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 Abstract: Background: Nowadays, natural fibers are used in all industrial fields, particularly in 
automotive technology and civil engineering. This great emergence is due to their biodegradabil-
ity, recyclability and have no environmental effect. 

 Objective: In this article, the effect of raffia, alfa and sisal fibers on the damage of biocomposite 
materials (raffia/PLA (polylactic acid), alfa/PLA and sisal/PLA), subjected to the same mechani-
cal shear stress, has been investigated.  

Method: To calculate the damage to the interface, the genetic operator crossing is employed 
based on the fiber and matrix damage.  

Result: The results have shown that the raffia / PLA and alfa/PLA biocomposite materials are 
better mechanical properties compared to sisal / PLA, this observation has been confirmed by 
different values of interface damage of the biocomposite studied.  

Conclusion: The numerical results are similar and coincide perfectly with the results of Cox 
where he demonstrated that the Young's modulus of fibers improves the resistance of the inter-
face. These conclusions are in very good agreement with our numerical data presented by the red 
cloud, and in good agreement with the work presented by Antoine Le Duigou et al. and Bodros et 
al. in which they have shown that natural fibers greatly improve the physical characteristics of 
composite materials. 
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1. INTRODUCTION 
The intertropical zone conceals plants with fi-

bers often underexploited. The raffia fiber is one  
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of these resources, and it is a multifunctional plant 
par excellence: nuts are extracted for food and 
cosmetic oil, the petioles and raw leaves are used 
as building materials and the epidermis of leaves 
is extracted for fiber [1-3]. This fiber is tradition-
ally used to make ceremonial outfits, rugs (Kassai 
velvet), blankets and works of art, while else-
where (especially in Europe) it is used among 
others as ligature for grafting. Today, it is also 
used in the manufacture of clothing, shoes, hand-
bags, etc. In addition, like other plant fibers, it 
could potentially be used as a reinforcement in 
composites with a polymer matrix [4-6]. 

Author P
ro

ofs 

“F
or P

ers
onal 

Use
 O

nly”
 



2   Current Materials Science, XXXX, Vol. X, No. X Achour et al. 

 

The term 'Raffia' defines both the palm tree and 
fiber which is extracted from it, and it originated 
from Malagasy. Raffia is a plant fiber used in 
many ways. As amazing as it may seems, it comes 
from a palm tree native to Madagascar named 
Raffia farinifera which is part of the Arecaceae 
family [7-9]. 

This palm tree is not very high (10 m high) but 
produces palms that can reach up to 20 meters in 
length, which is a record among palms. The heart 
of young shoots is consumed in salads or in ready 
meals in the country of origin. This palm tree 
owes its adjective 'farinifera' to the flour which is 
obtained from it after processing and which is 
made into pancakes [10, 11]. 

The Raffia fibers have a number of uses, ranging 
from the weaving of hats, baskets,  mats,  ham-
mocks  and  ceremonial  costumes [12].  In addition, 
like other plant fibers, these fibers could potentially 
be used as a reinforcement in composites with a 
polymer matrix [4-7] to make geotextiles or to light-
en earthen bricks or concrete [13-15]. 

In composite materials, the interface fiber-
matrix has an important role in ensuring the trans-
fer of applied load from the matrix to the fiber, 
and for this reason, the choice of fiber quality be-
comes more than necessary, the fiber-matrix inter-
face remains the most delicate area for controlling 
the resistance of composite material  

• There is a recurring problem of compatibil-
ity, a priori, between hydrophilic plant fibers 
and most matrices which are generally hy-
drophobic. The rheological and mechanical 
properties of composites being strongly 
linked to the properties at the interface. 

• A bad interface will have negative conse-
quences on the performance of the material. 
To modify and control this interface, it is 
possible to act either on the polymer matrix 
or on the fibers, by means of physical or 
chemical methods [16]. 

For the modeling of the fiber / matrix interface 
in the case of composites based on vegetable fi-
bers, there are many analytical and numerical 
methods that describe the shear of the fiber-matrix 
interface ("Pull-out" test, release of a micro-drop, 
Diabolo compression test, Micro-indentation and 
push-out test, Cox model, Kelly model, Weibull 

statistical approach,...) [17]. But to our 
knowledge, few methods and models have studied 
fiber-matrix interface damage. To model this 
damage, a probabilistic approach has been used 
based on the damage to the fiber and the matrix 
proposed by Weibull and the genetic operators 
(selection, crossing and mutation) in our approach 
to calculate the optimum values of the damage of 
the interface are employed [18]. The selection op-
erator is used to choose the most appropriate solu-
tions in order to have an optimal and convergent 
result. This operator is the application of the adap-
tation principle of Darwin's theory. The Crossing 
operator, or crossing-over, is the result obtained 
when two chromosomes share their peculiarities. 
This allows the genetic mixing of the population 
and the application of the principle of inheritance 
of Darwin's theory. The Mutation consists of al-
tering a gene in a chromosome according to a mu-
tation factor. This factor is the probability of a 
mutation being made in an individual. This opera-
tor applies the principle of variation of Darwin's 
theory and allows, at the same time, to avoid a 
premature convergence of the algorithm towards a 
local extremum [18]. 

The Polylactic Acid (PLA) is a biopolymer and 
a compostable aliphatic polyester that has been 
used in several areas of application. PLA has very 
interesting mechanical and physicochemical prop-
erties such as resistance, rigidity and gas permea-
bility, which have been shown to be comparable 
to those of traditional petrochemical-based poly-
mers [19-21]. 

Our contribution is to investigate the effect of 
raffia fiber on fiber matrix interface damage of 
biocomposite materials; raffia/PLA (polylactic 
acid), alfa/PLA and sisal/PLA subjected to the 
same mechanical shear stress ranging from 450 N 
/ m² up to 650 N / m², using a genetic algorithm, 
To calculate interface damage using fiber and ma-
trix damage, the genetic operator crossing has 
been employed based on the Weibull approach. 

2. SIMULATION METHODS AND MODELS 
2.1. Physical and Mechanical Characteristics of 
the Materials Used 

2.1.1. Raffia, Alfa and Sisal Fibers 

The raffia fiber is a layered overlay. The struc-
ture of the outermost layer, that is, the one in con-
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tact with air (Fig. 1a), is a juxtaposition of fila-
ments parallel to each other along the length of 
the fiber. The average width of these filaments is 
about 10µm. Fig. (1) shows that unlike other plant 
fibers which are smooth [3,22], raffia fiber is 
formed of kinds of scales and platelets, similar to 
wool fiber. Each scale, between 6-20 µm in 
length, covers this entire width of the fiber. It is 
this structure that makes this fiber a relatively wa-
terproof material, which makes it usable as a roof 
covering. The underside of the fiber (Fig. 1b) is in 
contact with the body of the sheet. It has a honey-
comb-shaped structure, alveolar. These cells have 
a diameter of 6 to 13 µm and a wall approximate-
ly 0.5 µm thick. 

The Young's modulus of the fiber is between 
28 - 36 GPa while the tensile strength varies 
between 148 - 660 MPa and the elongation at 
break is around 2%. The great variability of the 
stress at break can be explained by the presence of 
defects along with the sample (irregularity in 
thickness and width, presence of micro notches 
linked to handling during shelling or storage). On 
other plant fibers, a variation in mechanical 
properties was also observed, which is explained 
by the presence of defects and the variable 
structure of these materials. Indeed, the 
composition and structure of plant fibers depend 
on several factors: cultivation conditions, degree 
of maturity, method of extraction, length of the 
fiber, and water content [3, 23-30].  

Alfa's plant has two parts; upper and lower. 
The lower or underground part, Rhizome, consists 
of a complex network of highly branched roots, 
about 2 mm in diameter and 30 to 50 cm deep, 
which end in young shoots. The upper part is 

made up of several branches carrying nested 
sheaths, surmounted by long blades of 30 to 120 
cm. The underside of the leaf blades is slightly 
shiny, and the upper surface has strong veins. 
Both are covered with an insulating wax which 
helps the plant resist drought [30-31]. The stem is 
hollow and cylindrical and is regularly interrupted 
at the level of the node by entanglements of the 
bundles. At the same level, there are buds that will 
give birth either to an internode or to a stem, or 
remains in the form of a reserve which will enter 
into activity when the strain is exhausted. The 
leaves are cylindrical, very tenacious, and 50 to 
60 centimeters long. The flower is protected by 
two glumes of equal length. The upper lemma 
appears to be partially separated into 2 parts and 
the lower lemma is thinner. Generally, the flowers 
appear in late April early May and are green in 
color. The fruit is a caryopsis (a kind of grain) 
which is 5 to 6 mm in length. Its upper part is 
brown and often bears dried traces.  

The sisalana agave fiber (sisal) is one of the 
different natural fibers used for the manufacture 
of biocomposites. This fiber is very interesting 
and characterized by its great availability on the 
current market, a possibility of cultivation on 
marginal soils, and has good rigidity and 
mechanical resistance. It is combined with low 
cost and good compatibility with many polymeric 
matrices [32-48]. It has the highest hardness, 
comparable to that of fiberglass; the close 
similarity with aramid fibers (kevlar, etc.) 
suggests good impact and breaking behavior.  
Therefore, its advantageous use for the 
manufacture of innovative energy absorption 
devices in various fields of industrial production 
such as automobiles, shipbuilding, earthmoving 

	  
Fig. (1). SEM examination of the structure of hookeri raffia fiber. (1a) external face; (1b) internal face [3,22]. 
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machinery. However, these properties have not 
yet been clearly demonstrated, most of the work 
in the literature is mainly concerned with the 
evaluation of the static mechanical properties of 
these biocomposites [48]. 

In Table 1, some mechanical characteristics of 
the fibers used have been presented.  

2.1.2. Damage level 

Chaboche (1988) [47] defined the damage of a 
finite element of a solid as follows:  

S: area representative volume element identi-
fied by its norm n 

Se: effective resistance area if Se < S  

Sd: damaged area Sd = S – Se 

The mechanical measurement of local damage 
in relation to n is characterized by:  

D = Sd/S 

If D=0: the material is not damaged. 

If D=1:  the  volume  element  is  broken  into  
two  parts  along  the  plane  normal to n. 

If 0 < D <1: D characterizes the state of dam-
age level.  

2.1.3. Polylactic Acid Matrix 

The PLA is synthesized through the 
polymerization of lactic acid, which was first 
discovered in 1780 by Swedish chemist Scheele 
by examining curds and then marketed for the 
first time in 1881 [48,49]. Lactic acid is naturally 
present in many foods and can be produced by  

fermentation of various renewable resources such 
as corn, potatoes, beet sugar, and sugarcane 
[48,49]. PLA has many interesting characteristics; 
its renewable resources, biocompatibility, 
biodegradation, good mechanical performance, 
and transparency of final material [49,50]. Also, a 
broad spectrum of flow properties is available by 
simple architectural modification of PLA, thus 
allowing the use of this biopolymer in many 
transformation processes [49, 50]. PLA was then 
widely used in the biomedical, packaging and 
textile fields [49, 51]. Thus, poly (lactic acid) is 
expected to compete with petrochemical polymers 
such as PET, PP and PS. Unfortunately, the high 
cost, the lack of thermal and hydrolytic stability as 
well as the low resilience limit the use of this 
biopolymer. These faults are mostly overcome by 
mixing PLA with other polymers, fillers, as well 
as chemical modification of the polymer. This 
literature study will assess recent developments 
made to improve the properties of PLA. PLA's 
Young's modulus and tensile strength are high, in 
the order of 3 GPa and 50-70 MPa, respectively. 
Such physical properties guarantee a wide range 
of application to this material, comparable to that 
of polystyrene or PET and more important than 
HDPE and PP [49,52]. Unfortunately, the 
mechanical properties of PLA are characterized 
by low impact resistance, as well as low 
elongation and brittle behavior. In Fig. (2), Scan-
ning Electron Microscope (SEM) Images PLA 
fracture surfaces have been presented [53]. 

2.2. Weibull Probabilistic Formalism 

Our results were obtained by a genetic simula-
tion based on the Weibull equations.  

Table 1. Mechanical characteristics of the fibers used.  

Fibers Young's modu-
lus (GPa) 

Young's modu-
lus (GPa) (val-

ues used in 
genetic algo-

rithm) 

Deformation at 
break (%) 

Deformation at 
break (%) (val-
ues used in ge-

netic algorithm) 

Stress at break 
(MPa) 

Stress at 
break (MPa) 

(values used in 
genetic algo-

rithm) 

Raffia 
[3,23-28] 

28-36 32 2 2 148-660 404 

Alfa 
[23-30] 

13-18 15.5 1.5-2.4 2 134-220 177 

Sisal 
[32-36] 

9-22 15.5 3 – 7 5 80-840 460 
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Damage to the matrix is given in equation (1) 
[54-59]: 

!! = 1− !"#   − !!""
!!
( !!
!!
)!  (1) 

 ! f( ) : mechanical stress; 

 ( )effV : Matrix volume; 

 m and! 0( ) : parameters of Weibull. 

 ( )Vo
:matrix volume initial 

The second equation presents the law of the 
fracture of a fiber [60, 61]. 

!! = 1− !"#   −!! ∗ !!"#$ ∗ (
!!"#
!

!!"
)!!      (2) 

 f
maxσ : the maximum mechanical stress ap-

plied. 

 f0σ : the initial stress. 

 fm : parameters of Weibull. 

 =fA π*a². 

 equiL : the fiber length at equilibrium. 

In Table 2, the main functions relating to the 
genetic operators (selection, crossing and muta-
tion) have been presented to determine the dam-
age at the fiber-matrix interface of each material 
studied. 

3. RESULTS AND DISCUSSION 

The effect of raffia and alfa plant fibers on fi-
ber-matrix interface damage of biocomposite ma-
terials (raffia / PLA, alfa / PLA and sisal / PLA) 

 
Fig. (2). SEM Images PLA samples fracture surfaces [53]. 
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has been investigated. The genetic simulation is 
based on the Weibull model (equations 1 and 2), the 
operator crossing is used to calculate the interface 
damage of our materials. An initial population of 
1000 individuals [55] was generated, then improved 
with a set of genetic operators (selection, crossing 
and mutation) and in each case, the young modulus 
of each fiber is used (Tables 1 and 2). The popula-
tion consists of chromosomal genes representing the 
following variables: the shear stress (450, 550 and 
650 N / m²), Young's modulus, the modulus of the 
matrix shear, the fiber diameter and the half distance 
R. The roulette selection and an equal mutation val-
ue of 0.25 have been chosen for optimizing our re-
sults (interface damage values). 

Table 2. The main functions relating to the genetic op-
erators (selection, crossing and mutation). 

function x = Gen_Pop_Init(Npop_init,To) 
    x(:,1) = rand(Npop_init,1);  
    x(:,2) =rand(Npop_init,1)*10e-5; 
 
function [enf1, enf2]=cross(p1,p2) 
nbVar = length(p1);  
enf1=[]; enf2=[];  
a = rand+0.2; 
enf1 = p1*a + p2*(1-a);  
enf2 = p2*a + p1*(1-a); 
return 
 
function [enf1] = mutate(enf1,probMut,To,Te) 
  
bound2=[To  Te]; 
bound1=[0  1000]; 
[nbenf nbvr]=size(enf1);  
df1 = bound1(2) - bound1(1); df2 = bound2(2) - bound2(1) 
for k=1:nbenf 
a = rand;  
if a < probMut 
mPoint = round(rand * nbenf); 
if mPoint ~= 0 
    L=round(2*rand); 
    if L~= 0 
        if L ~= 2 
            enf1(k,L) = bound1(1)+ rand*df1;  
           else 
            enf1(k,L) = bound2(1)+ rand*df2; 
        end 
    end 
end 
end 
end 

3.1 Sisal/PLA Biocomposite Material 

In Figs. (3-5), the damage (D) at the interface 
begins for a value of D = 0.18 for mechanical 
shear stress equal to 450 N / m² (Fig. 3). It in-
creases linearly when the stress increases and 
reaches a maximum value of 0.33 for a shear 
stress of 650N / m² (Fig. 5). Symmetry of damage 
was observed in the middle of the interface. The 
red cloud explains that the damage is concentrated 
at the ends compared to the middle of the fiber, as 
has already been demonstrated by the microme-
chanical model of Cox [62]. 

 

 
Fig. (3). Interface fiber-matrix damage level of sisal/PLA 
for σ=450 N/m². 

 

 

Fig. (4). Interface fiber-matrix damage level of sisal/PLA 
for σ=550 N/m². 
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Fig. (5). Interface fiber-matrix damage level of sisal/PLA 
for σ=650 N/m². 

3.2. Alfa/PLA Biocomposite Material 

Figs. (6-8) show that the level of sheer damage 
begins for a damage value D = 0.21 (Fig. 6) when 
σ = 450N / m², and it reaches a maximum value D 
= 0.26 (Fig. 8) for a maximum stress σ = 650N / 
m². Symmetry of damage was observed in the 
middle of the interface. The red cloud explains 
that the damage is concentrated at the ends com-
pared to the middle of the fiber, as has already 
been demonstrated by the micromechanical model 
of Cox.  

The genetic results faithfully showed the real 
behavior of the two materials according to their 
mechanical properties, in particular, the values of 
the three Young's modulus. We have concluded 
that the fiber with the largest Young's modulus, its 
fiber-matrix interface, is the most resistant to me-
chanical stresses. 

3.3. Raffia/PLA Biocomposite Material 

Figs. (9-11) show that the level of sheer dam-
age begins for a damage value D = 0.12 (Fig. 9) 
when σ = 450N / m², and it reaches a maximum 
value D = 0.22 (Fig. 11) for a maximum stress of 
σ = 650N / m². Symmetry of damage was ob-
served in the middle of the interface. The red 
cloud explains that the damage is concentrated at 
the ends compared to the middle of the fiber, as it 
has already been demonstrated by the microme-
chanical model of Cox. 

 
Fig. (6). Interface fiber-matrix damage level of alfa/PLA for 
σ=450 N/m². 

 
Fig. (7). Interface fiber-matrix damage level of alfa/PLA for 
σ=550 N/m². 

 
Fig. (8). Interface fiber-matrix damage level of alfa/PLA for 
σ=650 N/m². 
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Fig. (9). Interface fiber-matrix damage level of raffia/PLA 
for σ=450 N/m². 

 
Fig. (10). Interface fiber-matrix damage level of raffia/PLA 
for σ=550 N/m². 

 
Fig. (11). Interface fiber-matrix damage level of raffia/PLA 
for σ=650 N/m². 

CONCLUSION 

This work focused on the study of the effect of 
raffia, alfa and sisal fibers on fiber-matrix inter-
face shear damage of the three biocomposite ma-
terials studied, and which is consisted of the same 
matrix of PLA. To calculate interface damage, the 
genetic operator crossing has been employed 
based on the Weibull approach. The results ob-
tained by genetic modeling have shown that the 
raffia / PLA and alfa/PLA biocomposite materials 
are better mechanical properties compared to sisal 
/ PLA. This observation has been confirmed by 
the different values of interface damage of the bi-
ocomposites studied; the numerical results are 
similar and coincide perfectly with the analytical 
results of Cox [62], where he proved that Young's 
modulus of fibers improves the resistance of the 
interface. These results are good agreement with 
our results found by genetic approach [63]. The 
experimental work by Antoine Le Duigou et al. 
[64] and Bodros et al [65] showed that the use of 
natural fibers greatly improve the mechanical 
properties of biocomposite materials. 
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