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In this study, the relationships between five renewable energy sub-sectors markets and the geopolitical
risk (GPR) and economic uncertainty indices (EUI) were examined using daily data from March 30, 2012,
to April 1, 2022. Convergent cross mapping results show that the renewable energy indices have definite
relationships with the GPR and EUL The renewable energy indices show differences in response direc-
tions, speed and trends for a standard information difference impulse from the GPR and the EUI. A pos-
itive dynamic conditional correlation between renewable energies and EUI was observed in the first and
second waves of the COVID-19 outbreak. In contrast, there was a relatively decreased effect for two risk
indices during the Russia-Ukraine conflict of February-March 2022. Our results show that renewable
energy may act as a time-varying hedge against economic uncertainty and GPR owing to its safe-
haven properties at various scales. Moreover, building more secure and reliable renewable energy sys-
tems can help countries to increase their energy independence, which protects them against the risks
of political and economic uncertainty.
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1. Introduction

The past decade has included a number of significant geopolit-
ical and economic events with global implications. These have
included the Paris terror attacks (2015), military tensions between
the USA and Iran (2020), and the Russia-Ukraine war (2014, 2022).
In addition, oil, gas, and fossil fuel prices have been weaponized to
put pressure on conflicted parties. The COVID-19 pandemic and its
aftermath have had the most significant negative economic impact,
having global economy and decreased the availability and eco-
nomic viability of traditional energy supplies worldwide
(Johnston, 2020; Kang et al., 2021). The Russia-Ukraine conflict
has also brought concerns over energy security to the forefront,
as searches for new energy sources commonly intensify when
geopolitical risk rises. Over the same decade, there has been a glo-
bal transition toward renewable energy, which is fundamentally
different to fossil fuels and has the potential to facilitate geopolit-
ical stability and international peace (Overland, 2019; Vakulchuk
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et al., 2020). To continue generating power in the face of rising fos-
sil fuel cost and insecurity, governments have turned to gas, wind,
and hydropower.

In light of these changes, studying the impacts of geopolitical
and economic uncertainty on energy security has become critical.
Numerous studies have analyzed the effects of geopolitical risk
(GPR) and economic uncertainty indices (EUI) on variables such
as GDP growth (Dibiasi et al., 2018; Xue et al., 2022), unemploy-
ment (Davidescu et al, 2021; Eksi and Tas, 2022), tourism
(Tiwari et al., 2019; Gozgor et al.,, 2022), inflation (Azad and
Serletis, 2021; Bai, 2021), financial markets (Algahtani and Klein,
2021; Jiao et al,, 2022), and commodity markets (Tiwari et al.,
2021; Chen et al., 2022). Liu et al. (2022) investigated the spillover
effects of economic uncertainty on renewable energy markets in
the time-frequency domain. They found that the impact of EUI
caused by COVID-19 was more significant than the impact of the
financial crisis. Hemrit and Benlagha (2021) reported a significant
positive effect of pandemic uncertainty on the WilderHill New
Energy Global Innovation Index (NEX) which benchmarks renew-
able energy. Are et al. (2020) utilized the Diebold-Yilmaz (2014)
approach to conclude that Brexit influenced clean energy
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enterprises represented on the New York Stock Exchange and the
European Renewable Energy Index (IRIX). Ahmad et al. (2018)
applied multivariate Generalized AutoRegressive Conditional
Heteroskedasticity (GARCH) to demonstrate that the Volatility
Index (VIX) is the most effective asset for portfolio hedging against
clean energy equities. Dutta (2017) demonstrated that there was a
more considerable effect on the oil price uncertainty (OVX) than
the oil price spot on the clean energy equity market. Yahya et al.
(2021) combined the Threshold Vector Error Correction Model
and Dynamic Conditional Corelational Autoregressive Conditional
Heteroscedasticity Model to examine volatility spillover between
the clean energy index and oil prices during the EUI caused by
COVID-19; they found only a weak correlation between oil prices
and the alternative energy index prior to the EUI period, with a
stronger correlation from after the financial crisis until the begin-
ning of the COVID-19 pandemic. Ji et al. (2018) showed that there
was a negative dependence between uncertainties and renewable
energy markets.

Nevertheless, relatively fewer studies have considered the
effects of geopolitical risk on renewable energy markets. Sweidan
(2021) used quarterly data and the Autoregressive Distributed
Lag model in the United States to document that geopolitical risk
positively affects renewable energy consumption. However, Su
et al. (2020) found no causality between GPR and renewable
energy. Yang et al. (2021) found evidence of asymmetric risk spil-
lover and concluded that oil market fluctuations exhibit less sensi-
tivity than the clean energy downside risk.

To address gaps in the literature, in this study, we selected the
GPR and EUI indices as uncertainty measures (Baker et al., 2016;
Caldara and lacoviello, 2018; Caldara and lacoviello, 2022; Fig. 1),
and considered them with reference to five renewable energy
sub-sectors markets (i.e., the NASDAQ OMX Solar index, NASDAQ
OMX Wind index, NASDAQ OMX Geothermal index, NASDAQ
OMX Full Cell index, and NASDAQ OMX Bio-Clean Fuels). We
adopted a powerful new method of convergent cross mapping
(CCM), as proposed by Sugihara et al. (2012), to identify the time
information relationship between renewable energy and the GPR
and EUL On this basis, this study used the impulse response func-
tion to more completely express the meaning contained in the Vec-
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tor Autoregressive Model (VAR) model, and to provide positive and
negative directions, adjustment lag length, stability processes, and
other information on the response of renewable energy to signifi-
cant geopolitical and economic events. In addition, a variance
decomposition method was used to accurately analyze the contri-
bution of each structural impact to renewable energy change. The
impulse response and variance decomposition methods reasonably
identified asymmetric responses in conditional variances and cor-
relations during the COVID-19 pandemic (Ghabri et al., 2021; Lee
et al., 2021; Mugaloglu et al., 2021). Furthermore, wavelet coher-
ence methods involving time-varying and depend on time
frequency and allowed us to decompose returns series (Hoon
et al,, 2019; Goodell and Goutte, 2021; Yousfi et al., 2021). Our
findings indicate the positive impact of economic uncertainty on
clean energy.

The following sections of this paper are organized as follows:
section 2 describes the data sources model definitions; section 3
identifies the time information relationship between renewable
energy and the GPR and EUI; section 4 investigates the dynamic
interaction effects of renewable energy on notable geopolitical
and economic events; and section 5 proposes renewable energy
as a safe-haven asset. Finally, section 6 concludes and provides
policies.

2. Data and model
2.1. Data

As shown in Fig. 2, the GPR and EUI are uncertainty indices col-
lected from the Federal Reserve Bank of St. Louis. The renewable
energy indices included five sub-sectors: the NASDAQ OMX Solar
index, NASDAQ OMX Wind index, NASDAQ OMX Geothermal
index, NASDAQ OMX Full Cell index, and NASDAQ OMX Bio-
Clean Fuels index. Data analysis covered the period from March
30, 2012 to April 1, 2022. We measured the performance via real-
ized volatility and introduced a logarithm for better estimation,
shown in Eq. (1).
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Fig. 1. Geopolitical risk and economic uncertainty indices. The y-axis represents the size of geopolitical risk and economic uncertainty indices, which are dimensionless

indices without unit. The horizontal x-axis represents time.
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Fig. 2. Price dynamics of renewables indices. The y-axis represents the price dynamics of renewables indices, which are dimensionless indices without unit. The horizontal

Xx-axis represents time.

where j represents the jth day since day t, M stands for the number
of observations on day t, which can be described as shown in

Eq. (2).

_ Ty
Re=tn(" ) @)

where T; represents the index at time t, T,_; represents the index
at time t—1, and Ry represents the index return at time t.

2.2. Model definitions

2.2.1. Convergent cross mapping

To detect causal relationships from nonlinear dynamic systems,
CCM is based on Taken’s theorem and state space reconstruction
(Takens, 1981; Deyle and Sugihara, 2011). CCM has been applied
in many research fields including ecology, biology, and geography
(Wang et al., 2014; Yao, 2017; Ushio et al., 2018).

The choice of two parameters is vital for State Space Recon-
struction (SSR): time lag (t) and embedding dimension (e).
Although some scholars argue that the determination of parame-
ters is not sensitive for CCM results (Chen et al., 2017), to guaran-
tee the accuracy of results, average mutual information criterion
(AMI) and averaged false neighbors (AFN) method were applied
in this study (Kantz and Schreiber, 2004). Following the algorithms
of AMI, the mutual information I(7) as a function of T was given. If
the time lag is small, I(t) will be large, and will decrease more or
less rapidly with the decrease of 7. When the first minimum value
of I(t) appears, the maximal information will be given; that is, the
optimal 7 is determined. According to the essential theorem of
AFN, E1(e) and E2(e) are generated based on the optimal 7. How-
ever, it is first necessary to distinguish deterministic data from
stochastic data. In principle, for random data, the value of E1(e)
will not become saturated as e increases; regardless of the value
of e, E2(e) should be equal to 1. In contrast, for deterministic data,

the value of E2(e) is not constant and E1(e) should attain a satu-
rated value as e increases, at which point it becomes stable. Opti-
mal e is identified when a value of El(e) first exceeds the
threshold; here, the threshold of E1(e) was set to 0.95 (Cao,
1997). Based on the optimal 7 and e, S-maps were applied to test
nonlinearity (Sugihara, 1994). For nonlinear systems, predictive
skill should decrease as the predictive step increases; this situation
is “necessary but insufficient” for nonlinearity.

The CCM method argues that as for any single variable of a mul-
tidimensional dynamical system, its time series can include the
essential information of the system. For X in dynamical systems,
the e time-lagged values (time lags O, 7, 27, ..., (e-1) ) are used
as coordinate axes to reconstruct its shadow attractor manifold
My. My is a diffeomorphic reconstruction of the original attractor
manifold M. The point on My maps 1:1 to the points on M, and
the local neighborhoods on My map 1:1 to the local neighborhoods
on M. According to the SSR is that if the two variables X and Y are
dynamically coupled, their shadow attractor manifold My and My
will map onto each other. If X (cause variable) influences Y (effect
variable), the prediction of X can be obtained from the My using a
simplex projection; Y cross map X. Analogously, the crossing map-
ping from X to Y is defined. The Pearson correlation coefficient
between prediction and observation of X is regarded as the predic-
tive skill (p), which will converge to a peak value with the increase
in library length. The value of predictive skill can be viewed as the
strength of the causal effect of the X variable on the Y variable. To
test the significance of predictive skill, Clark et al. (2015) combined
nonparametric bootstrapping technology with CCM. The main
principle was to repeat the CCM process for A iterations and count
the times B that p at the longest library is greater than p at the
shortest library. The p value can be calculated as (A — B)/A, which
represents the probability of rejecting the null hypothesis (i.e., X
does not cause Y). In our analysis, the iteration was set to 100.
The essential mechanics of multispatial CCM are detailed in Clark
et al. (2015).
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2.2.2. Generalized impulse response function

The generalized impulse response function (GIRF) was used to
further analyze the dynamic interaction of renewable energy with
the GPR and EUI The GIRF measures the dynamic impact of a stan-
dard deviation shock from a randomly perturbed term of an
endogenous variable on the current and future values of all
endogenous variables in the VAR model and this method is widely
used in economic analysis (Pesaran and Shin, 1998; Plagborg-
Mgller and Wolf, 2021). Assuming that the first element of &
changes by J;, the second element by é,, and the kth element by
S, the shock in period t is 6 = (61, a,..., 6). Assuming that & is a
shock of a specific size and occurs only in the jth variable, the
response of the vector y.4 to the shock can be expressed as demon-
strated in Eq. (3). In Eq. (3), £2,.; denotes the set of information in
period t—1 and m is the prediction level. In order to obtain the
results of Eq. (3), it is necessary to first calculate the changes that
occur in other elements in & due to ¢;; a shock &, at the same time,
when 6 = E(&]g;; = 6;). Assuming that & obeys a multivariate normal
distribution, § can be calculated using Eq. (4), where o;; = E(¢;?) and
2 = E(&¢;;) denotes the jth column of the & covariance matrix X
element, at which point the response of the vector y;. due to the
shock of variable j can be shown in Eq. (5). In Eq. (5), @ is the coef-
ficient matrix of VAM(q). If we set § = (ajj)”z, the GIRF is con-
structed as can be seen in Egs. (3)-(6).

k
Yie = X;(GEQ)Ejr + 9,5-1)81}4 + eévz)gjtfz + 9,(]-3)3jr73 +..) 3)
j:
i=12,..kt=12..T

k
Yie = Z(eg))gjr + 9,5-”%4 + 9,32)8;‘:72 + 9,(]'3)8jr73 + ) )
=

i=1,2,.,kt=12,..T

k
Yie = Z(el(,jo)Eﬁ + egj])ﬁjt,1 + 9,&2)8]‘[,2 + 915-3)8]},3 +...) (5)
j=1
i=1,2, . kt=12.T

k
Yie = 2(959)8}} + egj])ﬁjtq + 9512)81‘[,2 + 9,(]-3)81'F3 +...) (6)
j=1
i=1,2, . kt=12.T

2.2.3. Variance decomposition method

The GIRF describes the impact of shocks to one standard vari-
able on the other variables in the VAR model. The importances of
different structural impulses are further evaluated using the vari-
ance decomposition method, by analyzing the contribution of
impulses to each variable, and then on other variables. Thus, the
variance decomposition method gives the relative importance
information of each random disturbance that affects the variables
in the VAR model. In this case, the relative variance contribution
was based on the relative contribution of the jth variable’s
shock-based variance to the variance of y; to observe the effect of
the jth variable on the ith variable. If the model satisfies the

smoothness condition, then 9,?;” decays geometrically as g

increases, and so only a finite number of s terms need to be taken.
The Relative Variance Contribution (RVC) is expressed in Eq. (7),
where, if RVG;_,(s) is large, it means that the jth variable has a large
effect on the ith variable:

. 2
Y oo(0) g
I -1 2
2;:1 { ny:o (6;;]) ) Ojj }

RVC_i(s) = dj=1,2,.k (7)
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2.2.4. Wavelet coherence
The wavelet coherence equation was:

IM(M~" 1N, (p, q)*
(M'N,(p.q)"M(M " Ny (p. @)

2
W= (p, q) v 8)

where M is the smoothing operator. The value of wavelet
squared coherence ranges from 0 to 1 [0< W2(p,q) <1]. There is
an absence of correlation if wavelet squared coherence is close to
0, and a high correlation when it is close to 1. The wavelet squared
coherence is a positive value that cannot distinguish between pos-
itive and negative correlation. For this, we used the Monte Carlo
method, in which up-right and down-left (,”) allow us to ascer-
tain whether the first asset lead a positive correlation or negative
correlation, respectively, against the second asset. Down-right
and up-left (\,\\) arrows indicate that the second variable leads
the first. Up (1) and down (| ) indicators imply that the variable is
leading and lagging, respectively. Wavelet coherency can be
indicted by a straight arrow to the right or left (-, <), indicating
that both returns are in phase (positive dependence) or out of
phase (negative dependence), respectively. For more details, see
Torrence and Compo (1998).

3. Relationship identification results

Table 1 presents the summary statistics of all series returns. All
of the series had means that were high and close to 1. The standard
deviation was very weak for all renewable energy indices. The
standard deviation of the EUI was higher than that of the GPR.
The series exhibited excess kurtosis (kurtosis values of >3), while
the clean energy indices showed less kurtosis than the GPR and
EUIL Moreover, the skewness coefficients were not zero, indicating
a non-symmetric series. The skewness coefficient of oil prices was
negative. The Jarque-Bera test and normality for all the series were
significant, meaning the series do not have a normal distribution.
Augmented Dickey-Fuller (ADF) and Phillips and Perron (PP) tests
for all series revealed stationarity.

Before applying the CCM method, it was necessary to show the
mirage correlation of renewable energy with the GPR and EUI pair.
The correlation coefficients for the renewable energy markets with
the GPR and EUI pair were significant and mostly positive; the
absolute values of the correlation coefficients were <0.3, indicating
that each renewable energy market with the GPR and EUI pair con-
stitutes a weakly coupled system. As the indispensable basis of the
CCM algorithm, SSR depends on two key parameters: time lag (1)
and embedding dimension (e). According to the average mutual
information criterion (AMI), the optimal 7 is decided by the first
minimum of AMI. The optimal 7 values to reconstruct the time ser-
ies of bio-clean fuel, wind, solar, fuel cell, geothermal, GPR, and EUI
were 80, 45, 57, 70, 36, 4, and 7, respectively. Based on the optimal
7, the optimal e was determined by the AFN method. When the first
value of E1(e) exceeds the threshold and reaches the saturation
point, the corresponding e is optimal. In our study, the optimal e
values for bio-clean fuel, wind, solar, geothermal, fuel cell, GPR,
and EUI were 12, 7, 7, 6, 7, 12 and 11, respectively.

After the determination of parameters and the nonlinearity test,
the CCM causal detection approach was applied to identify the
effects of renewable energy on the GPR and EUI pair. The conver-
gence of predictive skill is the criterion to judge causality, and
the value of predictive skill at the maximum library length [p
(Lmax)] represents the strength of the causal link. For example,
Fig. 3 demonstrates a significance cross map signal between wind
and GPR, which indicates a clear asymmetric interaction between
wind and GPR; p(Lmax) = 0.221 that and the “GPR xmap wind”
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Table 1
Descriptive statistics.
Bio-clean fuels Solar Wind Full cell Geothermal GPR EUI

Mean 0.990 0.990 0.990 0.990 0.990 1.020 1.230
Std Dv 0.005 0.006 0.005 0.010 0.005 0.219 0.943
Skewness —0.981 -0.429 -0.324 0.512 0.587 2.024 3.252
Kurtosis 16.803 9.514 7.666 7.791 17.171 22.099 21.935
Jarque-Bera 20,966.420 4657.278 2393.376 2589.212 21,810.930 41,118.430 43,240.770
Probability 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ADF —18.71*** —33.21%* —48.43 *** —51.4™* —52.82 *** —36.2%"* —37.9%*
PP —53.16"** —40.87 *** —48.39 *** —51.4™* —52.83*** —119™** —70.30"**
Observations 2589 2589 2589 2589 2589 2589 2589

Note: *** denotes 1% statistical significance level, ** denotes 5% statistical significance level, * denotes 10% statistical significance level.

is lower than p(Lmax) = 0.673, the “wind xmap GPR,” indicating
that the influence of wind on GPR may be lower than that of GPR
on wind. There is a clear asymmetric interaction between wind
and EUI; p(Lmax) = 0.811, the “EUI xmap wind” is slightly lower
than p(Lmax) = 0.844, the “wind xmap EUL” indicating that the
influence of wind on EUI may be lower than that of EUI on wind.
Overall, the mean of the predictive skill in the renewable energy
xmap EUI (0.602) was lower than the renewable energy xmap
GPR (0.803), indicating that the influence of GPR on renewable
energy may be greater than that of EUI on renewable energy. The
mean predictive skill of EUI xmap renewable energy (0.700) was
greater than GPR xmap renewable energy (0.272), indicating that
the influence of renewable energy on EUI may be greater than
renewable energy on GPR.

The other renewable energy indices also have relationships
with GPR and EUI. However, while this shows that renewable
energy can be affected by GPR and EUI, the positive or negative
impact identified by the CCM approach may be spurious.

4. Dynamic interaction effects

CCM was used to establish the associations between renewable
energy and GPR/EUI; however, this approach could not account for
the direction, lag length, impact level, or contribution rate of the
impulse. In this section, the responses to five sub-sectors of renew-
able energy utilizing the impulse response method and variance
decomposition approach were further addressed. These variables
were modeled in this study using a VAR framework with a maxi-
mum lag set at 500. The optimal lag was determined according
to the minimization principle in accordance with the HQ criterion.

Table 2 shows the response of the bio-clean fuels index after
being subjected to an external impulse. For a standard deviation
information impulse from the GPR, the bio-clean fuels index initial
response velocity was 20.14 in the positive direction with a lag
length of 2; the response curve showed an increasing trend fol-
lowed by a decreasing trend, and reached the highest point at a
lag length of 24. For a standard information impulse from the
EUI, the bio-clean fuels index initial response rate was 50.15 with
a lag length of 2; the response curve showed a decreasing and then
increasing trend and reached the lowest point at a lag length of 79.
In terms of the cumulative effect, the GPR produced a positive
impact on the bio-clean fuels index, while the EUI produced a neg-
ative impact; and GPR produced a higher impact than EUL In addi-
tion, the bio-clean fuels index had a positive response to the bio-
clean fuels index in the first 100 lag lengths, while the EUI had a
negative response to the bio-clean fuels index. The bio-clean fuels
index responded significantly faster to both in the first 100 lag
lengths than in the latter. After the GPR and EUI impulse, the
adjustment time of the renewable energy index was ~90 lag
lengths, and the response curve eventually flattened out. According
to the results of variance decomposition, the bio-clean fuels index

was dominant despite its decreasing contribution to its own
change. GPR had a higher contribution than EUI, and both showed
an increasing trend. The contribution rate tended to stabilize
at ~60 lag lengths, indicating that GPR has a higher degree of influ-
ence on the bio-clean fuels index than does EUI, which is consistent
with the results of impulse response.

Table 3 shows the response of the wind index after being sub-
jected to external impulses. For a standard deviation information
impulse from the GPR, the initial response speed of the wind index
was 1.20 in the positive direction with a lag length of 2, and the
response curve showed a decreasing and then increasing trend,
reaching the highest point at a lag length of 135. For a standard
information impulse from the EUI, the initial response rate of the
wind index was 50.15 with a lag length of 2; the response curve
tended to rise and then fall, reaching the lowest point at a lag
length of 108. In terms of the cumulative effect, GPR produced a
negative effect on the wind index; EUI had a positive effect on
the bio-clean fuels index and GPR produced a much lower impact
than EUI, which is the opposite of the response direction exhibited
by the bio-clean fuels index. According to the results of variance
decomposition, the contribution of the wind index to its own
change has been decreasing but has been in the dominant position.
GPR made a higher contribution than EUI, and both showed an
increasing trend, which indicates that GPR has a higher degree of
influence on the wind index than does EUL

Table 4 shows the response of the solar index after being sub-
jected to external impulses. For a standard deviation information
impulse from the GPR, the solar index initially responded with a
positive velocity of 0.67 at a lag length of 2. The response curve
showed an increasing followed by a decreasing trend and reached
its highest point at a lag length of 6. With time, the response curve
gradually decreased and became negative at a lag length of 23. For
a standard information impulse from the EUI, the solar index initial
response rate was negative (—0.57) at a lag length of 2. The
response curve showed a gradual expansion trend; after reaching
a lag length of 80, the response rate gradually tended to be stable.
In terms of the cumulative impact, GPR had a negative impact on
the solar index, while EUI had a positive impact; EUI had a more
rapid impact than GPR. In addition, the speed of the bio-clean fuels
index in the first 80 lag lengths was significantly higher than that
of the latter. According to the results of the variance decomposi-
tion, the solar index was in a dominant position, although its con-
tribution to its own change decreased. EUl has a higher
contribution than GPR, and both showed an increasing trend. EUI
had a higher degree of influence on the solar index than GPR.

Table 5 reflects the response of the full cell index after being
subjected to an external impulse. For one standard deviation infor-
mation impulse from the GPR and EUI, the initial response of the
full cell index was 14.69 and 14.82, respectively, at a lag length
of 2; it showed an increasing and then decreasing trend, and
reached the highest point at lag lengths of 32 and 43, respectively.
The two response curves showed obvious consistency; however,
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Fig. 3. Effect of renewable energy with the GPR and the EUL The y-axis represents predictive skill, which are dimensionless indices without unit. The horizontal x-axis

represents library length.

the highest points were 34.13 and 16.82, indicating that the full
cell index responds differently to different impulses. These results
show that GPR and EUI have positive impacts on the full cell index;
GPR generates a higher impact than EUIL The full cell index had a
long adjustment time after impulses from the GPR and the EUI, tak-
ing ~250 lag lengths to reach 0. According to the variance, the con-
tribution of GPR is higher than that of EUI, both of which showed
an increasing trend and stabilized at ~80 lag lengths.

Table 6 shows the response of the geothermal index after being
subjected to external impulses. For a standard deviation informa-
tion impulse from the GPR and EUI, the initial response velocity

of the geothermal index was 0.19 and —0.56 at a lag length of 2,
respectively; the curves were similar and both showed a rising
and then decreasing trend. For the GPR impulse, the response curve
reached a maximum of 6.22 at a lag length of 30; for the EUI
impulse, the response curve reached the maximum at a lag length
of 64. The response time of the geothermal index for the EUI
impulse was longer than that of the GPR impulse. These results
show that the initial impact on the geothermal index of GPR and
EUI is different, and GPR generates a lower effect than EUI. EUI
started to generate a positive effect after 3 lag lengths while GPR
always had a positive effect. According to the variance decomposi-
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Table 2
Impulse response and variance decomposition results of the bio clean fuels.
Lag length Impulse response Variance decomposition
GPR EUI Bio-clean fuels (%) GPR (%) EUI (%)
1 0.000 0.000 100.000 0.000 0.000
50 48.583 —6.756 99.001 0.935 0.064
100 24.939 -8.770 98.771 1.153 0.076
150 12.137 —5.407 98.712 1.201 0.087
200 5.841 —2.844 98.697 1.212 0.091
250 2.798 -1.414 98.694 1.215 0.092
300 1.338 —-0.687 98.693 1.215 0.092
350 0.639 -0.331 98.693 1.215 0.092
400 0.305 —0.158 98.692 1.215 0.092
450 0.146 -0.076 98.692 1.215 0.092
500 0.070 —-0.036 98.692 1.215 0.092
Table 3
Impulse response and variance decomposition results of the wind.
Lag length Impulse response Variance decomposition
GPR EUI Wind (%) GPR (%) EUI (%)
1 0.000 0.000 100.000 0.000 0.000
50 -0.975 16.567 89.349 0.083 10.568
100 —1.758 18.470 82.445 0.127 17.428
150 -1.816 18.011 79.248 0.172 20.580
200 -1.750 17.185 77.573 0.197 22.230
250 —1.666 16.332 76.574 0213 23.213
300 -1.583 15.510 75.919 0.224 23.858
350 -1.503 14.728 75.459 0.231 24.310
400 —1.427 13.984 75.120 0.236 24.644
450 -1.355 13.279 74.861 0.240 24.899
500 —1.287 12.609 74.658 0.244 25.099
Table 4
Impulse response and variance decomposition results of the solar.
Lag length Impulse response Variance decomposition
GPR EUI Solar (%) GPR (%) EUI (%)
1 0.000 0.000 100.000 0.000 0.000
50 —1.445 12.550 95.687 0.059 4.255
100 —2.424 15.819 91.537 0.154 8.309
150 -2.672 16.640 89.204 0.228 10.567
200 -2.734 16.843 87.867 0.274 11.859
250 —2.749 16.890 87.036 0.304 12.660
300 —2.752 16.897 86.479 0.323 13.198
350 —2.752 16.894 86.082 0.337 13.581
400 —2.751 16.888 85.786 0.348 13.867
450 —2.750 16.882 85.556 0.356 14.088
500 —2.749 16.876 85.372 0.362 14.265
Table 5
Impulse response and variance decomposition results of the full cell.
Lag length Impulse response Variance decomposition
GPR EUI Full cell (%) GPR (%) EUI (%)
1 0.000 0.000 100.000 0.000 0.000
50 31.737 16.701 98.986 0.811 0.203
100 20.902 13.031 98.666 1.037 0.297
150 13.464 8.950 98.568 1.096 0.336
200 8.706 5.922 98.531 1.117 0.352
250 5.639 3.868 98.516 1.125 0.359
300 3.655 2.514 98.510 1.128 0.362
350 2.369 1.632 98.508 1.129 0.363
400 1.536 1.058 98.507 1.130 0.364
450 0.996 0.686 98.506 1.130 0.364
500 0.646 0.445 98.506 1.130 0.364
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Table 6

Impulse response and variance decomposition results of the geothermal.
Lag length Impulse response Variance decomposition

GPR EUI Geothermal (%) GPR (%) EUI (%)

1 0.000 0.000 100.000 0.000 0.000
50 5.748 5.856 87.665 7.453 4.882
100 4.361 5.595 83.721 8.198 8.081
150 3.444 4.656 82.202 8.270 9.529
200 2.755 3.770 81.475 8.281 10.244
250 2.212 3.035 81.086 8.284 10.630
300 1.776 2.439 80.862 8.285 10.853
350 1.427 1.960 80.728 8.285 10.987
400 1.146 1.574 80.645 8.286 11.069
450 0.921 1.265 80.593 8.286 11.121
500 0.740 1.016 80.560 8.286 11.154

tion, the contribution of the geothermal index to its own change positive and negative change. The dynamic conditional variable
was decreasing, but was always dominant. Before 104 lag lengths, increased slightly between each renewable energy and EUI couple
GPR had a higher contribution than EUI; after 104 lag lengths, EUI during the first (early 2020 to September 2020) and second (Febru-
had a higher contribution than GPR. The contributions of both ary 2021) waves of COVID-19; that is, the COVID-19 pandemic had
showed increasing trends. a positive impact on renewable energy markets. However, between
these two periods the impact decreased. The impact of COVID-19
decreased slightly during the Russia-Ukraine conflict, showing
that the financial returns of renewable energy decrease when risk
increases. These results, along with weak volatile spillover change,
confirm that renewable energy sectors can be an opportunity for

5. Renewable energy as a safe-haven asset

Fig. 4 shows the time-varying correlation of each renewable
energy market with GPR and EUL Volatility fluctuated between
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portfolio investors during times of geopolitical and economic
upheaval. In summary, renewable energy can serve as a safe-
haven against economic uncertainty and geopolitical risk under
different market conditions (bearish, normal, and bullish).

Fig. 5 shows the coherence of clean energy with GPR and EUI
from March 30, 2012 to April 1, 2022. The wavelet coherence trace
reveals co-movement at each time and scale between renewable
energy and economic and geopolitical risks. The inverted (U) indi-
cates regions with significance at the 5% level.

We identified small areas between the solar index and GPR at a
large scale during the Russia-Ukraine conflict (2014) and China-
USA trade conflict. The EUI effect showed the weakest connection
(and a small island) for the wind index. This explains why the wind
and solar indices can act as a soft safe-haven asset against EUI and
GPR. Moreover, these results are consistent with past studies
(Ahmad et al., 2018; Ji et al.,, 2018). In the remaining cases, we
observed typical first-time phases of small islands and an absence
of strong dependence at different scales and times. Notably, risk
reduction via weak co-movement between each renewable energy
index and GPR or EUI confirmed the safe-haven characteristic of
renewable energy during economic and geopolitical turmoil. In
summary, renewable energy plays a vital role in international
peace, economic stability, and energy security, strengthening the
argument for a renewable energy transition.

6. Conclusion and perspectives

In this study, we used the GPR and EUI as uncertainty measures
in CCM, GIRF, variance decomposition, wavelet coherence, and
other analysis methods, and identified their relationships with a
set of renewable energy indices from the NASDAQ. The CCM results
show that the renewable energy indices display clear relationships
with GPR and EUI The impulse response results show that for a
standard deviation information impulse from the GPR, the
response directions of the bio-clean fuels index, full cell index,
and geothermal index are positive, while the solar index and wind
index have a negative response and differential evolutionary trend.
Comparing standard information difference impulses from GPR
and EUI, the bio-clean fuels index, wind index, and solar index
exhibit opposite responses directions and speeds. The renewable
energy indices have short adjustment times after an impulse, tak-
ing 60-100 lag lengths to level off, while the solar index and the
full cell index take longer to adjust. The results of variance decom-
position show that EUI contributes more to the wind index, solar
index, and geothermal index than GPR. The impact of the EUI on
renewable energy is relatively more important than that of GPR.
The dynamic conditional variable increased slightly between each
renewable energy and EUI during the first (early 2020 to Septem-
ber 2020) and second (February 2021) waves of COVID-19. More-
over, renewable energy offered a safe-haven investment during
the Russia-Ukraine conflict (2022).

Replacing fossil energy with renewable energy is widely sup-
ported as a means to tackle global climate change. In recent years,
several countries have made significant efforts to develop renew-
able energy technology, and renewable energy portfolios are
rapidly replacing fossil fuel restrictions. As such, the renewable
energy industry is poised for greater growth. However, in the con-
text of economic globalization, political and economic uncertainty
can impact renewable energy indices, and the development of the
renewable energy industry may also face adverse effects owing to
short-term cost increases and supply chain bottlenecks. Our study
shows that renewable energy development can also significantly
increase the energy independence of consuming countries and
can drive profound changes in geopolitical situations, reducing
the negative effects of political and economic uncertainty. Finally,

10

Geoscience Frontiers 15 (2024) 101655

investing in global renewable energy indices may lower financial
risks and increase avenues for profitable investments.

However, in the short term, in addition to the pressure to
reduce costs and improved economic efficiency, the large-scale
use of renewable energy will require technological breakthroughs.
In the current economic environment and at this technological
level, it is still difficult for renewable energy to become the domi-
nant form of energy in the international energy market. Individual
countries have less need for concern over the negative impacts of
political and economic uncertainty, but it is important to be alert
to such impacts. In the long run, the future construction of more
secure renewable energy systems and the exploration of how to
use renewable energy as a risk-averse tool needs to be considered.
From a research perspective, we plan to quantify renewable energy
risk using inter-day data, which will reveal high-frequency volatil-
ity. Moreover, we plan to compare property investments against
financial assets such as Bitcoin, gold, oil, and stock markets.
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