the 
monthly rain, and the annual rainfall using the formula of 
Arnoldus (Cormary 1964) which is presented in the form:

where Pi is the monthly precipitation and P is the annual 
precipitation (mm).

In this study, the annual and monthly precipitations 
were recovered from 14 rainfall stations for a period 
between 25 and 30 years. R values were calculated and 
interpolated over the whole watershed area using a geo-
statistical model.

(2)logR = 1.74 log

12∑
i=1

P2
i

P
+ 1.29,

Fig. 1  Location of the study area
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K factor

The soil erodibility factor represents the cohesion and 
strength of soil vis-à-vis the erosion.

The soil erodibility factor (K) in the RUSLE equation is 
an empirical measure, which expresses the inherent suscep-
tibility of a soil-to-water erosion as determined by intrinsic 
soil properties.

The K-factor is related to soil texture, organic matter con-
tent, permeability, and other factor (% silt plus very fine 
sand, % sand, soil structure), basically, it is derived from the 
soil type (Wischmeier et al. 1971).

In our study, we used the harmonized world soil database 
(HWSD) version 1.20 (Fao 2012). The HWSD is composed 
of a GIS raster image file linked to an attribute database in 
Microsoft Access format. More 16000 different soil-map-
ping units are recognized in the Harmonized World Soil 
Database (HWSD).

The raster database consists of 21600 rows and 43200 
columns of with 221 million grid cells covering the globe’s 
land territory, which are linked to harmonized attribute data 
(Fao 2012).

The use of a standardized structure allows linkage of the 
attribute data with GIS to display or query the composition 
in terms of soil units and the characterization of selected soil 
parameters (organic carbon, pH, water storage capacity, soil 
depth, total exchangeable nutrients, lime and gypsum con-
tents, sodium exchange percentage, salinity, textural class 
and granulometry).

In this study, the values of the K-factor were calculated 
using the following formulas proposed by Neitsch et al. 
(2011).

where fcsand is a factor that lowers the K indicator in soils 
with high coarse-sand content and higher for soils with little 
sand; fcl–si gives the low soil erodibility factors for soils with 
high clay-to-silt ratios; forgc reduces the K values in soils with 

(3)KUSEL = Kw = fcsand.fcl−ci.forgc.fhisand,

high organic carbon content, while fhisand lowers the K values 
for soils with extremely high sand content,

where ms is the percent sand content (0.05–2.00  mm 
diameter particles), msilt is the percent of silt content 
(0.002–0.05  mm diameter particles), mc is the percent 
clay content (< 0.002 mm diameter particles), and orgC is 
the percent of organic carbon content of the soil layer (%) 
(Table 2).

LS factor

The topography plays a significant role in soil–water ero-
sion. The topographic factor (LS) represents the effects of 
slope length (L) and slope steepness (S) on the erosion of a 
slope. The effect of topography on the erosion is calculated 
throughout the length of slope (L) and the degree of slope 
(S), and usually is represented by merging of these two fac-
tors into one factor (LS) (Perovic et al. 2016).

The LS factor in RUSLE represents the ratio of soil loss 
on a given slope length and steepness to soil loss from a 
slope (Wu et al. 2012).

(4)
fcsand =

(
0.2 + 0.3 ⋅ exp

[
−0.256 ⋅ ms ⋅

(
1 −

msilt

100

)])
,

(5)fcl−si =

(
msilt

mc + msilt

)
,

(6)forgc =

(
1 −

0.25 ⋅ orgC

orgC + exp
[
3.72 − 2.95 ⋅ orgC

]
)
,

(7)

fhisand =

⎛⎜⎜⎜⎝
1 −

0.7 ⋅
�
1 −

ms

100

�
�
1 −

ms

100

�
+ exp

�
−5.51 + 22.9 ⋅

�
1 −

ms

100

��
⎞⎟⎟⎟⎠
,

Table 2  Estimation of K-factor in Wadi El-Ham watershed

Bold indicates the soil erodibility values

Soil sample MS (sand) 
top soil %

msilt (silt) 
top soil %

MC (clay) 
topsoil %

orgC oraganic 
carbon %

Fcsand Fcl–si ForgC Fhisand Kusle K

LC 64.3 12.2 23.5 0.63 0.20 0.72 0.98 0.983 0.1393 0.01834
BK 81.6 6.8 11.7 0.44 0.20 0.74 0.99 0.718 0.1054 0.01388
I 58.9 16.2 24.9 0.97 0.20 0.76 0.93 0.994 0.1394 0.01836
XK 48.7 29.9 21.6 0.64 0.20 0.85 0.98 0.999 0.1659 0.02185
YK 63.5 17.9 18.7 0.26 0.20 0.81 1.00 0.986 0.1585 0.02088
YH 50.4 29 20.6 0.3 0.20 0.85 1.00 0.999 0.1694 0.02231
ZG 47.8 8.5 43.8 0.38 0.20 0.58 0.99 0.999 0.1151 0.01516

Author's personal copy
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The Digital Terrain Model (DTM) generated from the 
ASTER DEM (2017) (30 m resolution) was used to generate 
the LS factor. From the ASTER DEM image, the slope was 
derived using GIS software.

In the framework of our study, we used the formula devel-
oped by Wischmeier and Smith (1961) which has been used by 
several authors (Rodriguez and Suárez 2010; Hajji et al. 2017) 
for the calculation of topographic factor (LS).

where ‘S’ is the slope (%) and ‘m’ is a parameter relative to 
each class of slope (Wischmeier and Smith 1978) (Table 3).

C factor

The vegetal cover factor (C) is considered as the second major 
factor (after topography) controlling soil erosion (Benchettouh 
et al. 2017). The factor C indicates the degree of soil protection 
by vegetation cover. The latter intercepts the rainfall, increases 
the infiltration and reduces the rainfall kinetic energy before 
influencing the soil surface (Mhangara et al. 2012). Soil ero-
sion decreases exponentially with the increase in vegetation 
cover (Jiang et al. 2015).

In the RUSLE models, the cover factor (C) is an index, 
which reflects, based on the land use, the effect of cropping 
practices on the soil erosion rate. This factor is used to express 
the effect of vegetation cover of the watersheds. The Normal-
ized Difference Vegetation Index (NDVI) is one of the most 
commonly used methods to determine the C factor.

In this study, the Normalized Difference Vegetation Index 
(NDVI) data (period 2017) generated by Satellite Landsat 8 
with a spatial resolution of 30 m were used to estimate the 
C factor and explain the effect of differences in vegetation 
cover on the loss of soil. NDVI was calculated from a combi-
nation of red and infrared bands.

To estimate the values of the C factor, some authors (Toumi 
et al. 2013) have used the regression between two extreme 
values of NDVI; the regression line found is given by

(8)LS =
(
Flow accumulation ×

Resolution

22.1

)m

×
(
0.065 + 0.045 × S + 0.0065 × S2

)
,

(9)c = 0.9167 − NDVI × 1.1667.

P factor

P factor indicates erosion conservation practices on the 
annual soil loss from the watershed; it reflects the effects 
of practices that will reduce the amount of runoff and their 
velocity, thereby reducing the effects of water erosion.

According to Elaloui et al. (2017), the cultural contour 
in alternating strips or terraces, reforestation benches, 

mounding and ridging are the most effective soil conser-
vation practices.

The values of  P between 0 and 1, in which the highest 
value is assigned to areas with the absence of anti-erosive 
practice, the minimum value represents a good indicator 
of resistance to erosion; accordingly, lower the  P value, 
the more effective the conservation practices.

Estimating sediment discharge

In this section, we use the instantaneous measurements 
of water flow discharge and suspended sediment concen-
trations carried out by the ANRH agency. The flows of 
Wadi El-Ham are controlled by the Rocade-Sud gauging 
station, located at the outlet of the watershed. According 
to Hasbaia et al. (2012), water erosion is evaluated on the 
basis of the annual flow of suspended matter As [t] by the 
following formula:

where 
(
QiCi

)
 and 

(
Qi+1 Ci+1

)
 are the liquid flow discharges 

corresponding to the suspended sediment concentration 
measured at times ti andti+1 , respectively.

The arithmetic sum of these elementary contributions 
during the year will constitute annual sediment yield. Sim-
ilarly, the liquid yield generating the As flux is calculated 
as follows:

Therefore, soil erosion is calculated by dividing the 
annual sediment yield As [t/yr] by the area of the basin A 
[km²] according to the following formula:

Fig. 2 gives a general idea of the functioning of the 
model that presents a summary of the used methodology.

(10)As =

(
Qi+1 Ci+1

)
+

(
QiCi

)
2

(
ti+1 − ti

)
,

(11)Al =
Qi+1 + Qi

2

(
ti+1 − ti

)
.

(12)Ass =
As

A

(
t∕yr∕km2

)
.

Table 3  Value of ‘m’ relative to 
each class of slope (Wischmeier 
and Smith 1978)

SLOPE (%) M

> 5 0.5
3–5 0.4
1–3 0.3
< 1 0.2

Author's personal copy
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Results and discussion

The obtained results using the RUSLE model are sum-
marized below.

Rainfall erosivity factor (R) map

The erosivity of rainfall in the Wadi El-Ham watershed 
varies from 45 to 70 (MJ·Mm/ha·h·an) (Fig. 3). The rain-
fall aggressiveness is experiencing an increasing gradi-
ent from the south of the basin to the north with a slight 
increase from east to west.

These R values exceeding 45 (MJ·Mm/ha·h·an) indi-
cate that the entire Wadi El-Ham watershed area is subject 
to high-climatic aggressiveness. It is, therefore, deduced 
that the erosive power of the rains is important in this 
basin. The lowest R values presented by the class 45–53 
(MJ·Mm/ha·h·an), focus on the lowland with a semi-
arid climate, while the highest values are more than 53 
(MJ·Mm/ha·h·an), focus on the mountainous areas of Wadi 
El-Ham watershed.

Soil erodibility factor (K)

The results obtained for the K-factor in the Wadi El-Ham 
watershed range from 0.0138 (t·ha·h/ha·MJ·mm) for the 
most resistant soils to 0.0223 (t·ha·h/ha·MJ·mm) for the 
soil that is least resistant to erosion. Soil are of medium 
susceptibility to erosion in that more than 80% of the 
basin has an erodibility index K greater than 0.02 (t·ha·h/
ha·MJ·mm) (Table 4).

Fig. 4 shows the distribution of soil erodibility over the 
entire area of Wadi El-Ham watershed.

Topographic factor (LS)

The LS values range from 0.01 to 22.27. They were grouped 
into six classes (Table 5). The length and degree of incli-
nation of the slope are determining factors in the erosion 
process. A reading of the map clearly reflects the topogra-
phy of the watershed (Fig. 5). The values below 0.5 occupy 
the largest area of Wadi El-Ham watershed (83.8%), which 
corresponds to low elevation or lowland areas. The highest 
values, those exceeding 22 indicate rugged terrain with steep 
slopes. They occupy very limited areas not exceeding 1% of 
the basin, but with a distribution over the entire catchment 
area.

Since this parameter characterizes the functioning of the 
surface, it is therefore a good indicator of soil erosion in the 
watershed.

Vegetation cover factor (C)

The obtained C factor map (Fig. 6) shows that 98% of the 
watershed area has a very low vegetation cover and only 
2% of the area is well protected with C < 0.5. The values 
of C factor below 0.5 correspond to a dense forests, dense 
matorrals and arboriculture, however, the values between 0.5 
and 0.9 are assigned to areas covered by low density, sparse 
forests and clear matorrals (Table 6).

The spatial distribution map shows that areas most vul-
nerable to erosion attributed to the types of occupation of the 
naked ground; this class covers almost the entire watershed.

Factor anti‑erosive practices (P)

Throughout Wadi El-Ham watershed, any significant con-
servation structures exist, what is more, agriculturists do 
not use conservation tillage practices, which became more 

Fig. 2  Diagram of the methodology-adopted USLE–GIS approach

Author's personal copy
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important now than ever. The crops are mainly cereal, and 
plowing is rarely parallel to contour lines. In this specific 
situation, the value of 1 was allotted to the P factor in the 
entire watershed.

Potential erosion risk map with the RUSLE model (A)

Within the RUSLE, the erosivity of rainfall, the erodibility 
of soils, the vegetation cover and the topographic factor 
are four natural factors that determine the erosion process. 
The potential annual soil loss can be considered as the 
result of multiplication of these four factors. The combi-
nation and processing of these factors, under Geographic 
Information Systems (GIS) presented in detail above, have 
enabled the development of the potential erosion map of 
Wadi El-Ham watershed (Fig. 7).

The obtained map shows that the soil loss at the Wadi 
El-Ham watershed scale range from 0 to 17 (t/ha/yr), with 
an average value for the entire area of 5.72 (t/ha/yr).

This value provides information on the extent of the 
erosion phenomenon, particularly on steep slopes drained 

Fig. 3  Rainfall erosivity at 14 rainfall stations

Table 4  Distribution of K factor class in the Wadi El-Ham Watershed

Classes K factor Area (ha) Area (%)

0.013885 5630 1.01
0.015158 1006 0.18
0.018344 3866 0.69
0.018364 120,894 21.61
0.020875 68,153 12.18
0.021845 318,760 56.98
0.223069 41,121 7.35

Author's personal copy
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by a dense hydrographic network. A low erosion is 
observed on flat surfaces.

The total solid yield in the Wadi El-Ham watershed is 
about 3.2 million tons of sediment. The erosion rates differ 

from one area to another, given the impact of different fac-
tors that control erosion.

To better visualize the results and to differentiate spatially 
between degrees of risk, the different units in soil loss were 
grouped into four classes. The areas at low risk of erosion 
with rates between 0 and 4 (t/ha/yr), occupying 54.3% of the 
total area, are distributed throughout the basin and gener-
ally follow the spatial distribution of low-altitude areas and 
gentle slopes.

The areas with an average risk that encompass classes 
with erosion rates between 4 and 7 (t/ha/yr) occupy 19.5% 
of the area and generally follow the distribution of elevations 
and slopes. They focus on areas where slope and altitude 
are averages. Similarly, the high-risk classes between 7 and 
10 (t/ha/yr) occupying 16.3% of the basin area are mainly 
located in areas with a relatively high slope. The areas where 
the risk of erosion is very high > 10 (t/ha/yr) occupy 9.91% 

Fig. 4  The K-factor map of Wadi El-Ham watershed

Table 5  Distribution of LS factor class in the Wadi El-Ham Water-
shed

Classes LS factor Area (ha) Area (%)

0–0.25 31038.4 55.5
0.25−0.1 623.7 1.1
0.1 − 0.5 15227.4 27.2
0.5 − 1 5629.5 10.1
1–5 3302.7 5.9
5–22.7 120.9 0.2

Author's personal copy
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of the total area and follow the steep slopes of the catchment 
(Fig. 8).

The specific erosion calculated from Rocade‑Sud 
gauging station data

Wadi El-Ham transports an average of 94 million  m3 of 
water and 2.97 million tons of sediment, i.e., a water ero-
sion of about 5.30 (t/ha/yr). The latter value is among the 
highest in the world, and is an average value associated with 
significant variability; during the study period (21 years), 
the coefficient of interannual variation of Cv erosion are 
estimated to be 1.0.

The obtained results are relatively close to the specific 
erosion deduced from measured data of the gauging station 
of Rocade-Sud station. This outcome can be explained by 
the violent nature of the flows. More than 68% and 75% 

of the annual water and sediment yields, respectively, are 
observed during floods. Similar results are obtained in other 
Algerian watershed, for example, one flood at Upper Tafna 
catchment (Northwest of Algeria) caused by a severe storm 
generated 98% of the annual suspended load (Megnounif 
et al. 2003). The deposited portions of detached sediments 
can be rapidly compensated by erosion, which occurs in the 
hydrographic channels of the watershed during the flow. 
Hydraulically, the violent flows have always the tendency 
to saturate with sediment.

The current results are also compatible with other works 
on the evaluation of water erosion carried out in other Med-
iterranean watersheds having climatic and environmental 
characteristics that are similar. In Algeria, near our basin, 
the watershed area of K’sob records an average annual loss 
of 4.6 (t/ha/yr) (Benkadja et al. 2014); in Morocco (Simon-
neaux et al. 2015), the average output of the sediments 

Fig. 5  The LS factor map of Wadi El-Ham watershed
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measured in the high mountains of the Atlas was approxi-
mately 4 (t/ha/yr).

In Italy, Mancino et al. (2016) found a loss of 8.5 (t/ha/yr) 
in the region of Matera (Basilicata, southern Italy), whereas 
Paroissien et al. (2015) estimated an average annual loss of 
4.2 (t/ha/yr) with the watershed of the area of Languedoc 
(Peyne, France).

There are several advantages to integrating the model into 
a GIS, which allows an effective management of a significant 
amount of data related to the various factors of water ero-
sion. This also guarantees the establishment of a synthetic 
chart of the losses in soil or potential erosion (t/ha/yr) and 
space distribution of the vulnerability to erosion of the vari-
ous zones of the watershed area. This study confirms that 
RUSLE model provided a reliable result, even with a lack 
of data particularly detailed on soil type and precipitations. 
This method allows the decision makers and the managers 

Fig. 6  The C factor map of Wadi El-Ham watershed

Table 6  Distribution of C factor class in the Wadi El-Ham Watershed

Classes C factor Area (ha) Area (%)

0.179–0.496 880 0.16
0.496–0.574 3700 0.66
0.574–0.628 7890 1.41
0.628–0.674 14380 2.57
0.674–0.715 22670 4.05
0.715–0.746 53320 9.53
0.746–0.772 161570 28.88
0.772–0.798 186570 33.35
0.798–0.916 108450 19.39
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Fig. 7  Soil erosion map in the Wadi El-Ham watershed

Fig. 8  Histogram of soil loss 
proportions in the Wadi El-Ham
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to plan for interventions to fight water erosion in the zones 
where the risk is high. It also makes it possible to manage 
the use of soil by facilities to protect it against the phenom-
ena of water erosion.

Conclusion

The assessment of erosion risk and its spatial distribution at 
the watershed scale is still a real challenge to the scientific 
community. This study aimed to answer to this question in 
the Wadi El-Ham watershed north-central Algeria.

The Universal Soil Loss Equation is successfully used 
under Geographic Information System (GIS) environment. 
The obtained results show that Wadi El-Ham watershed 
loses almost 5.7 (t/ha/yr), on average. The spatial distribu-
tion of this erosive potential is presented in two classes: a 
moderate rate of erosion with losses varying from 4 to 17 (t/
ha/yr), affects 45.7% of the watershed area, while the losses 
below 4 (t/ha/yr) cover 54.3% of the watershed.

To check the quality of RUSLE results, we have used the 
measured suspended sediment at the Rocade-Sud gauging 
station situated at the outlet of the watershed. These data 
consist of 1293 instantaneous measures of the water dis-
charge and the suspended sediment concentration recorded 
during 21 years.

Wadi El-Ham transports an average of 94 million  m3 of 
water and 2.97 million tons of sediment, i.e., a water ero-
sion of about 5.30 (t/ha/yr). This average value is associated 
with a significant variability, during the measured period 
(21 years); the interannual coefficient of variation is esti-
mated to be 1.0.

Based on this measured soil loss, we conclude that the 
used approach (RUSLE) estimated the soil loss in Wadi El-
Ham in Hodna region of Algeria with a mean relative error 
of 7.5%. This good quality of results can be explained by 
the violent nature of the flows and also because the major 
part (more 75%) of the erosion and sediment transport occur 
during flood periods.
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